TCSS 422 B - Spring 2020 4/23/2020
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS OBJECTIVES - 4/23

| = Questions from 4/21
= Asslgnment O (Apr 23 11:59p AOE)

n 4 - = C Tutorlal (Apr 30 11:59p AOE)
Llnuxl-_r:;ﬁsa’d API’ : = Assignment 1 (May 7 11:59p AOE)

] = Li

Lock-Based Data Structures c.h;r',’,t:a'ﬂ;e';'tgﬁmead APt
= pthread_mutex_lock/_unlock/_trylock/_timelock
Wes J. Lond = pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks

= Introduction, Lock Granularity

= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Concurrent Data Structures

TCS5422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

BT, FD School of Engineering and Technology, University of Washington [fll Tacoma

April 23, 2020 ‘ 8.2 ‘

MATERIAL / PACE FEEDBACK FROM 4/23
= Please classify your perspective on material covered in = |'m confused on how the scheduling questlon was done
today’s class (48 respondents): but I'm hoping the lecture tonight (Wed 4/22) will clear
= 1-mostly review, 5-equal new/review, 10-mostly new up any questions I have.

= Average - 7.32 (4 from 7.6)

= 7 scheduling examples, about an hour

= Please rate the pace of today’s class: = Video posted
= 1-slow, 5-just right, 10-fast = 1 FIFO, 1 SJF, 1 STCF
= Average - 5.63 (1 from 5.45) = 4 MLFQ

oo | O g ems | | | [O S v s | |
= | would like to have more clarity on lock and why is It slow? = What is happening with our counter?
= When counter=50, consider code: counter = counter + 1
// Global Address Space #1: 8,000,000 function calls = If synchronized, counter will = 52
#define COUNT 8000000 (aft truction)
. | — _ after instruction
static volatile int counter = 0s Thread1 Thread2 PC %eax counter
pthread mutex_t lock; #2: Calls are system calls (kernel API) s T o T =
Context switch req’d to kernel worker i ek ko o
void *worker (void *arg) process to perform requested work addi§0x1,, Aeax 408 *oL o
{ with privileged access to the HW
for (int i=0;i<COUNT;i++) { SV TTTS state
restore T2’s state 100 0 50
pthread mutex lock ; mov 0x8049%alc, %eax 105 50 50
. add $0x1, %eax 108 51 50
5 . k(8 X #3: Mutual Exclusion: mov %eax, 0x804%alc 113 51 51
} If another thread is already executing
. . "y . . save T2's state
} inside the Critical Section, then it restore T1's state 108 51 50
blocks (running >blocked) and waits HOUASSIRFRIA0A9STE s 5

TCS5422: Operating Systems [Spring 2020]

April 23, 2020 School of Technology, University of i Tacoma

April 23, 2020

s s JOr the lock to become available.
TCSS422: Operating Systems [Spring ‘

School of Engineering and Technoloky o

‘ 8.6 ‘

Slides by Wes J. Lloyd L8.1

TCSS 422 B — Spring 2020
School of Engineering and Technology

CRITICAL SECTION

= Code that accesses a shared variable must not be
concurrently executed by more than one thread

race condltion.

ensured in critical sections
= These sections must be mutually exclusive

April 23,2020 TCS8422; Operating Systems [Spring 2020]
ool of hnology, y

= Multiple active threads inside a critical section produce a

= Atomic execution (all code executed as a unit) must be

4/23/2020

ANYWHERE ON EARTH (AOE)

ASSIGNMENTS REVISED SUBMISSION TIME

= TCSS 422 B Sp 2020

JBAK“ER ISLAND AND HOWLAND ISLAND| ...

= Now due at 11:59 pm 3 =)
Anywhere On Earth =
(AOE) TIME ZONE f_7

= Pacific Daylight Time
minus 5 hours o — e

= Last time zone before =~ - G
international date line

AOE Time
®11:59 pm = ~4:59 am PDT

TCSS422: Operating Systems [Spring 2020]
FRIZE, 2 e BT T e Uy i = e

OBJECTIVES - 4/23

= Questlons from 4/21
| = Assignment 0 (Apr 23 11:59p AOE) |
= C Tutorial (Apr 30 11:59p AOE)
= Asslgnment 1 (May 7 11:59p AOE)
= Chapter 27: LInux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Concurrent Data Structures

April 23,2020 TCS8422; Operating Systems [Spring 2020])
0ol of Technology, y - Tacoma

