
TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.1Slides by Wes J. Lloyd

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

Concurrency Intro,
Linux Thread API

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.2

OBJECTIVES – 4/21

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.2Slides by Wes J. Lloyd

 4/16 feedback survey for Lecture 6 –
not properly posted on CANVAS

 Survey has been reposted and is available

 Please classify your perspective on material covered in
today’s class (? respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – ? (? from 7 .6)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – ? (? from 5.45)

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.3

MATERIAL / PACE

 From 4/14: When does sof tware benefit from turnaround time
more than response t ime and vice versa?

 Compute-bound batch jobs benefit from CPU schedulers that
improve turnaround t ime

 Examples:
 Genomic sequencing compute jobs (i.e. DNA analysis/alignment)
 Earth science models (e.g. weather, climate, hydrology, erosion)
 Forecast models (e.g. stock market, economics)

 These jobs require LONG uninterrupted access to the CPU

 Event processing for user interfaces benefits from CPU
scheduler that improve response t ime

 These jobs involve frequent short bursts of computation

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.4

FEEDBACK FROM 4/16

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.3Slides by Wes J. Lloyd

 What are the main advantages to using a multilevel queue for
scheduling?

 Ch. 7 schedulers require knowing job runtime in advance
 In practice, we don’t know how long jobs require to execute
 Many unknowns: job resource requirements, state of the system, etc.

 UW Tacoma MSCSS Student Sonia Xu : working on MS thesis to
predict runtime of bioinformatics jobs on different cloud VMs

 Multi- level feedback queue (MLFQ) adjusts scheduling of jobs
dynamically based on job behavior

 A job can actually change its behavior from batch to event-
based and back and MLFQ adapts the scheduling!

 CPU schedulers must be adaptive unless having a crystal ball

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.5

FEEDBACK - 2

 From email: about the 'Multilevel Feedback Queue Scheduler’,
I feel I don't fully understand how this algorithm works

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.6

FEEDBACK - 3

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.4Slides by Wes J. Lloyd

 Multiple job queues

 Adjust job priority based on
observed behavior

 Interactive Jobs
 Frequent I/O keep priority high

 Interactive jobs require fast
response time (GUI/UI)

 Batch Jobs
 Require long periods of CPU

utilization

 Keep priority low

April 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.7

MLFQ Round-Robin
within a Queue

 With priority boost

 Prevents starvation

April 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L5.8

MLFQ - PRIORITY BOOST

With

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.5Slides by Wes J. Lloyd

April 14, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L5.9

 Chapter 9: Proportional Share Schedulers
 Lottery scheduler

 Ticket mechanisms

 Stride scheduler

 Linux Completely Fair Scheduler

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.10

CHAPTER 9 QUESTIONS ?

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.6Slides by Wes J. Lloyd

 TCSS 422 B Sp 2020

 Now due at 11:59 pm
Anywhere On Earth
(AOE) TIME ZONE

 Pacific Daylight Time
minus 5 hours

 Last time zone before
international date l ine

 11:59 pm = ~4:59 am PDT

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.11

ASSIGNMENTS:
REVISED SUBMISSION TIME

AOE Time

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.12

OBJECTIVES – 4/21

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.7Slides by Wes J. Lloyd

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.13

OBJECTIVES – 4/21

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.14

OBJECTIVES – 4/21

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.8Slides by Wes J. Lloyd

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.15

OBJECTIVES – 4/21

CHAPTER 26 -
CONCURRENCY:

AN INTRODUCTION

April 21, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.16

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.9Slides by Wes J. Lloyd

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.17

OBJECTIVES – 4/21

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.18

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.10Slides by Wes J. Lloyd

 Enables a single process (program) to have multiple “workers”
 This is parallel programming…

 Supports independent path(s) of execution within a program
with shared memory …

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Threads share code segment, memory, and heap are shared

 What is an embarrassingly parallel program?

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.19

THREADS - 2

 Thread Control Block vs. Process Control Block

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.20

PROCESS AND THREAD METADATA

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.11Slides by Wes J. Lloyd

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.21

SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.22

THREAD CREATION EXAMPLE

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.12Slides by Wes J. Lloyd

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.23

POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.24

POSSIBLE ORDERINGS OF EVENTS - 2

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.13Slides by Wes J. Lloyd

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.25

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads

 Is the counter example embarrassingly parallel?

 What does the parallel counter program require?

