TCSS 422 A — Spring 2020
School of Engineering and Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

CPU Schedulers: MLFQ,
Proportional Share Schedulers, *
Linux Completely Fair Scheduler

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

Aprilitel2020 School of Engineering and Technology, University of Washington il Tacoma

OBJECTIVES - 4/16

® Questions from 4/14
= C Tutorial
= Active Reading Quiz - Ch. 7
= Assignment O
= Chapter 8: Multi-level Feedback Queue
= Examples
= Chapter 9: Proportional Share Schedulers
= | ottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

April 16, 2020

L6.2

Lioyd

4/21/2020

L6.1

TCSS 422 A — Spring 2020
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in
today’s class (45 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly nhew
= Average - 7.6 (Y from 7.875)

® Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.45 ({ from 5.93)

TCSS422: Operating Systems [Spring 2020]

April 16,2020 School of Engineering and Technology, University of Washington - Tacoma

L6.3

FEEDBACK FROM 4/14

® No survey questions from 4/14

TCSS422: Operating Systems [Spring 2020]

April 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L6.4

Slides by Wes J. Lloyd

4/21/2020

L6.2

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

OBJECTIVES - 4/16

= Questions from 4/14
= C Tutorial
= Active Reading Quiz - Ch. 7
= Assighment O
= Chapter 8: Multi-level Feedback Queue
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
® Chapter 26: Concurrency: An Introduction

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L6:5

April 16, 2020

OBJECTIVES - 4/16

® Questions from 4/14
® C Tutorial
= Active Reading Quiz - Ch. 7
= Assignment 0
® Chapter 8: Multi-level Feedback Queue
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma Le6

April 16, 2020

Slides by Wes J. Lloyd L6.3

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

OBJECTIVES - 4/16

® Questions from 4/14
= C Tutorial
= Active Reading Quiz - Ch. 7
= Assighment O
® Chapter 8: Multi-level Feedback Queue
= Examples
= Chapter 9: Proportional Share Schedulers
= L ottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
® Chapter 26: Concurrency: An Introduction

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L67

April 16, 2020

CHAPTER 8 -

MULTI-LEVEL FEEDBACK
QUEUE (MLFQ) SCHEDULER

TCSS422: Operating Systems [Spring 2020]

{agarll 1, 2 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd L6.4

TCSS 422 A — Spring 2020
School of Engineering and Technology

OBJECTIVES - 4/16

® Questions from 4/14
= C Tutorial
= Active Reading Quiz - Ch. 7
= Assignment O
= Chapter 8: Multi-level Feedback Queue
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
® Chapter 26: Concurrency: An Introduction

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 169

April 16, 2020

MULTI-LEVEL FEEDBACK QUEUE

= Objectives:

=*Improve turnaround time:
Run shorter jobs first

=Minimize response time:
Important for interactive jobs (Ul)

= Achieve without a priori knowledge of job length

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L6.10

April 16, 2020

Slides by Wes J. Lloyd

4/21/2020

L6.5

TCSS 422 A — Spring 2020
School of Engineering and Technology

Slides by Wes J.

Round-Robin
within a Queue

® Multiple job queues

= Adjust job priority based on [High Priority] Qg _’®_’
observed behavior

Q7
® Interactive Jobs Q6
= Frequent I/0 > keep priority high Q5
= Interactive jobs require fast
response time (GUI/UI) Q4 —>@
® Batch Jobs Q3
= Require long periods of CPU 5
utilization Q
= Keep priority low [Low Priority] Q1 —>®

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma te.11

April 16, 2020

RESPONDING TO BEHAVIOR CHANGE

@ L

I Starvation
0 50 100 150 200 ‘

Without Priority Boost . I B: C%

= Priority Boost
= Reset all jobs to topmost queue after some time interval S

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L6.12

April 16, 2020

Lloyd

4/21/2020

L6.6

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

RESPONDING TO BEHAVIOR CHANGE - 2

® With priority boost
=" Prevents starvation

QO
)]
Boost
Boost
Boost
Boost
"
e

-

-

-

oo
s}

0 50 100 150 200

With Priority Boost A:I B: C:%

a TCSS422: Operating Systems [Spring 2020]
apriliel2020 School of Engineering and Technology, University of Washington - Tacoma t6.13

PREVENTING GAMING

® I[mproved time accounting:
= Track total job execution time in the queue
= Each job receives a fixed time allotment
= When allotment is exhausted, job priority is lowered

MIERR VTN NNANY N
Q2 Q2

|
M
Q Qt N
CLLLLLLLLLLLL, - = 1l
Without(Left) and With(Right) Gaming Tolerance
. TCSS422: Operating Systems [Spring 2020]
April 16, 2020 School of Engineering and Technology, University of Washington - Tacoma L6.14

Slides by Wes J. Lloyd L6.7

TCSS 422 A — Spring 2020
School of Engineering and Technology

Slides by Wes J.