OBJECTIVES - 4/23

= Questlons from 4/21

L] .
| = C Tutorial (Apr 30 11:59p AOE) |

= Asslgnment 1 (May 7 11:59p AOE)
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Concurrent Data Structures

TCSS422: Operating Systems [Spring 2020]
CRIZE, 2 Sehoollof Erineering andTech nolosyiUnversity oWashinstonkTeconta

‘ 18.10

OBJECTIVES - 4/23

= Questlons from 4/21
= Assignment O (Apr 23 11:59p AOE)

L] :59p AOE)
= Asslgnment 1 (May 7 11:59p AOE)

= Chapter 27: LInux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Concurrent Data Structures

April 23,2020 TCS5422; Operating Systems [Spring 2020])
0ol of Technology, y - Tacoma

1811

Slides by Wes J. Lloyd

CHAPTER 27 -

LINUX
THREAD API

: TCSS422: Operating Systems [Spring 2020]
Ceaj2si2r20 School of Engineering and Technology, University of Washington -

L8.2

TCSS 422 B — Spring 2020
School of Engineering and Technology

OBJECTIVES - 4/23

= Questlons from 4/21
= Assignment O (Apr 23 11:59p AOE)
= C Tutorial (Apr 30 11:59p AOE)
= Asslgnment 1 (May 7 11:59p AOE)
= Chapter 27: LInux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures

= Concurrent Data Structures
TCSS422: Operating Systems [Spring 2020]
0ol of Engineerir Technology, University i - Tacoma

April 23, 2020 18.13

4/23/2020

THREAD CREATION

= pthread_create

#include <pthread.h>

int

pthread create(pthread_t* thread,
const pthread attr_t* attr,
void* (*start_routine) (void*),
void* arg) ;

= thread: thread struct

= attr: stack size, scheduling priority... (optional)

= start_routine: function pointer to thread routine

= arg: argument to pass to thread routine (optional)

TCS5422: Operating Systems [Spring 2020]

SRl 2020 School of Engineering and Technology, University of Washington - Tacoma

‘ 18.14

PTHREAD_CREATE - PASS ANY DATA

#include <pthread.h>

t _myarg t {

‘ int b;

) myarg_t;

void *mythread(void *arg) {
myarg_t *m = (myarg_t *) arg;
* printf(“sd %d\n”, m->a, m->b);
NULL;
}

int main(int arge, char *argv[]) {
pthread t p;
int re;

nyarg_t args;
* args.a = 107
. 0

rc = pthread create(&p, NULL, mythread, &args):

}

1815

‘ April 23, 2020 ‘ Tcsz:lzz; Operating systems [Spring 2020]

Technology, ity i Tacoma

PASSING A SINGLE VALUE

= Here we “cast” the pointer to pass/return a primitive data type

I void *mythread(void *arg) {

2 int m = arg

3 printf (“3d\n”, m);

4 (void *) (arg + 1);

5 i

6

7 int main(int arge, char *argv(l) {
8 pthread t p;

9 int re, m;

10 pthread_create (6p, NULL, mythread,lOO):
11 pthread join(p, (void **) &m);:
12 printf (“returned %d\n”, m);
13 0:

14 }

TCS5422: Operating Systems [Spring 2020]

RRal2 2020 School of Engineering and Technology, University of Washington - Tacoma

‘ 18.16

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

pthread_create (6p, NULL, mythread,lOO) ;

pthread_join(p, (void **) &m);

12 printf (“returned %d\n”, m);
13 0;
14 }
; TCSS422: Operating Systems [Spring 2020]
April 23, 2020 e e Technolagy, University ’ R 1817

Slides by Wes J. Lloyd

Unlimited size

For pthread_create(), how large (in bytes) can a
casted primitive data type be that is passed in as a
replacement for (void *) on a 32-bit operating
system?

1 byte
2 bytes
3 bytes
4 bytes

L8.3

TCSS 422 B — Spring 2020
School of Engineering and Technology

WAITING FOR THREADS TO FINISH

int pthread_join(pthread t thread, void **value_ptr); ‘

= thread: which thread?

