
TCSS 422 B – Spring 2020
School of Engineering and Technology

4/23/2020

L8.1Slides by Wes J. Lloyd

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

Linux Thread API,
Locks,

Lock-Based Data Structures

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/21
 Assignment 0 (Apr 23 11:59p AOE)
 C Tutorial (Apr 30 11:59p AOE)
 Assignment 1 (May 7 11:59p AOE)
 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Concurrent Data Structures

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.2

OBJECTIVES – 4/23

 Please classify your perspective on material covered in
today’s class (48 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.32 ( from 7 .6)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.63 ( from 5.45)

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.3

MATERIAL / PACE

 I 'm confused on how the scheduling question was done
but I 'm hoping the lecture tonight (Wed 4/22) will clear
up any questions I have.

 7 scheduling examples, about an hour

 Video posted

 1 FIFO, 1 SJF, 1 STCF

 4 MLFQ

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.4

FEEDBACK FROM 4/23

 I would like to have more c larity on lock and why is i t slow?

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.5

FEEDBACK - 2

// Global Address Space
#define COUNT 8000000
static volatile int counter = 0;
pthread_mutex_t lock;

void *worker(void *arg)
{
for (int i=0;i<COUNT;i++) {

int rc = pthread_mutex_lock(&lock);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
}

#1: 8,000,000 function calls

#2: Calls are system calls (kernel API)
Context switch req’d to kernel worker
process to perform requested work
with privileged access to the HW

#3: Mutual Exclusion:
If another thread is already executing
inside the Critical Section, then it
blocks (runningblocked) and waits
for the lock to become available.

 What is happening with our counter?
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.6

RACE CONDITION

TCSS 422 B – Spring 2020
School of Engineering and Technology

4/23/2020

L8.2Slides by Wes J. Lloyd

 Code that accesses a shared variable must not be
concurrently executed by more than one thread

 Multiple active threads inside a cr it ical section produce a
race condition .

 Atomic execution (all code executed as a unit) must be
ensured in cr itical sections
 These sections must be mutually exclusive

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.7

CRITICAL SECTION

 TCSS 422 B Sp 2020

 Now due at 11:59 pm
Anywhere On Earth
(AOE) TIME ZONE

 Pacific Daylight Time
minus 5 hours

 Last time zone before
international date line

11:59 pm = ~4:59 am PDT

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.8

ANYWHERE ON EARTH (AOE)
ASSIGNMENTS REVISED SUBMISSION TIME

AOE Time

 Questions from 4/21
 Assignment 0 (Apr 23 11:59p AOE)
 C Tutorial (Apr 30 11:59p AOE)
 Assignment 1 (May 7 11:59p AOE)
 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Concurrent Data Structures

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.9

OBJECTIVES – 4/23

 Questions from 4/21
 Assignment 0 (Apr 23 11:59p AOE)
 C Tutorial (Apr 30 11:59p AOE)
 Assignment 1 (May 7 11:59p AOE)
 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Concurrent Data Structures

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.10

OBJECTIVES – 4/23

 Questions from 4/21
 Assignment 0 (Apr 23 11:59p AOE)
 C Tutorial (Apr 30 11:59p AOE)
 Assignment 1 (May 7 11:59p AOE)
 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Concurrent Data Structures

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.11

OBJECTIVES – 4/23

CHAPTER 27 -
LINUX

THREAD API

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L8.12

TCSS 422 B – Spring 2020
School of Engineering and Technology

4/23/2020

L8.3Slides by Wes J. Lloyd

 Questions from 4/21
 Assignment 0 (Apr 23 11:59p AOE)
 C Tutorial (Apr 30 11:59p AOE)
 Assignment 1 (May 7 11:59p AOE)
 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Concurrent Data Structures

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.13

OBJECTIVES – 4/23

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority… (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.14

THREAD CREATION

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.15

PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.16

PASSING A SINGLE VALUE

 Here we “cast” the pointer to pass/return a primitive data type

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.17

PASSING A SINGLE VALUE

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L8.18

TCSS 422 B – Spring 2020
School of Engineering and Technology

4/23/2020

L8.4Slides by Wes J. Lloyd

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.19

WAITING FOR THREADS TO FINISH

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L8.20

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L8.21

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L8.22

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.23

ADDING CASTS

 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.24

ADDING CASTS - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

4/23/2020

L8.5Slides by Wes J. Lloyd

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.25

LOCKS

// Global Address Space
static volatile int counter = 0;
pthread_mutex_t lock;

void *worker(void *arg)
{
int i;
for (i=0;i<10000000;i++) {

int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}

 Ensure critical sections are executed atomically -as a unit
 Provides implementation of “Mutual Exclusion”