MLFQ: TUNING

= Consider the tradeoffs:
= How many queues?
= What is a good time slice?
= How often should we “Boost” priority of jobs?
= What about different time slices to different queues?

0 50 100 150 200

Example) 10ms for the highest queue, 20ms for the middle,
40ms for the lowest

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma t6.15

April 16, 2020

MLFQ RULE SUMMARY

® The refined set of MLFQ rules:

= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= Rule 3: When a job enters the system, it is placed at the
highest priority.

= Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

® Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma Le.16

April 16, 2020

Lloyd

4/21/2020

L6.8

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is runin
round-robin order.

Job Arrival Time Job Length
A T=0 4

B T=0 16

C T=0 8

(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above.
Draw vertical lines for key events and be sure to label the X-axis times as in the example.
Please draw clearly. An unreadable graph will loose points.

EXAMPLE

® Question:

® Given a system with a quantum length of 10 ms in its highest
queue, how often would you have to boost jobs back to the
highest priority level to guarantee that a single long-running
(and potentially starving) job gets at least 5% of the CPU?

® Some combination of n short jobs runs for a total of 10 ms per
cycle without relinquishing the CPU

= E.g. 2 jobs =5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea

= n jobs always uses full time quantum (10 ms)

= Batch jobs starts, runs for full quantum of 10ms

= All other jobs run and context switch totaling the quantum per cycle
= If 10ms is 5% of the CPU, when must the priority boost be ???

= ANSWER > Priority boost should occur every 200ms

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma Lo.18

April 16, 2020

Slides by Wes J. Lloyd L6.9

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

CHAPTER 9 -
PROPORTIONAL SHARE
SCHEDULER

TCSS422: Operating Systems [Spring 2020]

April1632020 School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/16

® Questions from 4/14
® C Tutorial
= Active Reading Quiz - Ch. 7
= Assignment O
® Chapter 8: Multi-level Feedback Queue
= Examples
= Chapter 9: Proportional Share Schedulers
= | ottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction

TCSS422: Operating Systems [Spring 2020]

. N . . . L6.20
School of Engineering and Technology, University of Washington - Tacoma

April 16, 2020

Slides by Wes J. Lloyd L6.10

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

PROPORTIONAL SHARE SCHEDULER

® Also called fair-share scheduler
or lottery scheduler

= Guarantees each job receives some percentage of CPU
time based on share of “tickets”

= Each job receives an allotment of tickets
= % of tickets corresponds to potential share of a resource

= Can conceptually schedule any resource this way
CPU, disk I/0, memory

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma te.21

April 16, 2020

LOTTERY SCHEDULER

B Simple implementation

= Just need a random number generator
Picks the winning ticket

= Maintain a data structure of jobs and tickets (list)
= Traverse list to find the owner of the ticket

= Consider sorting the list for speed

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma t6.22

April 16, 2020

Slides by Wes J. Lloyd L6.11

TCSS 422 A — Spring 2020
School of Engineering and Technology

Slides by Wes J.

LOTTERY SCHEDULER IMPLEMENTATION

Job:A
Tix:100

Job:C

head Tix250

NULL

1 e’ve found t winner t
2

3

4 a random number generator to
5 get a value 2en 0 and the total # of tickets

6 int winner = getrandom(0, totaltickets);

7

8 current: use this to walk through the list of jobs

9 node_t *current = head;

10

11 loop until the sum of ticket values is > the winner
12 e (current) {

13 counter = counter + current->tickets;

14 if (counter > winner)

15 break; found the winner

16 current = current->next;

17 }

18 ent the : schedule it...

TCSS422: Operating Systems [Spring 2020]

April 16,2020 School of Engineering and Technology, University of Washington - Tacoma

L6.23

TICKET MECHANISMS

® Ticket currency / exchange
= User allocates tickets in any desired way
= OS converts user currency into global currency

= Example:
= There are 200 global tickets assigned by the 0OS

User A > 500 (A's currency) to A1 > 50 (global currency)
> 500 (A's currency) to A2 > 50 (global currency)

User B > 10(B's currency) to BL = 100 (global currency)

TCSS422: Operating Systems [Spring 2020]

April 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L6.24

Lloyd

4/21/2020

L6.12

TCSS 422 A — Spring 2020
School of Engineering and Technology

TICKET MECHANISMS - 2

® Ticket transfer
= Temporarily hand off tickets to another process

® Ticket inflation

= Process can temporarily raise or lower the number of
tickets it owns

= |f a process needs more CPU time, it can boost tickets.

