
TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.1Slides by Wes J. Lloyd

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

Concurrency Intro,
Linux Thread API

Wes J. Lloyd
School of Engineering and Technology
University of Washington  - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L7.2

OBJECTIVES – 4/21



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.2Slides by Wes J. Lloyd

 4/16 feedback survey for Lecture 6 –
not properly posted on CANVAS

 Survey has been reposted and is available 

 Please classify your perspective on material covered in 
today’s class (? respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – ? (? from 7 .6)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – ? (? from 5.45)

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L7.3

MATERIAL / PACE

 From 4/14: When does sof tware benefit from turnaround time 
more than response t ime and vice versa? 

 Compute-bound batch jobs benefit from CPU schedulers that 
improve turnaround t ime

 Examples:
 Genomic sequencing compute jobs (i.e. DNA analysis/alignment)
 Earth science models (e.g. weather, climate, hydrology, erosion)
 Forecast models (e.g. stock market, economics)

 These jobs require LONG uninterrupted access to the CPU

 Event processing for user interfaces benefits from CPU 
scheduler that improve response t ime

 These jobs involve frequent short bursts of computation

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L7.4

FEEDBACK FROM 4/16



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.3Slides by Wes J. Lloyd

 What are the main advantages to using a multilevel queue for 
scheduling?

 Ch. 7 schedulers require knowing job runtime in advance
 In practice, we don’t know how long jobs require to execute
 Many unknowns: job resource requirements, state of the system, etc.

 UW Tacoma MSCSS Student Sonia Xu : working on MS thesis to 
predict runtime of bioinformatics jobs on different cloud VMs 

 Multi- level feedback queue (MLFQ) adjusts scheduling of jobs 
dynamically based on job behavior 

 A job can actually change its behavior from batch to event-
based and back and MLFQ adapts the scheduling!

 CPU schedulers must be adaptive unless having a crystal ball

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L7.5

FEEDBACK - 2

 From email: about the 'Multilevel Feedback Queue Scheduler’, 
I  feel I  don't fully understand how this algorithm works

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L7.6

FEEDBACK - 3



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.4Slides by Wes J. Lloyd

 Multiple job queues

 Adjust job priority based on
observed behavior

 Interactive Jobs
 Frequent I/O  keep priority high

 Interactive jobs require fast
response time (GUI/UI)

 Batch Jobs
 Require long periods of CPU

utilization

 Keep priority low

April 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.7

MLFQ Round-Robin
within a Queue

 With priority boost

 Prevents starvation

April 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.8

MLFQ - PRIORITY BOOST

With



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.5Slides by Wes J. Lloyd

April 14, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L5.9

 Chapter 9: Proportional Share Schedulers
 Lottery scheduler

 Ticket mechanisms

 Stride scheduler

 Linux Completely Fair Scheduler

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L7.10

CHAPTER 9 QUESTIONS ?



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.6Slides by Wes J. Lloyd

 TCSS 422 B Sp 2020 

 Now due at 11:59 pm  
Anywhere On Earth
(AOE) TIME ZONE

 Pacific Daylight Time
minus 5 hours

 Last time zone before 
international date l ine

 11:59 pm = ~4:59 am PDT

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L7.11

ASSIGNMENTS:
REVISED SUBMISSION TIME

AOE Time

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L7.12

OBJECTIVES – 4/21



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.7Slides by Wes J. Lloyd

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L7.13

OBJECTIVES – 4/21

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L7.14

OBJECTIVES – 4/21



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.8Slides by Wes J. Lloyd

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L7.15

OBJECTIVES – 4/21

CHAPTER 26 -
CONCURRENCY:

AN INTRODUCTION

April 21, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.16



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.9Slides by Wes J. Lloyd

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L7.17

OBJECTIVES – 4/21

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.18

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.10Slides by Wes J. Lloyd

 Enables a single process (program) to have multiple “workers”
 This is parallel programming…

 Supports independent path(s) of execution within a program
with shared memory …

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Threads share code segment, memory, and heap are shared

 What is an embarrassingly parallel program?

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.19

THREADS - 2

 Thread Control Block vs. Process Control Block

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.20

PROCESS AND THREAD METADATA



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.11Slides by Wes J. Lloyd

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.21

SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.22

THREAD CREATION EXAMPLE



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.12Slides by Wes J. Lloyd

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.23

POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.24

POSSIBLE ORDERINGS OF EVENTS - 2



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.13Slides by Wes J. Lloyd

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.25

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is the counter example embarrassingly parallel?

