TCSS 422 A — Spring 2020 4/21/2020

School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Concurrency Intro,
Linux Thread API

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

BTl P School of Engineering and Technology, University of Washington (RN

OBJECTIVES - 4/21

| = Questions from 4/16 |

= C Tutorlal

= Actlve Reading Qulz - Ch. 7

= Assignment O

= Assignment 1

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

TCS5422: Operating Systems [Spring 2020] ‘ 72 ‘

RRal2t 2020 School of Engineering and Technology, University of Washington - Tacoma

MATERIAL / PACE

= 4/16 feedback survey for Lecture 6 -
not properly posted on CANVAS
= Survey has been reposted and is available

= Please classify your perspective on material covered in

today’s class (? respondents):
= 1-mostly review, 5-equal new/review, 10-mostly new

= Average - ? (2 from 7.6)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - ? (21 from 5.45)

| o]

April 21, 2020 ‘ Tcsz:lzz; Operating Systems [Spring 2020]

chnology, ity ington - Tacoma

FEEDBACK FROM 4/16

= From 4/14: When does software benefit from turnaround time
more than response time and vice versa?

= Compute-bound batch Jobs benefit from CPU schedulers that
improve turnaround time
= Examples:
= Genomic sequencing compute jobs (i.e. DNA analysis/alignment)
= Earth science models (e.g. weather, climate, hydrology, erosion)
= Forecast models (e.g. stock market, economics)
= These jobs require LONG uninterrupted access to the CPU

= Event processing for user interfaces benefits from CPU
scheduler that improve response time

= These jobs involve frequent short bursts of computation

TCS$422: Operating Systems [Spring 2020] ‘ w4 ‘

RRpl2t 2020 School of Engineering and Technology, University of Washington - Tacoma

FEEDBACK - 2 \ %

= What are the maln advantages to using a multilevel queue for
schedullng?

= Ch. 7 schedulers require knowing job runtime in advance

® In practice, we don’t know how long jobs require to execute
= Many unknowns: job resource requirements, state of the system, etc.

= UW Tacoma MSCSS Student Sonia Xu: working on MS thesis to
predict runtime of bioinformatics jobs on different cloud VMs

= Multi-level feedback queue (MLFQ) adjusts scheduling of jobs
dynamically based on job behavior

= A job can actually change its behavior from batch to event-
based and back and MLFQ adapts the scheduling!

= CPU schedulers must be adaptive unless having a crystal ball

April 21, 2020 Tcsz:lzcz‘; Operating Systems [Spring 2020]

7
chnology, University ington - Tacoma ‘ e ‘

FEEDBACK - 3

= From email: about the 'Multilevel Feedback Queue Scheduler’,
| feel | don't fully understand how this algorithm works

Apeil 21, 2020 TCSS422: Operating Systems [Spring 2020] ‘ e ‘

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L7.1

TCSS 422 A — Spring 2020
School of Engineering and Technology

Round-Robin
within a Queue

[High Priority] Q8 —— @ —5

= Multiple job queues

= Adjust job priority based on
observed behavior

Q7
= [nteractive Jobs Q6
= Frequent 1/0 > keep priority high Qs

= Interactive jobs require fast
response time (GUI/UI)

Q4—>©

= Batch Jobs Q3
= Require long periods of CPU Q2
utilization

= Keep priority low

[Low Priority] Ql —— @

TCS5422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

April 14, 2020 ‘ 157 ‘

4/21/2020

MLFQ - PRIORITY BOOST

= With priority boost
= Prevents starvation

With priority Boost A &N

TCS5422: Operating Systems [Spring 2020]

G, o BT T T o e A S T e

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is run in
round-robin order.

Job Arrival Time Job Length
4

A T=0
B T=0 16
C T=0 8

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example.
Please draw clearly. An unreadable graph will loose points.

HIGH |
|
|

MED |
|
|

Low

CHAPTER 9 QUESTIONS ?

