TCSS 422 A — Spring 2020
School of Engineering and Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Concurrency Intro,
Linux Thread API

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

aprill2U2020 School of Engineering and Technology, University of Washington il Tacoma

OBJECTIVES - 4/21

® Questions from 4/16
= C Tutorial
= Active Reading Quiz - Ch. 7
= Assignment O
= Assighment 1
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

TCSS422: Operating Systems [Spring 2020]

April 21, 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.2

Lioyd

4/21/2020

L7.1

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

MATERIAL / PACE

m4/16 feedback survey for Lecture 6 -
not properly posted on CANVAS

® Survey has been reposted and is available

® Please classify your perspective on material covered in
today’s class (? respondents):

® 1-mostly review, 5-equal new/review, 10-mostly nhew
= Average - ? (24 from 7.6)

® Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - ? (271 from 5.45)

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L7:3

April 21, 2020

FEEDBACK FROM 4/16

® From 4/14: When does software benefit from turnaround time
more than response time and vice versa?

= Compute-bound batch jobs benefit from CPU schedulers that
improve turnaround time
= Examples:
= Genomic sequencing compute jobs (i.e. DNA analysis/alignment)
= Earth science models (e.g. weather, climate, hydrology, erosion)
= Forecast models (e.g. stock market, economics)
® These jobs require LONG uninterrupted access to the CPU

®m Event processing for user interfaces benefits from CPU
scheduler that improve response time

® These jobs involve frequent short bursts of computation

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L7.4

April 21, 2020

Slides by Wes J. Lloyd L7.2

TCSS 422 A — Spring 2020
School of Engineering and Technology

FEEDBACK - 2

scheduling?

®m Ch. 7 schedulers require knowing job runtime in advance
® |[n practice, we don’t know how long jobs require to execute

dynamically based on job behavior

® A job can actually change its behavior from batch to event-
based and back and MLFQ adapts the scheduling!

= What are the main advantages to using a multilevel queue for

= Many unknowns: job resource requirements, state of the system, etc.

m UW Tacoma MSCSS Student Sonia Xu: working on MS thesis to
predict runtime of bioinformatics jobs on different cloud VMs

® Multi-level feedback queue (MLFQ) adjusts scheduling of jobs

®m CPU schedulers must be adaptive unless having a crystal ball

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

April 21, 2020

L7.5

FEEDBACK - 3

| feel I don't fully understand how this algorithm works

® From email: about the 'Multilevel Feedback Queue Scheduler’,

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

April 21, 2020

L7.6

Slides by Wes J. Lloyd

4/21/2020

L7.3

TCSS 422 A — Spring 2020
School of Engineering and Technology

Slides by Wes J.

Round-Robin
within a Queue

Multiple job queues

= Adjust job priority based on [High Priority] Qg —’®—’
observed behavior Q7
® Interactive Jobs Q6
= Frequent I/0 > keep priority high Q5
= Interactive jobs require fast
response time (GUI/UI) Q4 —>@
® Batch Jobs Q3
= Require long periods of CPU
e Q2
utilization
= Keep priority low [Low Priority] Q1 —>®
SErE2020 ggﬁiﬁfﬁf gr:)geiLasier;ignzy:;edm‘lf‘eg?wg?oggi,oﬁ?'n]iversity of Washington - Tacoma L7

MLFQ - PRIORITY BOOST

With priority boost
= Prevents starvation

@ &1 I
n.A.1
Q1
L
QO
................ m...
0 50 100 150 200

With Priority Boost A:I B: C:%

. TCSS422: Operating Systems [Spring 2020]
April 14, 2020 School of Engineering and Technology, University of Washington - Tacoma

L5.8

Lloyd

4/21/2020

L7.4

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is runin
round-robin order.

Job Arrival Time Job Length
A T=0 4

B T=0 16

C T=0 8

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example.
Please draw clearly. An unreadable graph will loose points.

CHAPTER 9 QUESTIONS ?

= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler

TCSS422: Operating Systems [Spring 2020]

April 21, 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.10

Slides by Wes J. Lloyd L7.5

TCSS 422 A — Spring 2020
School of Engineering and Technology

minus 5 hours

#11:59 pm =

® Pacific Daylight Time

= Last time zone before W
international date line

ASSIGNMENTS:

REVISED SUBMISSION TIME

= TCSS 422 B Sp 2020 [BAKER ISLAND AND HOWLAND ISLAND|

® Now due at 11:59 pm
Anywhere On Earth
(AOE) TIME ZONE

............

it

wwwww

AOE Time
~4:59 am PDT

April 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.11

OBJECTIVES - 4/21

® Questions from 4/16

® C Tutorial

= [ntroduction

= Active Reading Quiz - Ch. 7
= Assignment O
= Assignment 1
= Chapter 26: Concurrency: An Introduction

= Race condition
= Critical section
® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

April 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.12

Slides by Wes J. Lloyd

4/21/2020

L7.6

TCSS 422 A — Spring 2020
School of Engineering and Technology

OBJECTIVES - 4/21

® Questions from 4/16

= C Tutorial

= Active Reading Quiz - Ch. 7

= Assignment O

= Assighment 1

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

TCSS422: Operating Systems [Spring 2020]

Seri2ER020 School of Engineering and Technology, University of Washington - Tacoma

L7.13

OBJECTIVES - 4/21

® Questions from 4/16

® C Tutorial

m Active Reading Quiz - Ch. 7

= Assignment O

= Assignment 1

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

TCSS422: Operating Systems [Spring 2020]

April 21, 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.14

Slides by Wes J. Lloyd

4/21/2020

L7.7

TCSS 422 A — Spring 2020
School of Engineering and Technology

OBJECTIVES - 4/21

® Questions from 4/16

= C Tutorial

= Active Reading Quiz - Ch. 7

= Assighment O

= Assighment 1

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

. TCSS422: Operating Systems [Spring 2020]
Seri2ER020 School of Engineering and Technology, University of Washington - Tacoma

L7.15

CHAPTER 26 -

CONCURRENCY:
AN INTRODUCTION

q TCSS422: Operating Systems [Spring 2020]
{aggll 2, 2 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

4/21/2020

L7.8

TCSS 422 A — Spring 2020
School of Engineering and Technology

Slides by Wes J.

OBJECTIVES - 4/21

® Questions from 4/16

® C Tutorial

= Active Reading Quiz - Ch. 7
= Assighment O

= Assignment 1

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

April 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.17

THREADS

Process State: PC, Process State: PC, Thread | | Thread | | Thread
registers, SP, etc... registers, SP, etc...

Process Multithreaded Process

State State State

Single
Threaded
Process

<0 SHARED (=W

€ap

Data Segment Dat:i

©Alfred Park, http://randu.org/tutorials/threads

Multiple
Threaded
Process

&

April 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.18

Lloyd

4/21/2020

L7.9

TCSS 422 A — Spring 2020
School of Engineering and Technology

THREADS - 2

®m Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

® Threads share code segment, memory, and heap are shared

= What is an embarrassingly parallel program?

® Enables a single process (program) to have multiple “workers”
= This is parallel programming...

® Supports independent path(s) of execution within a program
with shared memory ...

April 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.19

PROCESS AND THREAD METADATA

® Thread Control Block vs. Process Control Block

Thread identification
Thread state
CPU information:

Thread priority

Program counter
Register contents

Process identification

Process status

Process state:
Process status word
Register contents
Main memory
Resources

Pointer to process that created this thread Process priority
Pointers to all other threads created by this thread Accounting

April 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.20

Slides by Wes J. Lloyd

4/21/2020

L7.10

TCSS 422 A — Spring 2020

School of Engineering and Technology

® Every thread has

SHARED ADDRESS SPACE

it’'s own stack / PC

OKB The code segment: OKB
Program Code where instructions live Program Code
1KB s ; 1KB
e heap segment: H
Hep contains malloc'd data JKB i
2KB dynamic data structures
(it grows downward)
(free)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
15KB contains local variables 15KB
Stack) arguments to routines, Stack 1)
16KB return values, etc. 16KB
A Single-Threaded Two threaded
Address Space Address Space
. TCSS422: Operating Systems [Spring 2020]
aprilizl2020 School of Engineering and Technology, University of Washington - Tacoma L7.21