 What does the parallel counter program require?

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.26

COUNTER EXAMPLE



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.14Slides by Wes J. Lloyd

 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplicate of code/heap, lightweight execution threads

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.27

PROCESSES VS. THREADS

 What is happening with our counter? 
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.28

RACE CONDITION



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.15Slides by Wes J. Lloyd

 Code that accesses a shared variable must not be 
concurrently executed by more than one thread

 Multiple active threads inside a critical section produce a 
race condition .

 Atomic execution (all code executed as a unit) must be 
ensured in critical sections
 These sections must be mutually exclusive

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.29

CRITICAL SECTION

 To demonstrate how critical section(s) can be executed 
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.30

LOCKS



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.16Slides by Wes J. Lloyd

CHAPTER 27 -
LINUX

THREAD API

April 21, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.31

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L7.32

OBJECTIVES – 4/21



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.17Slides by Wes J. Lloyd

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority…  (optional)

 star t_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.33

THREAD CREATION

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.34

PTHREAD_CREATE – PASS ANY DATA



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.18Slides by Wes J. Lloyd

 Here we “cast” the pointer to pass/return a primitive data type

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.35

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type 
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid 

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.36

WAITING FOR THREADS TO FINISH



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.19Slides by Wes J. Lloyd

April 21, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.37

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$ ./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

April 21, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.38

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$ ./pthread_struct
a=10 b=20
returned 1 2

How about this code?



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.20Slides by Wes J. Lloyd

 Casting 

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’ 
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument 
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.39

ADDING CASTS

 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.40

ADDING CASTS - 2



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.21Slides by Wes J. Lloyd

TCSS 422 WILL RETURN 
AT ~2:40PM

April 14, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma L5.41

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.42

LOCKS

// Global Address Space
static volatile int counter = 0; 
pthread_mutex_t lock;

void *worker(void *arg)
{

int i;
for (i=0;i<10000000;i++)  {
int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.22Slides by Wes J. Lloyd

 Ensure critical sections are executed atomically -as a unit
 Provides implementation of “Mutual Exclusion”

 API

 Example w/o init ialization & error checking

 Blocks forever until lock can be obtained

 Enters critical section once lock is obtained
 Releases lock

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.43

LOCKS - 2

 Assigning the constant

 API call :

 Init ializes mutex with attributes specified by 2nd argument

 If NULL, then default attr ibutes are used

 Upon initial ization, the mutex is initialized and unlocked

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.44

LOCK INITIALIZATION



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.23Slides by Wes J. Lloyd

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.45

LOCKS - 3

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()
 Puts thread to “sleep” (waits)    (THREAD is BLOCKED)
 Threads added to >FIFO queue<, lock is released 
 Waits (l istens) for a “signal”   (NON-BUSY WAITING, no polling)
 When signal occurs, interrupt fires, wakes up first thread,

(THREAD is RUNNING), lock is provided to thread

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.46

CONDITIONS AND SIGNALS



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.24Slides by Wes J. Lloyd

 pthread_cond_signal()

 Called to send a “signal” to wake-up first thread in FIFO “wait” queue
 The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

 Unblocks all threads in FIFO “wait” queue, currently blocked on the 
specified condition variable

 Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?
 Determined by OS scheduler (based on priority)
 Thread(s) awoken based on placement order in FIFO wait queue
 When awoken threads acquire lock as in pthread_mutex_lock()

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.47

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.48

CONDITIONS AND SIGNALS - 3

State variable set, 
Enables other thread(s) 

to proceed above.



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.25Slides by Wes J. Lloyd

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked
 A signal is raised, but the pre-conditions required to proceed may 

have not been met.  **MUST CHECK STATE VARIABLE**

 Without checking the state variable the thread may proceed to 
execute when it should not.  (e.g. too early)

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.49

CONDITION AND SIGNALS - 4

 Compilation:
gcc requires special option to require programs with pthreads:
 gcc –pthread pthread.c –o pthread

 Explicitly links library with compiler flag

 RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages
 man –k pthread

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.50

PTHREADS LIBRARY



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.26Slides by Wes J. Lloyd

 Example builds multiple single file programs
 All target

 pthread_mult
 Example if multiple source files should produce a single executable

 clean target

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.51

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

QUESTIONS



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.27Slides by Wes J. Lloyd

WILL RETURN IN A FEW 
MINUTES