= Chapter 9: Proportlonal Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler

TCS5422: Operating Systems [Spring 2020]

RRpl2t 2020 School of Engineering and Technology, University of Washington - Tacoma

17.10 ‘

ASSIGNMENTS:

REVISED SUBMISSION TIME
e e)| AT NGIETE

= Now due at 11:59 pm g |
Anywhere On Earth =
(AOE) TIME ZONE __

o =l %
= Pacific Daylight Time TN
minus 5 hours 2 o e
= Last time zone before =~ - G e
international date line ¢
AOE Time

®11:59 pm = ~4:59 am PDT

TCS5422: Operating Systems [Spring 2020]

Sl FD e oo[of Enginearing andiechnolosyiUnversity/chiveshington i Tacoma

Slides by Wes J. Lloyd

OBJECTIVES - 4/21

= Questions from 4/16

= C Tutorial |

= Active Reading Quiz - Ch. 7

= Asslgnment O

= Asslgnment 1

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

TCSS422: Operating Systems [Spring 2020]
G, 2 Sehoollof Ergineenng andTechnolosyjUniversity ofWashinaton Sk Tecoma

.12 ‘

L7.2

TCSS 422 A — Spring 2020
School of Engineering and Technology

OBJECTIVES - 4/21

= Questlons from 4/16

= C Tutorial

= Active Reading Quiz - Ch. 7

= Asslgnment O

= Asslgnment 1

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

4/21/2020

April 21, 2020 TCS8422; Operating Systems [Spring 2020])
ool of Technology, y - Tacoma

1713

OBJECTIVES - 4/21

= Questlons from 4/16
= C Tutorial

= Active Reading Quiz - Ch. 7
| = Asslgnment O
= Asslgnment 1
= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section
= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock

= pthread_cond_wait/_signal/_broadcast
TCSS422: Operating Systems [Spring 2020]
FRIZE, e ST N e 5 e i = e

7.4

OBJECTIVES - 4/21

= Questlons from 4/16

= C Tutorial

= Active Reading Quiz - Ch. 7

= Asslghment O

| = Asslgnment 1

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

= Chapter 27: Linux Thread API
= pthread_create/_join

= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCS8422; Operating Systems [Spring 2020])
0ol of Technology, y - Tacoma

1715

CHAPTER 26 -
CONCURRENCY:
AN INTRODUCTION

TCSS422: Operating Systems [Spring 2020]

(Al 2 D School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/21

= Questlons from 4/16

= C Tutorial

= Active Reading Quiz - Ch. 7

= Asslgnment O

= Asslgnment 1

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

April 21, 2020 TCS8422; Operating Systems [Spring 2020])
0ol of Technology, y - Tacoma

717

Slides by Wes J. Lloyd

THREADS

Process Multithreaded Process

Process State: PC,
registers, SP, et

t egment

Single Multi
ple
Threaded « SHA Threaded

Process

pe

Process | [
» $

[Jo
D-:.‘> <
D’:’

©Alfred Park, http://randu.org/tutorials/threads

‘ Py D ‘ Tcssazz; Operating systems [Spring 2020]

School of Technology, ity i Tacoma

1718

L7.3

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

THREADS - 2 PROCESS AND THREAD METADA

= Enables a single process (program) to have multiple “workers” = Thread Control Block vs. Process Control Block
= This is parallel programming...

= Supports independent path(s) of execution within a program Vo ont iation. e Wendiation
with shared memory ... CPU information: Process state:
Program counter Process status word
Register contents E:"‘:; ;Z’rl;?"ls
a Thread priority Resources
= Each thread has its own Thread Control Block (TCB) Rorese s, N, i
= PC, registers, SP, and stack Pointers to all other threads created by this thread Accounting

= Threads share code segment, memory, and heap are shared

= What is an embarrassingly parallel program?