TCSS422: Operating Systems [Spring 2020]

April 16,2020 School of Engineering and Technology, University of Washington - Tacoma

L6.25

LOTTERY SCHEDULING

® Scheduler picks a winning ticket
= Load the job with the winning ticket and run it

= Example:

= Given 100 tickets in the pool
Job A has 75 tickets: 0 - 74
Job B has 25 tickets: 75 - 99

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Scheduledjob: A B A A B A A A A A A B A B A

® But what do we know about probability of a coin flip?

TCSS422: Operating Systems [Spring 2020]

April 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L6.26

Slides by Wes J. Lloyd

4/21/2020

L6.13

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

COIN FLIPPING

® Equality of distribution (fairness) requires a lot of flips!

100
90
80
70
60
50 1
40

L

All heads

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

Increasing number of coin tosses

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma te.27

April 16, 2020

LOTTERY FAIRNESS

= With two jobs
= Each with the same number of tickets (t=100)

g e e e
0.8+
064 /

0.4 4

Unfaimess (Average)

0.24

0.0 T T 1
1 10 100 1000

Job Length

When the job length is not very long,

average unfairness can be

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L6.28

April 16, 2020

Slides by Wes J. Lloyd L6.14

TCSS 422 A — Spring 2020
School of Engineering and Technology

LOTTERY SCHEDULING CHALLENGES

® What is the best approach to assign tickets to jobs?
= Typical approach is to assume users know best

= Users are provided with tickets, which they allocate as
desired

job arrival?
= What do we know about incoming jobs a priori ?
= Ticket assignment is really an open problem...

® How should the OS automatically distribute tickets upon

TCSS422: Operating Systems [Spring 2020]

April 16,2020 School of Engineering and Technology, University of Washington - Tacoma

L6.29

TCSS 422 WILL RETURN

AT ~2:40PM

TCSS422: Operating Systems [Spring 2020]

{agarll 1, 2 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

4/21/2020

L6.15

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

STRIDE SCHEDULER

m Addresses statistical probability issues with
lottery scheduling

= Instead of guessing a random number to select a
job, simply count...

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma te.31

April 16, 2020

STRIDE SCHEDULER - 2

® Jobs have a “stride” value

= A stride value describes the counter pace when the job should
give up the CPU

= Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

® Total system tickets = 10,000
= Job A has 100 tickets > A,;e = 10000/100 = 100 stride
= Job B has 50 tickets 2 B, = 10000/50 = 200 stride
= Job C has 250 tickets 2 C,;4. = 10000/250 = 40 stride

m Stride scheduler tracks “pass” values for each job (A, B, C)

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L6.32

April 16, 2020

Slides by Wes J. Lloyd L6.16

TCSS 422 A — Spring 2020
School of Engineering and Technology

Slides by Wes J.

STRIDE SCHEDULER - 3

® Basic algorithm:
1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

= KEY: When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job...

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L6.33

April 16, 2020

STRIDE SCHEDULER - EXAMPLE

= Stride values
=*Tickets = priority to select job
=Stride is inverse to tickets
=L ower stride = more chances to run (higher priority)

Priority
C stride = 40
A stride = 100
B stride = 200

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L6.34

April 16, 2020

Lloyd

4/21/2020

L6.17

TCSS 422 A — Spring 2020
School of Engineering and Technology

m Set A’s pass value to A’s stride = 100
® [ncrement counter until > 100
® Pick a new job: two-way tie

Pass(A) Pass(2) Pass(C) Wheo Runs?
(stride=100) (stride=200) (stride=40)

0 0 0 A
100 0 0
100 200 0 (@
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 C
200 200 200

STRIDE SCHEDULER EXAMPLE - 2

® Three-way tie: randomly pick job A (all pass values=0)

Tickets
C =250
A =100
B =50

« Initial job selection
is random. All @ 0

« C has the most tickets
and receives a lot of
opportunities to run...

TCSS422: Operating Systems [Spring 2020]

April 16, 2020

School of Engineering and Technology, University of Washington - Tacoma

L6.35

STRIDE SCHEDULER EXAMPLE - 3

® We set A’s counter (pass value) to A’s stride = 100
® Next scheduling decision between B (pass=0) and C (pass=0)

= Randomly choose B

® C has the lowest counter for next 3 rounds

Tickets
C =250
A =100
B = 50

« C has the most tickets
and is selected to run
more often ...