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.26

COUNTER EXAMPLE

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.14Slides by Wes J. Lloyd

 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplicate of code/heap, lightweight execution threads

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.27

PROCESSES VS. THREADS

 What is happening with our counter?
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.28

RACE CONDITION

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.15Slides by Wes J. Lloyd

 Code that accesses a shared variable must not be
concurrently executed by more than one thread

 Multiple active threads inside a critical section produce a
race condition .

 Atomic execution (all code executed as a unit) must be
ensured in critical sections
 These sections must be mutually exclusive

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.29

CRITICAL SECTION

 To demonstrate how critical section(s) can be executed
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.30

LOCKS

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.16Slides by Wes J. Lloyd

CHAPTER 27 -
LINUX

THREAD API

April 21, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.31

 Questions from 4/16
 C Tutorial
 Active Reading Quiz – Ch. 7
 Assignment 0
 Assignment 1
 Chapter 26: Concurrency: An Introduction
 Introduction
 Race condition
 Critical section

 Chapter 27: Linux Thread API
 pthread_create/_join
 pthread_mutex_lock/_unlock/_trylock/_timelock
 pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.32

OBJECTIVES – 4/21

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.17Slides by Wes J. Lloyd

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority… (optional)

 star t_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.33

THREAD CREATION

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.34

PTHREAD_CREATE – PASS ANY DATA

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.18Slides by Wes J. Lloyd

 Here we “cast” the pointer to pass/return a primitive data type

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.35

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.36

WAITING FOR THREADS TO FINISH

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.19Slides by Wes J. Lloyd

April 21, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.37

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

April 21, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L7.38

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.20Slides by Wes J. Lloyd

 Casting

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.39

ADDING CASTS

 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.40

ADDING CASTS - 2

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.21Slides by Wes J. Lloyd

TCSS 422 WILL RETURN
AT ~2:40PM

April 14, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L5.41

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.42

LOCKS

// Global Address Space
static volatile int counter = 0;
pthread_mutex_t lock;

void *worker(void *arg)
{

int i;
for (i=0;i<10000000;i++) {
int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.22Slides by Wes J. Lloyd

 Ensure critical sections are executed atomically -as a unit
 Provides implementation of “Mutual Exclusion”

 API

 Example w/o init ialization & error checking

 Blocks forever until lock can be obtained

 Enters critical section once lock is obtained
 Releases lock

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.43

LOCKS - 2

 Assigning the constant

 API call :

 Init ializes mutex with attributes specified by 2nd argument

 If NULL, then default attr ibutes are used

 Upon initial ization, the mutex is initialized and unlocked

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.44

LOCK INITIALIZATION

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.23Slides by Wes J. Lloyd

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.45

LOCKS - 3

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()
 Puts thread to “sleep” (waits) (THREAD is BLOCKED)
 Threads added to >FIFO queue<, lock is released
 Waits (l istens) for a “signal” (NON-BUSY WAITING, no polling)
 When signal occurs, interrupt fires, wakes up first thread,

(THREAD is RUNNING), lock is provided to thread

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.46

CONDITIONS AND SIGNALS

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.24Slides by Wes J. Lloyd

 pthread_cond_signal()

 Called to send a “signal” to wake-up first thread in FIFO “wait” queue
 The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

 Unblocks all threads in FIFO “wait” queue, currently blocked on the
specified condition variable

 Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?
 Determined by OS scheduler (based on priority)
 Thread(s) awoken based on placement order in FIFO wait queue
 When awoken threads acquire lock as in pthread_mutex_lock()

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.47

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.48

CONDITIONS AND SIGNALS - 3

State variable set,
Enables other thread(s)

to proceed above.

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.25Slides by Wes J. Lloyd

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked
 A signal is raised, but the pre-conditions required to proceed may

have not been met. **MUST CHECK STATE VARIABLE**

 Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.49

CONDITION AND SIGNALS - 4

 Compilation:
gcc requires special option to require programs with pthreads:
 gcc –pthread pthread.c –o pthread

 Explicitly links library with compiler flag

 RECOMMEND: using makefile to provide compiler arguments

 List of pthread manpages
 man –k pthread

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.50

PTHREADS LIBRARY

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.26Slides by Wes J. Lloyd

 Example builds multiple single file programs
 All target

 pthread_mult
 Example if multiple source files should produce a single executable

 clean target

April 21, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L7.51

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

QUESTIONS

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/21/2020

L7.27Slides by Wes J. Lloyd

WILL RETURN IN A FEW
MINUTES