® value_ptr: pointer to return value
type is dynamic / agnostic

= Returned values *must* be on the heap

= Thread stacks destroyed upon thread termination (join)

= Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

4/23/2020

April 23,2020 Tcsz:lzz; Operating Systems [Spring 2020]

chnology, ity i Tacoma ‘ 1819

struct myarg {
int a;
int b;
1

What will this code do?

void *worker(void *arg)
{

struct myarg *input (struct myarg *) arg;
rintf("a=%d d\n",input->a, input->b);

struct myarg output;
output.a = 1;

output.b = 2;

return (void *) &output;

}

int main (int argc, char * argv[])

{

pthread_t pl;

struct myarg args;

struct myarg *ret_args;

args.a = 10;

args.b = 20;

pthread_create(&pl, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);
printf("returned %d %d\n"__ret aras->a__ret aras->h):
return 0;

TCSS422: Operating Systems [Spring 2020]

Qoglizeiz02 School of Engineering and Technology, University of Washington - Tacoma

18.20

struct myarg {
int a;
int b;

What will this code do?

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;

printf("a=%d b=%d\n",input->a, input->b);

el T Data on thread stack

output.b = 2;

return (void *) &output; $./pthread_struct
} a=10 b=20

Segmentation fault (core dumped)

int main (int argc, char * argv[])
{

pthread_t pl;

struct myarg args;

struct myarg *ret_args;

args.a = 10;
args.b = 20:
pthread_:

altes= How can this code be fixed?

printf("
return 0.

TCS8422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L8.21

April 23, 2020

struct myarg {
int a;
int b;
1

How about this code?

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a 1;

input->b = 2;

return (void *) &input;

} $./pthread_struct

a=10 b=20
returned 1 2

int main (int argc, char * argv[])
{

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
args.a

args.b H

pthread_create(&pl, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);

printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

TCSS422: Operating Systems [Spring 2020]

Qoglizerz02 School of Engineering and Technology, University of Washington - Tacoma

18.22

ADDING CASTS

ADDING CASTS - 2

= Casting
= Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

= Example: uncasted capture in pthread_join

pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’

from incompatible pointer type [-Wincompatible-pointer-types]
pthread_join(pl, &plval);

= Example: uncasted return
In file included from pthread_int.c:3:0:
/usr/include/pthread.h:250:12: note: expected ‘void **' but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

April 23,2020 Tcsz:lzcz‘; Operating Systems [Spring 2020]

Technology, University i Tacoma

‘ 1823

Slides by Wes J. Lloyd

= pthread_join
int * plval;
int * p2val;
pthread_join(pl, (void *)&plval);
pthread_join(p2, (void *)&p2val);

= return from thread function
int * counterval = malloc(sizeof(int));
*counterval = counter;
return (void *) counterval;

TCS5422: Operating Systems [Spring 2020]

RRal2e 2020 School of Engineering and Technology, University of Washington - Tacoma

‘ 1824 ‘

L8.4

TCSS 422 B — Spring 2020
School of Engineering and Technology

LOCKS

= pthread_mutex_t data type
= /usr/include/bits/pthread_types.h
// Global Address Space

static volatile int counter = 0;

void *worker(void *arg)

{

int i;
for (i=0;17<10000000;i++) {

assert(rc==0);
counter = counter + 1;

}
return NULL;

TCS5422: Operating Systems [Spring 2020] ‘ 1825 ‘

April 23, 2020 School of Engineering and Technology, University of Washington - Tacoma

4/23/2020

LOCKS - 2

= Ensure critical sections are executed atomically-as a unit
= Provides implementation of “Mutual Exclusion”

= API

int pthread mutex_lock (pthread mutex t *mutex);
int pthread mutex_unlock (pthread mutex t *mutex);

= Example w/o initialization & error checking

pthread mutex_t lock;
pthread_mutex_lock (&lock) ;
Lical soechiomis

X = x + 1; // or whatever your critica
pthread mutex_unlock (&lock) ;

= Blocks forever until lock can be obtained
= Enters critical section once lock is obtained
= Releases lock

TCS5422: Operating Systems [Spring 2020] ‘

FRIZE, 2 o BT T T o e A S T e

18.26 ‘

LOCK INITIALIZATION

= Assigning the constant

| pthread mutex_t lock = PTHREAD_MUTEX INITIALIZER; ‘

= API call:

int rc = pthread mutex

assert (rc == 0); a

= |nitializes mutex with attributes specified by 2" argument
= |f NULL, then default attributes are used

= Upon initialization, the mutex is initialized and unlocked

TCS5422: Operating Systems [Spring 2020]
0ol of Engineeri i

April 23, 2020 S ity i Tacoma

‘ 1827 ‘

= Error checking wrapper

int rc = pthread_mutex_lock (mutex) ;
assert (rc == 0);

}

= What if lock can’t be obtained?

int pthread mutex trylock(pthread mutex t *mutex);
int pthread mutex_timelock (pthread mutex t *mutex,
struct timespec *abs_timeout);

= trylock - returns immediately (fails) if lock is unavailable
= timelock - tries to obtain a lock for a specified duration

TCS5422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

April 23, 2020

18.28

Which Linux Thread API function *is* a blocking
function? A blocking function causes the thread to
go from READY --> BLOCKED.
pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_timelock()
None of the above

All of the above

n April 23, 2020 TCSS422: Operating Systems [Spr::;g ‘zuzo] m 2!.