April 21, 2020 TCS5422: Operating Systems [Spring 2020]

TCS5422: Operating Systems [Spring 2020]
AT o T B S oy ATt A T T ‘ 1719 ‘ FRIZE,

School of Engineering and Technology, University of Washington - Tacoma ‘ 1720 ‘

SHARED ADDRESS SPACE THREAD CREATION EXAMPLE

= Every thread has it’s own stack / PC

#include <stdio.h>
#include <assert.h>

OKB The code segment: OKB #include <pthread.h»
Program Code | where instructions live Program Code
1KB 1KB void smythread{void =arg) {
Heap The(h‘eap Se\lg""de"dt»t Heap printf("§s\n", (char +) arg);

contains mallocd data e

2K8 dynamic data structures 28 i return
(it grows downward)

(free) aup
main(int argc, char *argvl]) {
thread_t pl, p2;
(free) Letiper - BE
printf("main: begin\n");
Stack (2) NULL, mythread, "A"); assert (rc == 0);

(it grows upward) NULL, mythread, "B"); assert(rc == 0);
The stack segment: (free) eads to finish

15KB. contains local variables 15KB L); assert(rc == 0);

Stack (1) arguments to routines, Stack (1) read_join(p2, NULL); assert(rc == 0);
16KB return values, etc 16KB printf ("main: end\n");
o return 0;
A Single-Threaded Two threaded }
Address Space Address Space
April 21, 2020 TCS5422: Operating Systems [Spring 2020]

TCS5422: Operating Systems [Spring 2020]
e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome ‘ 721 ‘ FRIZE,

School of Engineering and Technology, University of Washington - Tacoma ‘ L2 ‘

POSSIBLE ORDERINGS OF EVENTS POSSIBLE ORDERINGS OF EVENTS - 2

Starts running Starts running
Prints ‘main: begin’ Prints ‘main: begin’
*Cleates Thread 1 Creates Thread 1
Creates Thread 2 Runs
Waits for T1 Prints ‘A’
Runs Returns
‘ Prints ‘A" Creates Thread 2
Returns Runs
» Waits for T2 Prints ‘B’
(o Returns
(il Waits for TL Returns immediately
Returns Waits for T2 Returns immediately
» Prints ‘main: end’ T p—
| nam [Tt s 0] ot shigin: Toms X apitz, | S e B 10 enTcomo EX

Slides by Wes J. Lloyd L7.4

TCSS 422 A — Spring 2020
School of Engineering and Technology

4/21/2020

POSSIBLE ORDERINGS OF EVENTS - 3

Starts running
Prints ‘main: begin’
Creates Thread 1
Creates Thread 2

What if execution order of

events in the program matters?

Waits for T:
Runs
Prints ‘A"
Returns
Waits for T2 Immediately returns

Prints ‘main: end’

TCSS422: Operating Systems [Spring 2020]

April 21, 2020 School of and Technology, ity i Tacoma

[|

COUNTER EXAMPLE

= Counter example

= A + B:ordering
= Counter: incrementing global variable by two threads

= |s the counter example embarrassingly parallel?

= What does the parallel counter program require?

TCS5422: Operating Systems [Spring 2020]

FRIZE, o BT T T o e A S T e ‘ 1726

PROCESSES VS. THREADS

= What's the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplicate of code/heap, lightweight execution threads

won |[oma |[was || |[eote |[owm |[wes
ey oo || |[arons [opsten [rpmor]

stack | steck || steck
|

multithreadod process

Process Process

<

thrmad —s & +— thread

AL
VAV

single-theeaded procoss

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University i Tacoma

‘ April 21, 2020 ‘ 1727 ‘

RACE CONDITION

= What is happening with our counter?
= When counter=50, consider code: counter = counter + 1

= If synchronized, counter will = 52
(after instruction)
os Threadl Thread2 P eax counter
before critical section 100 0 50
mov 0x8049%alc, %eax 105 50 50
add $0x1, %eax 108 51 50

save T1's state

restore T2's state 100 0 50
mov 0x8049alc, %eax 105 50 50
add $0x1, %eax 108 51 50
mov %eax, 0x8049%alc 113 51 51

save T2' s state
restore Tl's state 108 51 50
mov %eax, 0x8049alc 13 51

TCS5422: Operating Systems [Spring 2020] ‘ 728

RRpl2t 2020 School of Engineering and Technology, University of Washington - Tacoma

CRITICAL SECTION

= Code that accesses a shared variable must not be
concurrently executed by more than one thread

= Multiple active threads inside a critical section produce a
race condltion.