 API

 Example w/o initialization & error checking

 Blocks forever until lock can be obtained

 Enters critical section once lock is obtained
 Releases lock

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.26

LOCKS - 2

 Assigning the constant

 API call:

 Initializes mutex with attributes specified by 2nd argument

 If NULL, then default attributes are used

 Upon initialization, the mutex is initialized and unlocked

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.27

LOCK INITIALIZATION

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.28

LOCKS - 3

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L8.29

 Condition variables support “signaling”
between threads

 pthread_cond_t datatype

 pthread_cond_wait()
 Puts thread to “sleep” (waits) (THREAD is BLOCKED)
 Threads added to >FIFO queue<, lock is released
 Waits (listens) for a “signal” (NON-BUSY WAITING, no polling)
 When signal occurs, interrupt fires, wakes up first thread,

(THREAD is RUNNING), lock is provided to thread

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.30

CONDITIONS AND SIGNALS

TCSS 422 B – Spring 2020
School of Engineering and Technology

4/23/2020

L8.6Slides by Wes J. Lloyd

 pthread_cond_signal()

 Called to send a “signal” to wake-up first thread in FIFO “wait” queue
 The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

 Unblocks all threads in FIFO “wait” queue, currently blocked on the
specified condition variable

 Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?
 Determined by OS scheduler (based on priority)
 Thread(s) awoken based on placement order in FIFO wait queue
 When awoken threads acquire lock as in pthread_mutex_lock()

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.31

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.32

CONDITIONS AND SIGNALS - 3

State variable set,
Enables other thread(s)

to proceed above.

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked
 A signal is raised, but the pre-conditions required to proceed may

have not been met. **MUST CHECK STATE VARIABLE**

 Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.33

CONDITION AND SIGNALS - 4

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L8.34

 Compilation:
gcc requires special option to require programs with pthreads:
 gcc –pthread pthread.c –o pthread

 Explicitly links library with compiler flag

 RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages
 man –k pthread

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.35

PTHREADS LIBRARY

 Example builds multiple single file programs
 All target

 pthread_mult
 Example if multiple source files should produce a single executable

 clean target

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.36

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

TCSS 422 B – Spring 2020
School of Engineering and Technology

4/23/2020

L8.7Slides by Wes J. Lloyd

TCSS 422 WILL RETURN
AT ~2:50PM

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L8.37

CHAPTER 28 –
LOCKS

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L8.38

 Questions from 4/21
 Assignment 0 (Apr 23 11:59p AOE)
 C Tutorial (Apr 30 11:59p AOE)
 Assignment 1 (May 7 11:59p AOE)
 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Concurrent Data Structures

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.39

OBJECTIVES – 4/23

 Ensure critical section(s) are executed atomically -as a unit
 Only one thread is allowed to execute a critical section at any given

time

 Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.40

LOCKS

 Lock variables are called “MUTEX”

 Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

 Locked (acquired or held)

 Unlocked (available or free)

 Only 1 thread can hold a lock

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.41

LOCKS - 2

 pthread_mutex_lock(&lock)

 Try to acquire lock

 If lock is free, calling thread will acquire the lock

 Thread with lock enters critical section
 Thread “owns” the lock

 No other thread can acquire the lock before the owner
releases it.

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.42

LOCKS - 3

TCSS 422 B – Spring 2020
School of Engineering and Technology

4/23/2020

L8.8Slides by Wes J. Lloyd

 Program can have many mutex (lock) variables to
“serialize” many critical sections

 Locks are also used to protect data structures

 Prevent multiple threads from changing the same data
simultaneously

 Programmer can make sections of code “granular”
 Fine grained – means just one grain of sand at a time through an

hour glass

 Similar to relational database transactions
 DB transactions prevent multiple users from modifying a table,

row, field

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.43

LOCKS - 4

 Is this code a good example of “f ine grained parallelism”?

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.44

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock);

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.45

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

 Correctness

 Does the lock work?

 Are critical sections mutually exclusive?
(atomic-as a unit?)

 Fairness

 Do all threads that compete for a lock have a fair chance
of acquiring it?

 Overhead

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.46

EVALUATING LOCK IMPLEMENTATIONS

 Locks require hardware support

 To minimize overhead, ensure fairness and correctness

 Special “atomic-as a unit” instructions to support lock
implementation

 Atomic-as a unit exchange instruction
 XCHG

 Compare and exchange instruction
 CMPXCHG

 CMPXCHG8B

 CMPXCHG16B

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.47

BUILDING LOCKS

 To implement mutual exclusion
 Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt
 What if lock is never released?