THREAD CREATION EXAMPLE

tinclude <stdie.h>
#include <assert.h>
tinclude <pthread.h>

void smythread(void xarg) ({
printf ("%s\n", (char «) arg);
return NULL;

)

int

main({int argc, char *argv[])} {
pthread_t pl, p2;
int ro;
printf ("main: begin\n");
rc = pthread create(&pl, NULL,
rc = pthread create(&p2, NULL,

mythread, "A"); assert(rc == 0);
mythread, "B"); assert(rc == 0);

// join waits for the threads to finish

rc = pthread join(pl, NULL); assert(rc == 0);
rc = pthread join(p2, NULL); assert(rc == ();
printf("main: end\n");

return 0;

April 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.22

Slides by Wes J. Lloyd

4/21/2020

L7.11

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

POSSIBLE ORDERINGS OF EVENTS

Starts running

Prints ‘main: begin’
»Creates Thread 1
Creates Thread 2
Waits for T1

Runs

» Prints ‘A’
Returns
» Waits for T2

Runs

» Prints ‘B’
Returns
» Prints ‘main: end’

a TCSS422: Operating Systems [Spring 2020]
aprilizl2020 School of Engineering and Technology, University of Washington - Tacoma L7.23

POSSIBLE ORDERINGS OF EVENTS - 2

Starts running

Prints ‘main: begin’

—(.:reates Thread 1 7
Runs
Prints ‘A’
Returns
—= Creates Thread 2 =
Runs
Prints ‘B’
Returns
Waits for T4 Returns immediately
— -
Waits for T2

Returns immediately
Prints ‘main: end’

. TCSS422: Operating Systems [Spring 2020]
April 21, 2020 School of Engineering and Technology, University of Washington - Tacoma L7.24

Slides by Wes J. Lloyd L7.12

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

POSSIBLE ORDERINGS OF EVENTS - 3

Starts running
Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

What if execution order of
g events in the program matters?

Runs
Prints ‘A’
Returns
—
Waits for T2 Immediately returns
Prints ‘main: end’
. TCSS422: Operating Systems [Spring 2020]
Byl 2L, 2D School of Engineering and Technology, University of Washington - Tacoma L7.25

COUNTER EXAMPLE

® Counter example

A+ B: ordering

® Counter: incrementing global variable by two threads

m |s the counter example embarrassingly parallel?

® What does the parallel counter program require?

. TCSS422: Operating Systems [Spring 2020]
April 21, 2020 School of Engineering and Technology, University of Washington - Tacoma L7.26

Slides by Wes J. Lloyd L7.13

TCSS 422 A — Spring 2020
School of Engineering and Technology

PROCESSES VS. THREADS

® What's the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplicate of code/heap, lightweight execution threads

Process

Process State: PC,
registers, SP, etc.

®
1
I —

singl-hmeaded procass

£ a+— thread

| ook | data || fhes | [code || data || il |
Process o | L :|
Pracess State: PC, rngsh'-m| [stack | i:g;.slr.-si ragistars rcgsmrs|
G) B e
slack || slack]Flaﬂ]
, - < . 14
B theoad — € I
¢ "3 &

muitithreadad process

April 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.27

RACE CONDITION

® What is happening with our counter?
= When counter=50, consider code: counter = counter + 1
= If synchronized, counter will = 52

(after instruction)

0s Threadl Thread2 PC %eax counter

before critical section 100 0 50
mov 0x8049%9alc, %eax 105 50 50
add £0x1, %eax 108 51 50

save T1's state
restore T2's state 100 0 50
mov 0x8049%alc, %eax 105 50 50
add $0xl, %eax 108 51 50
mov %$eax, 0x8049%alc 113 51 5

save T2's state
restore T1's state 108 51 50
mov %eax, 0x804%alc 113 51

-

April 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.28

Slides by Wes J. Lloyd

4/21/2020

L7.14

TCSS 422 A — Spring 2020
School of Engineering and Technology

Slides by Wes J.

