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TCSS 422: OPERATING SYSTEMS

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast
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 4/16 feedback survey for Lecture 6 –
not properly posted on CANVAS

 Survey has been reposted and is available 

 Please classify your perspective on material covered in 
today’s class (? respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – ? (? from 7 .6)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – ? (? from 5.45)
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MATERIAL / PACE

 From 4/14: When does sof tware benefit from turnaround time 
more than response t ime and vice versa? 

 Compute-bound batch jobs benefit from CPU schedulers that 
improve turnaround t ime

 Examples:
 Genomic sequencing compute jobs (i.e. DNA analysis/alignment)
 Earth science models (e.g. weather, climate, hydrology, erosion)
 Forecast models (e.g. stock market, economics)

 These jobs require LONG uninterrupted access to the CPU

 Event processing for user interfaces benefits from CPU 
scheduler that improve response t ime

 These jobs involve frequent short bursts of computation
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 What are the main advantages to using a multilevel queue for 
scheduling?

 Ch. 7 schedulers require knowing job runtime in advance
 In practice, we don’t know how long jobs require to execute
 Many unknowns: job resource requirements, state of the system, etc.

 UW Tacoma MSCSS Student Sonia Xu : working on MS thesis to 
predict runtime of bioinformatics jobs on different cloud VMs 

 Multi- level feedback queue (MLFQ) adjusts scheduling of jobs 
dynamically based on job behavior 

 A job can actually change its behavior from batch to event-
based and back and MLFQ adapts the scheduling!

 CPU schedulers must be adaptive unless having a crystal ball
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FEEDBACK - 2

 From email: about the 'Multilevel Feedback Queue Scheduler’, 
I  feel I  don't fully understand how this algorithm works
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 Multiple job queues

 Adjust job priority based on
observed behavior

 Interactive Jobs
 Frequent I/O  keep priority high

 Interactive jobs require fast
response time (GUI/UI)

 Batch Jobs
 Require long periods of CPU

utilization

 Keep priority low
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MLFQ Round-Robin
within a Queue

 With priority boost

 Prevents starvation
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MLFQ - PRIORITY BOOST

With



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.5Slides by Wes J. Lloyd

April 14, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L5.9

 Chapter 9: Proportional Share Schedulers
 Lottery scheduler

 Ticket mechanisms

 Stride scheduler

 Linux Completely Fair Scheduler
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 TCSS 422 B Sp 2020 

 Now due at 11:59 pm  
Anywhere On Earth
(AOE) TIME ZONE

 Pacific Daylight Time
minus 5 hours

 Last time zone before 
international date l ine

 11:59 pm = ~4:59 am PDT
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ASSIGNMENTS:
REVISED SUBMISSION TIME

AOE Time

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast
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 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast
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 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast
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 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast
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OBJECTIVES – 4/21

CHAPTER 26 -
CONCURRENCY:

AN INTRODUCTION
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 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast
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THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.10Slides by Wes J. Lloyd

 Enables a single process (program) to have multiple “workers”
 This is parallel programming…

 Supports independent path(s) of execution within a program
with shared memory …

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Threads share code segment, memory, and heap are shared

 What is an embarrassingly parallel program?
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THREADS - 2

 Thread Control Block vs. Process Control Block

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.20

PROCESS AND THREAD METADATA
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SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC
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int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 2



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.13Slides by Wes J. Lloyd

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is the counter example embarrassingly parallel?

 What does the parallel counter program require?
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COUNTER EXAMPLE
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 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplicate of code/heap, lightweight execution threads
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PROCESSES VS. THREADS

 What is happening with our counter? 
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52
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RACE CONDITION
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 Code that accesses a shared variable must not be 
concurrently executed by more than one thread

 Multiple active threads inside a critical section produce a 
race condition .

 Atomic execution (all code executed as a unit) must be 
ensured in critical sections
 These sections must be mutually exclusive
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CRITICAL SECTION

 To demonstrate how critical section(s) can be executed 
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited
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LOCKS
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CHAPTER 27 -
LINUX

THREAD API
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 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast
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 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority…  (optional)

 star t_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.33

THREAD CREATION
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PTHREAD_CREATE – PASS ANY DATA
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 Here we “cast” the pointer to pass/return a primitive data type
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PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type 
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid 

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??
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WAITING FOR THREADS TO FINISH
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$ ./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

April 21, 2020
TCSS422: Operating Systems [Spring 2020]
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struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$ ./pthread_struct
a=10 b=20
returned 1 2

How about this code?
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 Casting 

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’ 
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument 
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma
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ADDING CASTS

 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
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ADDING CASTS - 2
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TCSS 422 WILL RETURN 
AT ~2:40PM
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 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h
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LOCKS

// Global Address Space
static volatile int counter = 0; 
pthread_mutex_t lock;

void *worker(void *arg)
{

int i;
for (i=0;i<10000000;i++)  {
int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.22Slides by Wes J. Lloyd

 Ensure critical sections are executed atomically -as a unit
 Provides implementation of “Mutual Exclusion”

 API

 Example w/o init ialization & error checking

 Blocks forever until lock can be obtained

 Enters critical section once lock is obtained
 Releases lock
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LOCKS - 2

 Assigning the constant

 API call :

 Init ializes mutex with attributes specified by 2nd argument

 If NULL, then default attr ibutes are used

 Upon initial ization, the mutex is initialized and unlocked
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LOCK INITIALIZATION
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 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration
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LOCKS - 3

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()
 Puts thread to “sleep” (waits)    (THREAD is BLOCKED)
 Threads added to >FIFO queue<, lock is released 
 Waits (l istens) for a “signal”   (NON-BUSY WAITING, no polling)
 When signal occurs, interrupt fires, wakes up first thread,

(THREAD is RUNNING), lock is provided to thread

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
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 pthread_cond_signal()

 Called to send a “signal” to wake-up first thread in FIFO “wait” queue
 The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

 Unblocks all threads in FIFO “wait” queue, currently blocked on the 
specified condition variable

 Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?
 Determined by OS scheduler (based on priority)
 Thread(s) awoken based on placement order in FIFO wait queue
 When awoken threads acquire lock as in pthread_mutex_lock()
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CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
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CONDITIONS AND SIGNALS - 3

State variable set, 
Enables other thread(s) 

to proceed above.
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pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked
 A signal is raised, but the pre-conditions required to proceed may 

have not been met.  **MUST CHECK STATE VARIABLE**

 Without checking the state variable the thread may proceed to 
execute when it should not.  (e.g. too early)
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CONDITION AND SIGNALS - 4

 Compilation:
gcc requires special option to require programs with pthreads:
 gcc –pthread pthread.c –o pthread

 Explicitly links library with compiler flag

 RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages
 man –k pthread
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PTHREADS LIBRARY
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 Example builds multiple single file programs
 All target

 pthread_mult
 Example if multiple source files should produce a single executable

 clean target
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SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

QUESTIONS
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WILL RETURN IN A FEW 
MINUTES