Pass(A) Pass(2) Pass(C) Wheo Runs?
(stride=100) (stride=200) (stride=40)
0 0 0 A
100 0 0
100 200 0 (e
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 (=
200 200 200 .
April 16, 2020 ;Er?iilzif gr?gei;a;;tignzy:;edm'ligzgggi? fJ(r)l]iversity of Washington - Tacoma

L6.36

Slides by Wes J. Lloyd

4/21/2020

L6.18

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

STRIDE SCHEDULER EXAMPLE - 4

® Job counters support determining which job to run next
® Qver time jobs are scheduled to run based on their

priority represented as their share of tickets... Tickets
= Tickets are analogous to job priority ﬁ =igg
ass ass ass o Runs? =
Pass(A) Pass(2) Pass(C) Who Runs? B 50
(stride=100) (stride=200) (stride=40)
0 0 0 A
100 0 0 B
100 200 0 C
100 200 40 C
100 200 80 C
100 200 120 A
200 200 120 C
200 200 160 C
200 200 200
. TCSS422: Operating Systems [Spring 2020]
April 16,2020 School of Engineering and Technology, University of Washington - Tacoma L6.37

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

m Large Google datacenter study:
“Profiling a Warehouse-scale Computer” (Kanev et al.)

® Monitored 20,000 servers over 3 years
® Found 20% of CPU time spent in the Linux kernel
= 5% of CPU time spent ¢

35
in the CPU scheduler! 8 30
8 25
. . T 20
= Study highlights E s
a £~ kernel
importance for c 10
high performance S R < "/ =<hed
0S kernels and g ST T ST oSN
c 9 A L& XN © F OO a § 2
CPU schedulers! s 2 L8 LEIFSTZ g3 2

Figure 5: Kernel time, especially time spent in the scheduler,
is a significant fraction of WSC cycles.
See: https://dl.acm.org/dol/pdf/10.1145/2749469.2750392

TCSS422: Operating Systems [Spring 2020] 16.38
School of Engineering and Technology, University of Washington - Tacoma i

April 16, 2020

Slides by Wes J. Lloyd L6.19

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

® Loosely based on the stride scheduler

B CFS models system as a Perfect Multi-Tasking System

= In perfect system every process of the same priority (class)
receive exactly 1/nt" of the CPU time

® Each scheduling class has a runqueue
= Groups process of same class
= In class, scheduler picks task w/ lowest vruntime to run
= Time slice varies based on how many jobs in shared runqueue

= Minimum time slice prevents too many context switches
(e.g. 3 ms)

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

April 16, 2020

L6.39

COMPLETELY FAIR SCHEDULER - 2

®m Every thread/process has a scheduling class (policy):

® Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH

= TS = Time Sharing
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

® How to show scheduling class and priority:
" #class
ps —elfc

" §priority (nice value)
pPs ax -o pid,ni,cls,pri,cmd

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

April 16, 2020

L6.40

Slides by Wes J. Lloyd L6.20

TCSS 422 A — Spring 2020

School of Engineering and

Technology

COMPLETELY FAIR SCHEDULER - 3

Linux > 2.6.23: Completely Fair Scheduler (CFS)
Linux < 2.6.23: 0(1) scheduler

Linux maintains simple counter (vruntime) to track how long
each thread/process has run

CFS picks process with lowest vruntime to run next

CFS adjusts timeslice based on # of proc waiting for the CPU

Kernel parameters that specify CFS behavior:

$ sudo sysctl kernel.sched latency ns
kernel.sched latency ns = 24000000

$ sudo sysctl kernel.sched min granularity ns
kernel.sched min granularity ns = 3000000

$ sudo sysctl kernel.sched wakeup granularity ns
kernel.sched wakeup granularity ns = 4000000

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma Le.41

April 16, 2020

COMPLETELY FAIR SCHEDULER - 4

Sched min_granularity ns (3ms)

= Time slice for a process: busy system (w/ full runqueue)

= |f system has idle capacity, time slice exceed the min as long as
difference in vruntime between running process and process with

lowest vruntime is less than sched_wakeup_granularity_ns
(4ms)

m Scheduling time period is: total cycle time for iterating through a
set of processes where each is allowed to run
(like round robin)

Example:
sched_latency_ns (24ms)
if (proc in runqueue < sched latency ns/sched min_granularity)

or

sched min_granularity * number of processes in runqueue

Ref: https://www.systutorlals.com/sched_mIin_granularlty_ns-sched_latency_ns-cfs-affect-timeslice-processes/