= Atomic execution (all code executed as a unit) must be
ensured in critical sections
= These sections must be mutually exclusive

April 21, 2020

TCS5422: Operating Systems [Spring 2020] 28
School of Engineeri Technology, University i Tacoma -

LOCKS

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock_t mutex;

balance = balance + 1; | Critical section

unlock (smutex) i

I

2 P

3 lock (smutex) :
4

5

= Counter example revisited

TCS5422: Operating Systems [Spring 2020] ‘ 730

RRal2t2020 School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L7.5

TCSS 422 A — Spring 2020
School of Engineering and Technology

CHAPTER 27 -

LINUX
THREAD API

TCSS422: Operating Systems [Spring 2020]

LI 2 2D School of Engineering and Technology, University of Washington -

4/21/2020

OBJECTIVES - 4/21

= Questlons from 4/16

= C Tutorial

= Active Reading Quiz - Ch. 7

= Asslgnment O

= Asslgnment 1

= Chapter 26: Concurrency: An Introduction
= Introduction
= Race condition
= Critical section

= Chapter 27: Linux Thread API
= pthread_create/_join
= pthread_mutex_lock/_unlock/_trylock/_timelock
= pthread_cond_wait/_signal/_broadcast

April 21, 2020

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, Universi ington - Tacoma

1732

THREAD CREATION

PTHREAD_CREATE - PASS ANY DATA

= pthread_create

#include <pthread.h>

int
pthread_create(pthread_t* thread,
const pthread_attr_t* attr,
void#* (*start_routine) (void*),
void* arg) ;

= thread: thread struct

= attr: stack size, scheduling priority... (optional)

= start_routine: function pointer to thread routine

= arg: argument to pass to thread routine (optional)

April 21, 2020 17.33

TCS5422: Operating Systems [Spring 2020]
0ol of Engineeri nology, University i Tacoma

#include <pthread.h>
typedef struct _myarg_t {
S
» :
} myarg_t;

2

¥

2

}

void *mythread(void *arg) {

myarg_t *m = (myarg_t *) arg;
printf(“#d sd\n”, m->a, m->b);
NULL;

int main(int arge, char *argv[]) {

pthread t p;
int re;

myarg_t args;
args.a = 10;
args.b = 20;
rc = pthread create(sp, NULL, mythread, &args);

April 21, 2020

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, University i Tacoma

1734

PASSING A SINGLE VALUE

WAITING FOR THREADS TO FINISH

Using this approach on your Ubuntu VM,
How large (in bvtes) can the primitive data type be?

9 Saviary

How large (in bytes) can the pri
be on a 32-bit operating system?

ve data type

int rc

D 3
pthread_create (sp, NULL, mythread, (void D 100);

pthread join(p, (void **) &m);

12 printf (“returned ¥d\n”, m);
13 sturn 0;
14}

Aprl 21, 2020 Tcssnlzz; Operating Systems [Spring 2020]

School o Technology, ity i Tacoma L7.35

int pthread join(pthread_t thread, void **value_ptr);

= thread:

which thread?

= value_ptr: pointer to return value

type is dynamic / agnostic

= Returned values *must* be on the heap
= Thread stacks destroyed upon thread termination (join)

= Pointers

to thread stack memory addresses are invalid

= May appear as gibberish or lead to crash (seg fault)
= Not all threads join - What would be Examples ??

April 21, 2020

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, University i Tacoma

1736

Slides by Wes J. Lloyd

L7.6

TCSS 422 A — Spring 2020
School of Engineering and Technology

4/21/2020

struct myarg {
int aj;
int b;

What will this code do?

void *worker(void *arg)

struct myarg *input = (struct myarg *) arg;

printf("a=%d b=%d\n",input->a, input->b);

(S)EESEE.':Y:?;O“DM’ Data on thread stack

output.b = 2;

return (void *) &output; $./pthread_struct
} a=10 b=20

int main (int argc, char * argv[])

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
10;

20;

args.a
iy . -
4ets How can this code be fixed?
return 0

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

April 21,2020

Segmentation fault (core dumped)

L7.37

struct myarg {
int a;
int b;
b

void *worker(void *arg)

How about this code?