CONDITIONS AND SIGNALS

= Condition variables support “signaling” ¥ iy
between threads

int pthread_cond_wait (pthread cond_t *cond,
pthread mutex_t *mutex);
int pthread cond_signal (pthread_cond_t *cond);

= pthread_cond_t datatype

= pthread_cond_wait()
= Puts thread to “sleep” (waits) (THREAD is BLOCKED)
= Threads added to >FIFO queues, lock is released
= Waits (lIstens) for a “signal” (NON-BUSY WAITING, no polling)

= When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

TCS5422: Operating Systems [Spring 2020]

RRal2e 2020 School of Engineering and Technology, University of Washington - Tacoma

‘ 1830

Slides by Wes J. Lloyd

L8.5

TCSS 422 B — Spring 2020
School of Engineering and Technology

4/23/2020

CONDITIONS AND SIGNALS - 2

CONDITIONS AND SIGNALS - 3

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

= pthread_cond_signal ()
= Called to send a “signal” to wake-up first thread in FIFQ “walt” queue
= The goal is to unblock a thread to respond to the signal

= pthread_cond_broadcast()

= Unblocks all threads in FIFQ “walt” queue, currently blocked on the
specified condition variable

= Broadcast is used when all threads should wake-up for the signal

® Which thread is unblocked first?
= Determined by OS scheduler (based on priority)
= Thread(s) awoken based on placement order in FIFQ walt queue
= When awoken threads acquire lock as in pthread_mutex_lock()

April 23, 2020 TCS5422: Operating Systems [Spring 2020] ‘ 1831 ‘

School of Engineering and Technology, University of Washington - Tacoma

= Wait example:
pthread mutex t lock = PTHREAD MUTEX_INITIALIZER;
pthread cond t cond = PTHREAD_COND_INITIALIZER;

while (initialized == 0)
pthread cond wait(&cond, &lock);

// Perform work that requires lock

a=a+b;

pthread mutex_unlock (&lock) ;

pthread_mutex_lock (slock) ;

= wait puts thread to sleep, releases lock

= when awoken, lock reacquired (but then released bv this code)
AR 0 State iabl t,
= When initialized, another thread signals Enab?;‘éa:':r t:r:d(s)

to proceed above.

pthread mutex_lock (&lock) ;
initialized = 1;

pthread_cond_signal (&init);
pthread_mutex_unlock(&lock) ;

April 23, 2020

TCS5422: Operating Systems [Spring 2020] 832
School of Engineering and Technology, University of Washington - Tacoma i

CONDITION AND SIGNALS - 4

pthread mutex_t lock = PTHREAD_MUTEX INITIALIZER;
pthread cond_t cond = PTHREAD_COND_INITIALIZER;

pthread mutex lock (&lock) ;
le (initialized == 0)

pthread cond wait(&cond, &lock]

/7 Perform work that requires lock
a=a+bh;
pthread mutex_unlock (slock) ;

= Why do we wait inside a while loop?

= The while ensures upon awakening the condition is rechecked
= A signal is raised, but the pre-conditions required to proceed may
have not been met. **MUST CHECK STATE VARIABLE**
= Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

TCS5422: Operating Systems [Spring 2020] ‘ 1833 ‘

April 23, 2020 School of Engineering and Technology, University of Washington - Tacoma

| |
Five pthreads wait using a condition variable. Which'
pthread is woken and provided the lock FIRST when
a signal or broadcast occurs?

The first thread to block and wait on
the condition variable.

The last thread to block and wait on
the condition variable. | B

All threads that have blocked and

are waiting on the condition variable | C
are awoken at the same time.