CRITICAL SECTION

® Code that accesses a shared variable must not be
concurrently executed by more than one thread

® Multiple active threads inside a critical section produce a
race condition.

= Atomic execution (all code executed as a unit) must be
ensured in critical sections

= These sections must be mutually exclusive

TCSS422: Operating Systems [Spring 2020]

Seri2ER020 School of Engineering and Technology, University of Washington - Tacoma

L7.29

LOCKS

® To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock t mutex;

lack (smptex) :

balance = balance + 1; | Critical section

unlock (&mutex) ;

o W N =

® Counter example revisited

TCSS422: Operating Systems [Spring 2020]

April 21, 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.30

Lloyd

4/21/2020

L7.15

TCSS 422 A — Spring 2020
School of Engineering and Technology

CHAPTER 27 -
LINUX
THREAD API

TCSS422: Operating Systems [Spring 2020]

Bprili21512020 School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/21

® Questions from 4/16

® C Tutorial

= Active Reading Quiz - Ch. 7

= Assignment O

= Assignment 1

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

® Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

TCSS422: Operating Systems [Spring 2020]

April 21, 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.32

Slides by Wes J. Lloyd

4/21/2020

L7.16

TCSS 422 A — Spring 2020
School of Engineering and Technology

THREAD CREATION

® pthread_create

#include <pthread.h>

int
pthread create(pthread t* thread,
const pthread attr t* attr,
void#* (*start_routine) (void*),
void#* arg) ;

® thread: thread struct

® attr: stack size, scheduling priority... (optional)

® start_routine: function pointer to thread routine

® arg: argument to pass to thread routine (optional)

TCSS422: Operating Systems [Spring 2020]

Seri2ER020 School of Engineering and Technology, University of Washington - Tacoma

L7.33

PTHREAD_CREATE - PASS ANY DATA

#include <pthread.h>
typedef struct _ myarg_t {
» int a;
int b;
} myarg t;
void *mythread(void *arg) {
myarg t *m = (myarg t *) arg;
» printf (“%d %d\n”, m->»a, m-—>b):
NULL;
}
int main(int argc, char *argv[]) {
pthread t p;
ah i) 8 o ol
myarg_t args;
» args.a = 10;
args.b = 207

rc = pthread create(&4p, NULL, mythread, &args):

TCSS422: Operating Systems [Spring 2020]

April 21, 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.34

Slides by Wes J. Lloyd

4/21/2020

L7.17

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,

How large (in bvtes) can the primitive data type be?

I e B T

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

int rc, m,
pthread create (&p, NULL, mythread, EOE)
Ak pthread join(p, (void **) a&m);
printf (*returned %d\n”, m);
e b

TCSS422: Operating Systems [Spring 2020]

Byl 2L, 2D School of Engineering and Technology, University of Washington - Tacoma

L7.35

WAITING FOR THREADS TO FINISH

int pthread join(pthread t thread, void **value ptr);

® thread: which thread?

® value_ptr: pointer to return value
type is dynamic / agnostic

® Returned values *must* be on the heap

® Thread stacks destroyed upon thread termination (join)

® Pointers to thread stack memory addresses are invalid
= May appear as gibberish or lead to crash (seg fault)

= Not all threads join - What would be Examples ??

TCSS422: Operating Systems [Spring 2020]

A N . " . L7.36
School of Engineering and Technology, University of Washington - Tacoma

April 21, 2020

Slides by Wes J. Lloyd L7.18

TCSS 422 A — Spring 2020
School of Engineering and Technology

struct myarg {

int a; What will this code do?

int b;
}s
void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;

printf("a=%d b=%d\n",input->a, input->b);

Zﬁzgﬁz_gyzr%;wtpur’ Data on thread stack

output.b = 2;

return (void *) &output; $./pthread_struct
} a=10 b=20

Segmentation fault (core dumped)

%

int main (int argc, char argv[])

{
pthread_t pl;
struct myarg args;
struct myarg *ret_args;
args.a =
args.b =
pthread_
pthread_;
printf("
return 0

How can this code be fixed?