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;

input->b = 2;

return (void *) &input;

} $.Ipthread_struct

a=10 b=20
returned 1 2

int main (int argc, char * argv[])

pthread_t pl;

struct myarg args;
struct myarg *ret_args;
args.a = 10;

args.b = 20;
pthread_create(&pl, NULL, worker, &args);
pthread_join(pl, (void *)&ret_args);

printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

TCSS422: Operating Systems [Spring 2020]

L D School of Engineering and Technology, University of Washington - Tacoma

L7.38

ADDING CASTS

= Casting

where (void) or (void *) is called for

= Example: uncasted capture in pthread_join

pthread_int.c: In function ‘main’:

pthread_int.

from incompatible pointer type [-Wincompatible-pointer-types]
pthread_join(pl, &plval);

= Example: uncasted return
In file included from pthread_int.c:3:0:

is of type ‘int **’

= Suppresses compiler warnings when passing “typed” data

:20: warning: passing argument 2 of ‘pthread_join’

extern int pthread_join (pthread_t __th, void **__thread_return);

/usr/include/pthread.h:250:12: note: expected ‘void **' but argument

April 21, 2020 Tcsz:lz‘z); Operating Systems [Spring 2020]

Technology, ity i Tacoma

EX

ADDING CASTS - 2

= pthread_join
int * plval;
int * p2val;
pthread_join(pl, (void *)&plval);
pthread_join(p2, (void *)&p2val);

= return from thread function
int * counterval = malloc(sizeof(int));
*counterval = counter;
return (void *) counterval;

TCS5422: Operating Systems [Spring 2020]
e f

April 21, 2020 S Technology, iy i Tacoma

E3

TCSS 422 WILL RETURN

AT ~2:40PM

TCSS422: Operating Systems [Spring 2020]

Tl 2D School of Engineering and Technology, University of Washington -

LOCKS

= pthread_mutex_t data type

= /usr/include/bits/pthread_types.h
// Global Address Space

static volatile int counter = 0;

void *worker(void *arg)

int i3
for (i=0;1<10000000;i++) {

assert(rc==0);
counter = counter + 1;

}
return NULL;

TCS5422: Operating Systems [Spring 2020]
e

G, 2 School o TechnoloyUniversity/ofWeshi Tacoma

E3

Slides by Wes J. Lloyd

L7.7

TCSS 422 A — Spring 2020
School of Engineering and Technology

= Ensure critical sections are executed atomically-as a unit
= Provides implementation of “Mutual Exclusion”

= API

int pthread mutex_lock (pthread mutex_t *mutex);
int pthread mutex_unlock (pthread mutex_t *mutex);

= Example w/o initialization & error checking

pthread mutex_t lock;
pthread mutex_lock (&lock) ;
x=x+1; // or w

i critical section is
pthread mutex_unlock(&lock) ;

er yo

= Blocks forever until lock can be obtained
= Enters critical section once lock is obtained
= Releases lock

April 21, 2020 TCS5422: Operating Systems [Spring 2020] ‘ 43 ‘

School of Engineering and Technology, University of Washington - Tacoma

4/21/2020

LOCK INITIALIZATION

= Assigning the constant

‘ pthread mutex_t lock = PTHREAD_MUTEX_INITIALIZER;

= API call:

int rc = pthread_mutex_init (&lock, NULL);
assert(rc == 0); // a

= Initializes mutex with attributes specified by 2" argument
= If NULL, then default attributes are used

= Upon initialization, the mutex is initialized and unlocked

TCS5422: Operating Systems [Spring 2020]

FRIZE, o BT T T o e A S T e

B3

= Error checking wrapper

iti am i n

d Pthread mutex_lock (pthread mutex t *mutex) {
int rc = pthread mutex_lock(mutex) ;
assert (rc == 0);

= What if lock can’t be obtained?

pthread_mutex_trylock(pthread mutex t *mutex);:
pthread_mutex_timelock (pthread mutex t *mutex,
struct timespec *abs_timeout);

= trylock - returns immediately (fails) if lock is unavailable
= timelock - tries to obtain a lock for a specified duration

April 21, 2020

TCS5422: Operating Systems [Spring 2020] as
School of Engineering and Technology, University of Washington - Tacoma !