None of the Above D

All of the Above E

] April 23, 2020 TCS8422: Operating Systems [Spring 2020]

L] 6y 6 Loy

PTHREADS LIBRARY

= Compilation:
gcc requires special option to require programs with pthreads:
= gcc -pthread pthread.c -o pthread
= Explicitly links library with compiler flag
= RECOMMEND: using makefile to provide compiler arguments

= List of pthread manpages
= man -k pthread

TCS5422: Operating Systems [Spring 2020]

Qeulze2020) Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms ‘ 1833 ‘

SAMPLE MAKEFILE

cc=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)
pthread_mult: pthread.c pthread_int.c
$(cC) $(CFLAGS) $A -0 $@
Tean:
$(RM) -f $(binaries) *.o
= Example builds multiple single file programs
= All target
= pthread_mult
= Example if multiple source files should produce a single executable
= clean target

TCS5422: Operating Systems [Spring 2020] ‘ 18.36 ‘

RRal2e 2020 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L8.6

TCSS 422 B — Spring 2020
School of Engineering and Technology

TCSS 422 WILL RETURN
AT ~2:50PM

. TCSS422: Operating Systems [Spring 2020]
I 22N 2D School of Engineering and Technology, University of Washington -

4/23/2020

CHAPTER 28 -

: TCSS422: Operating Systems [Spring 2020]
(Al 2 D School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/23

= Questlons from 4/21
= Assignment O (Apr 23 11:59p AOE)
= C Tutorial (Apr 30 11:59p AOE)
= Asslgnment 1 (May 7 11:59p AOE)
= Chapter 27: LInux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap
= Chapter 29: Lock Based Data Structures
= Concurrent Data Structures

April 23,2020 TCS8422; Operating Systems [Spring 2020])
0ol of chnology, y - Tacoma

1839

= Ensure critical section(s) are executed atomically-as a unit

= Only one thread is allowed to execute a critical section at any given
time

= Ensures the code snippets are “mutually exclusive”

= Protect a global counter:

[balance = balance + 1;

= A “critical section”:

1 lock_t mutex; // some globally-allocated lock ‘mutex’
2 .
3 lock(smutex);
4 balance — balance + 1;
5 unlock (smutex);
April 23,2020 ;ﬁ:‘;fﬁ°"e.’“"“?5"“e"}:£f|’r"2:f;"°! &) Tacoma ‘ 18.40

= Lock variables are called “MUTEX”
=Short for mutual exclusion (that’s what they guarantee)

= Lock variables store the state of the lock
= States
=Locked (acquired or held)

= Unlocked (available or free)

= Only 1 thread can hold a lock

TCS5422: Operating Systems [Spring 2020]
B, FD SeFoo[of Enginearing andiechnolonyiUnve sty q Tacoma

1841

"pthread mutex_lock (&lock)
=Try to acquire lock
= If lock is free, calling thread will acquire the lock

=Thread with lock enters critical section
= Thread “owns” the lock

= No other thread can acquire the lock before the owner
releases it.

TCSS422: Operating Systems [Spring 2020]
IR, 22 5ehool of Er pineering andTech nolosyiUniversity f Tacoma

E

Slides by Wes J. Lloyd

L8.7

TCSS 422 B — Spring 2020
School of Engineering and Technology

4/23/2020

= Program can have many mutex (lock) variables to
“serialize” many critical sections

= Locks are also used to protect data structures
= Prevent multiple threads from changing the same data
simultaneously
= Programmer can make sections of code “granular”
Fine grained - means just one grain of sand at a time through an
hour glass
=Similar to relational database transactions

DB transactions prevent multiple users from modifying a table,
row, field

April 23,2020 Tcsz:lzz; Operating Systems [Spring 2020]

chnology, ity i Tacoma ‘ 1843 ‘

FINE GRAINED?

= |s this code a good example of “fine gralned parallelism”?

pthread_mutex_lock (&lock);
a = b++;
b=a*c;
*d=a+ b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = strl;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
T++
} .
e=e - i;
pthread_mutex_unlock(&lock) ;

TCS5422: Operating Systems [Spring 2020]

SRl 2020 School of Engineering and Technology, University of Washington - Tacoma

FINE GRAINED PARALLELISM

pthread_mutex_lock (&lock_a) ;
pthread_mutex_lock (&lock_b);

a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock (&lock_b);
=a* ¢
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d=a+ b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock (&lock_e);

fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . .

April 23,2020 Tcsz:lzz; Operating Systems [Spring 2020]

chnology, ity i Tacoma 1845

EVALUATING LOCK IMPLEMENTATIONS

= Correctness
=Does the lock work?