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.37

April 21, 2020

struct myarg {

int a; How about this code?

int b;
1
void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;

input->b = 2;

return (void *) &input;

} $./pthread_struct
a=10 b=20

*

int main (int argc, char argv[])

{
pthread_t pl;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&l, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

returned 1 2

TCSS422: Operating Systems [Spring 2020]

Spuli212020 School of Engineering and Technology, University of Washington - Tacoma L7.38

Slides by Wes J. Lloyd

4/21/2020

L7.19

TCSS 422 A — Spring 2020
School of Engineering and Technology

ADDING CASTS

® Casting
B Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

® Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(pl, &plval);

® Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument

is of type fint *%*’
extern int pthread_join (pthread_t __th, void **__thread_return);

TCSS422: Operating Systems [Spring 2020]

Seri2ER020 School of Engineering and Technology, University of Washington - Tacoma

L7.39

ADDING CASTS - 2

= pthread_join
int * plval;
int * p2val;
pthread_join(pl, (void *)&plval);
pthread_join(p2, (void *)&p2val);

® return from thread function
int * counterval = malloc(sizeof(int));
*counterval = counter;
return (void *) counterval;

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

April 21, 2020

L7.40

Slides by Wes J. Lloyd

4/21/2020

L7.20

TCSS 422 A — Spring 2020
School of Engineering and Technology

Slides by Wes J.

TCSS 422 WILL RETURN
AT ~2:40PM

April 14, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington -

LOCKS

m pthread_mutex_t data type
® /usr/include/bits/pthread_types.h

// Global Address Space
static volatile int counter = 0;
pthread_mutex_t Tock;

void *worker(void *arg)
{
int i;
for (i=0;i<10000000;7i++) {
int rc = pthread_mutex_Tock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

return NULL;

}

April 21, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L7.42

Lioyd

4/21/2020

L7.21

TCSS 422 A — Spring 2020

School of Engineering and Technology

® Example w/o initialization & error checking

LOCKS - 2

® Ensure critical sections are executed atomically-as a unit

= Provides implementation of “Mutual Exclusion”

= API

int pthread mutex lock(pthread mutex t *mutex);
int pthread mutex unlock(pthread mutex t *mutex);

pthread mutex t lock;
pthread mutex lock(&lock);
x = x + 1; // or whatever your critical section is

pthread mutex unlock(&lock);

= Blocks forever until lock can be obtained
= Enters critical section once lock is obtained
= Releases lock

TCSS422: Operating Systems [Spring 2020]

Seri2ER020 School of Engineering and Technology, University of Washington - Tacoma

L7.43

LOCK INITIALIZATION

®m Assigning the constant

‘ pthread mutex t lock = PTHREAD MUTEX TINITTIALIZER;

® API call:

int rc = pthread mutex init (&lock, NULL);
assert(rc == 0); // always check success!

® |nitializes mutex with attributes specified by 2" argument
® [f NULL, then default attributes are used

® Upon initialization, the mutex is initialized and unlocked

TCSS422: Operating Systems [Spring 2020]

April 21, 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.44

Slides by Wes J. Lloyd

4/21/2020

L7.22

TCSS 422 A — Spring 2020
School of Engineering and Technology

LOCKS -3

® Error checking wrapper

// Use this to keep your

I clean but check for failures
m is OK upon failure

{

// Only use if exiting pr
void Pthread mutex lock(pthread mutex t *mutex)
int rc = pthread mutex lock(mutex):;

assert (rc == 0);

® What if lock can’t be obtained?

int pthread mutex trylock(pthread mutex t *mutex):;

int pthread mutex timelock (pthreaa_mutex_t *mutex,
struct timespec *abs timeout);

® trylock - returns immediately (fails) if lock is unavailable
® timelock - tries to obtain a lock for a specified duration

TCSS422: Operating Systems [Spring 2020]

Seri2ER020 School of Engineering and Technology, University of Washington - Tacoma