CONDITIONS AND SIGNALS

= Condition variables support “signaling”

¥ iy
between threads |

int pthread_cond_wait (pthread_cond_t *cond,
pthread mutex_t *mutex);
int pthread cond_signal (pthread_cond_t *cond);

= pthread_cont_t datatype

= pthread_cond_wait()
= Puts thread to “sleep” (waits) (THREAD is BLOCKED)
= Threads added to >FIFO queues, lock is released
= Waits (lIstens) for a “signal” (NON-BUSY WAITING, no polling)

= When signal occurs, interrupt fires, wakes up first thread,
(THREAD is RUNNING), lock is provided to thread

TCS5422: Operating Systems [Spring 2020]

RRpl2t 2020 School of Engineering and Technology, University of Washington - Tacoma

B3

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

= pthread_cond_signal ()
= Called to send a “signal” to wake-up first thread in FIFQ “walt” queue
= The goal is to unblock a thread to respond to the signal

= pthread_cond_broadcast()

= Unblocks all threads in FIFQ “walt” queue, currently blocked on the
specified condition variable

= Broadcast is used when all threads should wake-up for the signal

® Which thread is unblocked first?
= Determined by OS scheduler (based on priority)
= Thread(s) awoken based on placement order in FIFQ walt queue
= When awoken threads acquire lock as in pthread_mutex_lock()

April 21, 2020 TCS5422: Operating Systems [Spring 2020] ‘ a7 ‘

School of Engineering and Technology, University of Washington - Tacoma

CONDITIONS AND SIGNALS - 3

= Wait example:

pthread mutex t lock = PTHREAD MUTEX INITIALIZER;
pthread cond t cond = PTHREAD_COND_INITIALIZER;

while (initialized == 0)
pthread cond wait(&cond, &lock);

// Perform work that requires lock

a=a+b;

pthread_mutex_unlock (&lock) ;

pthread mutex_lock (&lock) ;

= wait puts thread to sleep, releases lock
= when awoken, lock reacquired (but then released bv this ¢

ade)

initiali . State variable set,
= When initialized, another thread signals ate variable s

Enables other thread
pthread mutex lock (&lock) ; to proceed above.
initialized = 1;

(s)

pthread_cond_signal (&init);
pthread_mutex_unlock(&lock) ;

TCS5422: Operating Systems [Spring 2020]

RRal2t2020 School of Engineering and Technology, University of Washington - Tacoma

B3

Slides by Wes J. Lloyd

L7.8

TCSS 422 A — Spring 2020
School of Engineering and Technology

4/21/2020

CONDITION AND SIGNALS - 4

pthread mutex_t lock = PTHREAD_MUTEX_ INITIALIZER;
pthread cond_t cond = PTHREAD_COND_INITIALIZER;

pthread mutex lock(&lock);

pthread cond wait(&cond, &lock);
// Perform work that requires lock
a=a+b;

pthread_mutex_unlock (&lock) ;

= Why do we wait inside a while loop?

have not been met. **MUST CHECK STATE VARIABLE**

execute when it should not. (e.g. too early)

= The while ensures upon awakening the condition is rechecked
= A signal is raised, but the pre-conditions required to proceed may

= Without checking the state variable the thread may proceed to

April 21, 2020 TCS$4|22; Operating Systems [Spring 2020]

School o Technology, ity i Tacoma

17.49

PTHREADS LIBRARY

= Compilation:
gcc requires special option to require programs with pthreads:
= gcc -pthread pthread.c -o pthread
= Explicitly links library with compiler flag
= RECOMMEND: using makefile to provide compiler arguments

= List of pthread manpages
= man -k pthread

TCS5422: Operating Systems [Spring 2020]

School of Technology, ity i Tacoma 1750

April 21, 2020

SAMPLE MAKEFILE

cC=gcc
CFLAGS=-pthread -I. -wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct
all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(cC) $(CFLAGS) $A -0 $@

Tean:
$(RM) -f $(binaries) *.o

= Example builds multiple single file programs
= All target
= pthread_mult

= clean target

= Example if multiple source files should produce a single executable

April 21, 2020 TCSS4|ZZ;Ope_raling Systems [Spring 2020]

school o Technology, ity i Tacoma

1751 ‘

QUESTIONS

WILL RETURN IN A FEW |.
MINUTES K&

Slides by Wes J. Lloyd

L7.9