= Are critical sections mutually exclusive?
(atomic-as a unit?)

= Fairness

= Do all threads that compete for a lock have a fair chance
of acquiring it?

= Overhead

TCS5422: Operating Systems [Spring 2020]

”
School of Engineering and Technology, University of Washington - Tacoma ‘ L846 ‘

April 23, 2020

BUILDING LOCKS

= Locks require hardware support
= To minimize overhead, ensure fairness and correctness

= Special “atomic-as a unit” instructions to support lock
implementation

= Atomic-as a unit exchange instruction
XCHG

= Compare and exchange instruction

CMPXCHG
CMPXCHG8B
CMPXCHG16B
April 23, 2020 JEE RS SVS‘E"};[?:‘ZE;“N! . ngtonTacoma ‘ 1847 ‘

HISTORICAL IMPLEMENTATION

= To implement mutual exclusion
= Disable interrupts upon entering critical sections

1 void lock() {

2 DisableInterrupts () ;
3 }

4 void unlock() {

5 EnableInterrupts () ;
6 ¥

= Any thread could disable system-wide interrupt
= What if lock is never released?

= On a multiprocessor processor each CPU has its own interrupts
= Do we disable interrupts for all cores simultaneously?

= While interrupts are disabled, they could be lost
= If not queued...

TCS5422: Operating Systems [Spring 2020]

RRal2e 2020 School of Engineering and Technology, University of Washington - Tacoma

| s]

Slides by Wes J. Lloyd

L8.8

TCSS 422 B - Spring 2020

4/23/2020
School of Engineering and Technology

SPIN LOCK IMPLEMENTATION DIY: CORRECT?

= Operate without atomic-as a unit assembly instructions

= Correctness requires luck... (e.g. DIY lock is incorrect)
= “Do-it-yourself” Locks

Threadl Thread2
= Is this lock implementation: (1)Correct? (2)Falr? (3)Performant? call Tock ()
1 jef struct _ lock_t { int flag; } lock_t: while (flag == 1)
2 interrupt: switch to Thread 2
3 init(lock_t *mutex) { call 1ock ()
4 2 k is available, 1 - held while (flag == 1)
5 mutex->flag = 0; flag = 1;
6 . o
7) interrupt: switch to Thread 1
8 lock(lock_t *mutex) {

9 (mutex->f1

flag = 1; // set flag to 1 (too!)
10 i)
1 mutex->flag
bk = Here both threads have “acquired” the lock simultaneously
14 wvoid unlock(lock t *mutex) {
15 mutex->flag = 0;
16)
; TCS5422: Operating Systems [Spring 2020] TCS5422: Operating Systems [Spring 2020]
et 25, 2 School of Engineering and Technology, University of Washington - Tacoma ‘ 1849 ‘ FRIZE, 2 School of Engineering and Technology, University of Washington - Tacoma L850

DIY: PERFORMANT? TEST-AND-SET INS

= Hardware support required for working locks

void Tock(lock_t *mutex) = Book presents pseudo code of C implementation
{ = TEST-and-SET adds a simple check to the basic spin lock
// while lock is unavailable, wait.. q A A " B .
mutex->flag = 1; = Assumption is this “C code” runs atomically on CPU:
} 1 int TestAndSet (int *ptr, int new) {
2 int old = *ptr;
. . . 3 *ptr = new;
= What is wrong with while(<cond>); ? 1 o i
5)
)
= Spin-waiting wastes time actively waiting for another thread = lock() method checks that TestAndSet doesn’t return 1
) >) - . L
= while (1); will “peg” a CPU core at 100% Comparisaniis inithe caller
= Continuously loops, and evaluates mutex->flag value... . . .
= Can implement the C version (non-atomic) and have some
= Generates heat... .
success on a single-core VM
TCS$422: Operating Systems [Spring 2020] TCSS422: Operating Systems [Spring 2020]
Bl P e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome ‘ 1851 ‘ CRIZE, 2 ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma ‘ 1852 ‘

= C version: requires preemptive scheduler on single core system = Correctness:

= Lock is never released without a context switch = Spin locks with atomic Test-and-Set:

= single-core VM: occasionally will deadlock, doesn’t miscount Critical sections won’t be executed simultaneously by (2) threads
T __lock_t {
5 iociy = Fairness:
2 void init(lock t *lock) { = No fairness guarantee. Once a thread has a lock, nothing forces it to
6 / n that lock is ava relinquish it...
7 % - eld
8 lock->flag
9 i
10 = Performance:
o B void lock(lock_t *lock) { . “ " "
12 (Testandset (slock->flag, 1) == 1) = Spin locks perform “busy waiting
13 i / spin-wait N " P .
14) " = Spin locks are best for short periods of waiting (< 1 time quantum)
12 void unlock(lock t *lock) (= Performance is slow when multiple threads share a CPU
e Especially if “spinning” for long periods

TCSS5422: Operating Systems [Spring 2020] TCSS422: Operating Systems [Spring 2020]
Qeulze2020) Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms ‘ 1853 ‘ IR, 22 ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma ‘ 1854 ‘

Slides by Wes J. Lloyd L8.9

TCSS 422 B — Spring 2020
School of Engineering and Technology

4/23/2020

COMPARE AND SWAP

= Checks that the lock variable has the expected value FIRST,
before changing its value
= If so, make assignment
= Return value at location

= Adds a comparison to TestAndSet
= Textbook presents C pseudo code
= Assumption is that the compare-and-swap method runs atomically

= Useful for wait-free synchronization
= Supports implementation of shared data structures which can be
updated atomically (as a unit) using the HW support
CompareAndSwap instruction
= Shared data structure updates become “wait-free”
= Upcoming in Chapter 32

‘ 1855 ‘

April 23,2020 Tcsz:lz‘z); Operating Systems [Spring 2020]

Technology, ity i Tacoma

COMPARE AND SWAP

= Compare and Swap

1 int CompareAndSwap(int *ptr, int expected, int new) {
2 int actual = *ptr;

3 (actual == expected)

4 *ptr = new;

5 actuals

C implementation 1-core VM:

= Spin loc %
Count is correct, no deadlock

3 : // spin
4 B

= X86 provides “cmpxchgl” compare-and-exchange instruction
= cmpxchg8b
= cmpxchgléb

TCS5422: Operating Systems [Spring 2020]

School of Technology, Universi ington - Tacoma ‘ 186 ‘

April 23, 2020

TWO MORE “LOCK BUILDING”

CPU INSTRUCTIONS

LL/SC LOCK

= Cooperative instructions used together to support
synchronization on RISC systems

= No support on x86 processors
= Supported by RISC: Alpha, PowerPC, ARM

= Load-linked (LL)
= Loads value into register
= Same as typical load
= Used as a mechanism to track competition

= Store-conditional (SC)
= Performs “mutually exclusive” store
= Allows only one thread to store value

April 23, 2020

TCS5422: Operating Systems [Spring 2020]
0ol of Engineeri i

Technology, ity i Tacoma ‘ 1857 ‘

1 int LoadlLinked(int *ptr) {

2 *ptr;

3 }

4

5 int StoreConditional (int *ptr, int value) {
6 (no one has updated *ptr since the LoadLinked to this address) {
7 *ptr = value;

8 17

9 } {

10 0

11 }

12}

= LL instruction loads pointer value (ptr)
= SC only stores if the load link pointer has not changed
= Requires HW support

= C code is psuedo code

TCS5422: Operating Systems [Spring 2020]

April 23,2020 Schoolof Technology, i i Tacoma

‘ 1858 ‘

LL/SC LOCK - 2

1 void lock(lock_t *lock) {

2 (G

3 (LoadLinked (slock->flag) == 1)
4 7 // spin until it’s zero
5 (Storeconditional (&lock->flag, 1) 1
6
7
8

o 1 done

91 1l

11 wvoid unlock(lock_t *lock) {
12 lock->flag = 0;
13}

= Two instruction lock

‘ 1859 ‘

April 23,2020 Tcsz:fg; Operating Systems [Spring 2020]

Technology, ity i Tacoma

CHAPTER 29 -

LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Spring 2020]

Ceaj2si2r20 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

L8.10

TCSS 422 B — Spring 2020
School of Engineering and Technology

OBJECTIVES - 4/23

= Questlons from 4/21
= Assignment O (Apr 23 11:59p AOE)
= C Tutorial (Apr 30 11:59p AOE)
= Asslgnment 1 (May 7 11:59p AOE)
= Chapter 27: LInux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast
= Chapter 28: Locks
= Introduction, Lock Granularity
= Spin Locks, Test and Set, Compare and Swap

= Chapter 29: Lock Based Data Structures
= Concurrent Data Structures

April 23, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

‘ 1861 ‘

4/23/2020

LOCK-BASED

CONCURRENT DATA STRUCTURES

mAdding locks to data structures make them
thread safe.