L7.45

CONDITIONS AND SIGNALS

® Condition variables support “signaling”
between threads

int pthread cond_wait (pthread cond t *cond,
pthread mutex t *mutex);

Slides by Wes J.

int pthread cond_signal (pthread cond t *cond):

= pthread_cont_t datatype

®m pthread_cond_wait()
= Puts thread to “sleep” (waits) (THREAD is BLOCKED)
= Threads added to >FIFO queue<, lock is released
= Waits (listens) for a “signal” (NON-BUSY WAITING, no polling)
= When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

. TCSS422: Operating Systems [Spring 2020]
April 21, 2020 School of Engineering and Technology, University of Washington - Tacoma

L7.46

Lloyd

4/21/2020

L7.23

TCSS 422 A — Spring 2020
School of Engineering and Technology

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);
int pthread_cond_broadcast(pthread_cond_t * cond);

pthread_cond_signal()

= Called to send a “signal” to wake-up first thread in FIFO “wait” queue

= The goal is to unblock a thread to respond to the signal

pthread_cond_broadcast()

= Unblocks all threads in FIFO “wait” queue, currently blocked on the

specified condition variable

= Broadcast is used when all threads should wake-up for the signal

Which thread is unblocked first?
= Determined by OS scheduler (based on priority)

= Thread(s) awoken based on placement order in FIFO wait queue

= When awoken threads acquire lock as in pthread_mutex_Tlock()

. TCSS422: Operating Systems [Spring 2020]
Seri2ER020 School of Engineering and Technology, University of Washington - Tacoma

L7.47

CONDITIONS AND SIGNALS - 3

® Wait example:

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;
pthread cond_t cond = PTHREAD COND_ INITIALIZER;

while (initialized == 0)
pthread cond wait(&cond, &lock);
// Perform work that requires lock
a=a+ b;
pthread mutex_ unlock (&lock) ;

‘ pthread mutex lock (&lock) ;

® wait puts thread to sleep, releases lock

®= when awoken, lock reacquired (but then released bv this co

e)

® When initialized, another thread signals State variable set,

pthread mutex lock(&lock);
initialized = 1;
pthread cond signal (&init);
pthread mutex unlock(&lock) ;

Enables other thread(s)

to proceed above.

April 21, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L7.48

Slides by Wes J. Lloyd

4/21/2020

L7.24

TCSS 422 A — Spring 2020
School of Engineering and Technology

Slides by Wes J.

CONDITION AND SIGNALS - 4

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;
pthread cond t cond = PTHREAD COND_ INITIALIZER;

thread mutex lock (&lock) ;
while (initialized == 0)
pthread cond wait(&cond, &lock);
// Perform work that requires lock
a=a+ b;
pthread mutex unlock (&lock) ;

® Why do we wait inside a while loop?

® The while ensures upon awakening the condition is rechecked

= A signal is raised, but the pre-conditions required to proceed may
have not been met. **MUST CHECK STATE VARIABLE* *

= Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

. TCSS422: Operating Systems [Spring 2020]
Seri2ER020 School of Engineering and Technology, University of Washington - Tacoma

L7.49

PTHREADS LIBRARY

® Compilation:
gcc requires special option to require programs with pthreads:
= gcc -pthread pthread.c -o pthread
= Explicitly links library with compiler flag
= RECOMMEND: using makefile to provide compiler arguments

m List of pthread manpages
= man -k pthread

April 21, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L7.50

Lloyd

4/21/2020

L7.25

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -1. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(cC) $(CFLAGS) $A -0 $@

clean:
$(RM) -f $(binaries) *.o

= Example builds multiple single file programs

= All target
= pthread_mult

= Example if multiple source files should produce a single executable
® clean target

TCSS422: Operating Systems [Spring 2020]

Seri2ER020 School of Engineering and Technology, University of Washington - Tacoma

L7.51

QUESTIONS

Slides by Wes J. Lloyd L7.26

TCSS 422 A — Spring 2020

School of Engineering and Technology

WILL RETURN IN A FEW

MINUTES

Slides by Wes J. Lloyd

4/21/2020

L7.27