 On a multiprocessor processor each CPU has its own interrupts
 Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost
 If not queued…

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.48

HISTORICAL IMPLEMENTATION

TCSS 422 B – Spring 2020
School of Engineering and Technology

4/23/2020

L8.9Slides by Wes J. Lloyd

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L8.49

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation: (1)Correct? (2)Fair? (3)Performant?

 Correctness requires luck… (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.50

DIY: CORRECT?

 What is wrong with while(<cond>); ?

 Spin-waiting wastes time actively waiting for another thread

 while (1); will “peg” a CPU core at 100%
 Continuously loops, and evaluates mutex->flag value…

 Generates heat…

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.51

DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}

 Hardware support required for working locks
 Book presents pseudo code of C implementation
 TEST-and-SET adds a simple check to the basic spin lock
 Assumption is this “C code” runs atomically on CPU:

 lock() method checks that TestAndSet doesn’t return 1
 Comparison is in the caller

 Can implement the C version (non-atomic) and have some
success on a single-core VM

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.52

TEST-AND-SET INSTRUCTION

 C version: requires preemptive scheduler on single core system

 Lock is never released without a context switch

 single-core VM: occasionally will deadlock, doesn’t miscount

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.53

DIY: TEST-AND-SET - 2

 Correctness:
 Spin locks with atomic Test-and-Set:

Critical sections won’t be executed simultaneously by (2) threads

 Fairness:
 No fairness guarantee. Once a thread has a lock, nothing forces it to

relinquish it…

 Performance:
 Spin locks perform “busy waiting”

 Spin locks are best for short periods of waiting (< 1 time quantum)

 Performance is slow when multiple threads share a CPU

 Especially if “spinning” for long periods

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.54

SPIN LOCK EVALUATION

TCSS 422 B – Spring 2020
School of Engineering and Technology

4/23/2020

L8.10Slides by Wes J. Lloyd

 Checks that the lock variable has the expected value FIRST,
before changing its value
 If so, make assignment
 Return value at location

 Adds a comparison to TestAndSet
 Textbook presents C pseudo code
 Assumption is that the compare-and-swap method runs atomically

 Useful for wait-free synchronization
 Supports implementation of shared data structures which can be

updated atomically (as a unit) using the HW support
CompareAndSwap instruction

 Shared data structure updates become “wait-free”
 Upcoming in Chapter 32

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.55

COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.56

COMPARE AND SWAP

C implementation 1-core VM:
Count is correct, no deadlock

 Cooperative instructions used together to support
synchronization on RISC systems

 No support on x86 processors
 Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)
 Loads value into register
 Same as typical load
 Used as a mechanism to track competition

 Store-conditional (SC)
 Performs “mutually exclusive” store
 Allows only one thread to store value

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.57

TWO MORE “LOCK BUILDING”
CPU INSTRUCTIONS

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

 C code is psuedo code

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.58

LL/SC LOCK

 Two instruction lock

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.59

LL/SC LOCK - 2

CHAPTER 29 –
LOCK BASED

DATA STRUCTURES

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L8.60

TCSS 422 B – Spring 2020
School of Engineering and Technology

4/23/2020

L8.11Slides by Wes J. Lloyd

 Questions from 4/21
 Assignment 0 (Apr 23 11:59p AOE)
 C Tutorial (Apr 30 11:59p AOE)
 Assignment 1 (May 7 11:59p AOE)
 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

 Chapter 28: Locks
 Introduction, Lock Granularity
 Spin Locks, Test and Set, Compare and Swap

 Chapter 29: Lock Based Data Structures
 Concurrent Data Structures

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.61

OBJECTIVES – 4/23

Adding locks to data structures make them
thread safe.

Considerations:

Correctness

Performance

Lock granularity

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.62

LOCK-BASED
CONCURRENT DATA STRUCTURES

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.63

COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe

 Add lock to the counter

 Require lock to change data

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.64

CONCURRENT COUNTER

 Decrease counter

 Get value

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.65

CONCURRENT COUNTER - 2

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.66

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

TCSS 422 B – Spring 2020
School of Engineering and Technology

4/23/2020

L8.12Slides by Wes J. Lloyd

 Achieve (N) performance gain with (N) additional resources

 Throughput:

 Transactions per second

 1 core

 N = 100 tps

 10 core

 N = 1000 tps

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.67

PERFECT SCALING

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?
Why do we want counters local to each CPU Core?

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.68

SLOPPY COUNTER

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.69

SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.70

THRESHOLD VALUE S

 Example implementation

 Also with CPU affinity

April 23, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L8.71

SLOPPY COUNTER - EXAMPLE QUESTIONS

TCSS 422 B – Spring 2020
School of Engineering and Technology

4/23/2020

L8.13Slides by Wes J. Lloyd

WILL RETURN IN A FEW
MINUTES