= Considerations:
=Correctness
=Performance
=Lock granularity

TCS5422: Operating Systems [Spring 2020]
FRIZE, 2 o BT T T o e A S T e 1862

= Synchronization weary --- not thread safe

COUNTER STRUCTURE W/0 LOCK

1 typed __counter_t {
2 int value;
3 } counter_|
4
5 void init (counter_t *c) {
6 c->value = 0;
7 }
8
9 void increment (counter t *c) {
10 c->value++;
11)
12
13 d decrement (counter_t *c) {
14 c->value--;
15)
16
17 int get(counter_t *c) {
18 eturn c->value;
19)
April 23,2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

‘ 1863 ‘

CONCURRENT COUNTER

1 typedef struct _ counter_t {

2 int value;

3 pthread lock t lock:

4 } counter_t;

5

3 void init (counter_t *c) {

7 c->value = 0;

8 Pthread mutex_init(sc->lock, NULL);
9 i

10

11 void increment (counter_t *c) {

12 Pthread_mutex_lock(&c->lock);
13 c->valuet+;

14 Pthread mutex_unlock(sc->lock) ;
15) - -

16

= Add lock to the counter
= Require lock to change data

TCS5422: Operating Systems [Spring 2020]
CRIZE, 2 ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma 864

CONCURRENT COUNTER - 2

= Decrease counter
= Get value

(Cont.)
17 void decrement (counter_t *c) {
18 Pthread mutex_lock (sc->1lock) i
19 c->value--;
20 Pthread mutex_unlock (sc->lock) 7
21)
22
23 int get(counter_t *c) {
24 pthread mutex_lock (&c->lock) 7
25 int rc = c->value;
26 Pthread_mutex_unlock (&c->lock) ;
27 return rc;
28)

April 23,2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

‘ 1865 ‘

Slides by Wes J. Lloyd

CONCURRENT COUNTERS - PERFORMANCE

= iMac: four core Intel 2.7 GHz i5 CPU
= Each thread increments counter 1,000,000 times

15
X Procise
© Sioppy

Time (seconds)
3

@

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

2 3
Threads

scales poorly

TCS5422: Operating Systems [Spring 2020] 866
School of Engineering and Technology, University of Washington - Tacoma i

‘ April 23, 2020

L8.11

TCSS 422 B — Spring 2020
School of Engineering and Technology

4/23/2020

PERFECT SCALING

= Throughput:
= Transactions per second

= 1 core
= N =100 tps

= 10 core
= N =1000 tps

= Achieve (N) performance gain with (N) additional resources

April 23,2020 Tcsz:lz‘z); Operating Systems [Spring 2020]

nology, ity ington - Tacoma

1867

SLOPPY COUNTER

= Provides single logical shared counter
= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically
Global counter has lock to protect global counter value

Sloppiness threshold (S):
Update threshold of global counter with local values

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
= Why this implementation?
Why do we want counters local to each CPU Core?

TCS5422: Operating Systems [Spring 2020]

FRIZE, 2 Sehoslor e Ty f T

‘ 1868

SLOPPY COUNTER - 2

= Update threshold (S) = 5
= Synchronized across four CPU cores
= Threads update local CPU counters

Time | L | L | L L, G
0 0 0 0 0 0
1 0 0 1 1 0
2 1 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
6 550 1 3 4 5 (from 1)
7 0 2 4 530 10 (from Ly)
April 23, 2020 TC55422; Operating Systems [Spring 2020]) 869
ool of chnology, v Tacoma

THRESHOLD VALUE S

= Consider 4 threads increment a counter 1000000 times each
= Low S > What is the consequence?
= High S > What is the consequence?

O 7T T T %
1 2 4 8 16 32 64 128 256 5121024

Sloppiness

TCS5422: Operating Systems [Spring 2020]
e

School of Technology, University of Washi Tacoma ‘ L8.70

April 23, 2020

SLOPPY COUNTER - EXAMPLE

= Example implementation

= Also with CPU affinity

April 23,2020 Tcsz:lzg; Operating Systems [Spring 2020]

chnology, ity i Tacoma

an |

QUESTIONS

Slides by Wes J. Lloyd

L8.12

TCSS 422 B — Spring 2020
School of Engineering and Technology

MINUTES |

WILL RETURN IN A FEW - f-'/

Slides by Wes J. Lloyd

4/23/2020

L8.13