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L.42

April 16, 2020

Slides by Wes J. Lloyd

4/21/2020

L6.21

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

CFS TRADEOFF

= HIGH sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakeup_granularity_ns

reduced context switching - less overhead
poor near-term fairness

= LOW sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakreup_granularity_ns

increased context switching > more overhead
better near-term fairness

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

April 16, 2020

L6.43

COMPLETELY FAIR SCHEDULER -5

® Runqueues are stored using a linux red-black tree
= Self balancing binary tree - nodes indexed by vruntime

® Leftmost node has lowest
vruntime (approx execution time

= Walking tree to find left
most node has very low
big O complexity:
~0(log N) for N nodes
= Completed

processes removed [

Virtual runtime

Nodes represent

sched_entity(s)

indexed by their
virtual runtime

Most need of CPU Least need of CPU

TCSS422: Operating Systems [Spring 2020]

April 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L6.44

Slides by Wes J. Lloyd L6.22

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

CFS: JOB PRIORITY

static const int prio_to_weight[40] = {
/+ =20 =/ 88761, 71755, 56483, 46273, 36291,

® Time slice: Linux “Nice value” /* -15 =/ 29154, 23254, 18705, 14949, 11916,

/+ =10 %/ 9548, 7620, 6100, 4904, 3906,

. % =5 %/ 3121, 2501, 1991 1586, 12Ty

= Nice predates the CFS scheduler /+ 0/ 1024, 820, 655, 526, 423,
/% 5 %/ 335, 272, 215 172, 137,

f+ 10 */ 11.0, 87, 70, 56, 45,

= Top shows nice values Je 15w/ 36 e, 23, 18, 15,

}i
= Process command (nice & priority):
Ps ax -o pid,ni,cmd, %$cpu, pri

® Nice Values: from -20 to 19
= Lower is higher priority, default is O
= Vruntime is a weighted time measurement

= Priority weights the calculation of vruntime within a
runqueue to give high priority jobs a boost.
Influences job’s position in rb-tree

TCSS422: Operating Systems [Spring 2020]

April 16,2020 School of Engineering and Technology, University of Washington - Tacoma

L6.45

COMPLETELY FAIR SCHEDULER - 6

® CFS tracks cumulative job run time in vruntime variable

® The task on a given runqueue with the lowest vruntime is
scheduled next

" struct sched_entity contains vruntime parameter
= Describes process execution time in nanoseconds
= Value is not pure runtime, is weighted based on job priority

= Perfect scheduler 2>
achieve equal vruntime for all processes of same priority

® Sleeping jobs: upon return reset vruntime to lowest value in
system

= Jobs with frequent short sleep SUFFER !!

= Key takeaway:
identifying the next job to schedule is really fast!

TCSS422: Operating Systems [Spring 2020]

April 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L6.46

Slides by Wes J. Lloyd L6.23

TCSS 422 A — Spring 2020

School of Engineering and Technology

COMPLETELY FAIR SCHEDULER - 7

More information:

Man page: “man sched” : Describes Linux scheduling API
http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

https://www.kernel.org/doc/Documentation/scheduler/sched-

design-CFS.txt

= https://en.wikipedia.org/wiki/Completely_Fair_Scheduler

m See paper: The Linux Scheduler - a Decade of Wasted Cores
= http://www.ece.ubc.ca/~sasha/papers/eurosysi6-final29.pdf

. TCSS422: Operating Systems [Spring 2020]
apriliel2020 School of Engineering and Technology, University of Washington - Tacoma Le.47

CHAPTER 26 -

CONCURRENCY:
AN INTRODUCTION

q TCSS422: Operating Systems [Spring 2020]
{agarll 1, 2 School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

4/21/2020

L6.24

TCSS 422 A — Spring 2020
School of Engineering and Technology

OBJECTIVES - 4/16

® Questions from 4/14
= C Tutorial
= Active Reading Quiz - Ch. 7
= Assighment O
= Chapter 8: Multi-level Feedback Queue
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
® Chapter 26: Concurrency: An Introduction

TCSS422: Operating Systems [Spring 2020]

April 16,2020 School of Engineering and Technology, University of Washington - Tacoma

L6.49

OBJECTIVES

® Introduction to threads

® Race condition

® Critical section

® Thread API

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

April 16, 2020

L6.50

Slides by Wes J. Lloyd

4/21/2020

L6.25

TCSS 422 A — Spring 2020
School of Engineering and Technology

THREADS

Process State: PC,
registers, SP, etc...

Process Multithreaded Process

Process

Single]
Threaded

Process State: PC, Thread | | Thread | | Thread
registers, SP, etc... State | | State || State

HARED WY

 Heap
&
1

©Alfred Park, http://randu.org/tutorials/threads

Multiple
Threaded
Process

April 16, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L6.51

THREADS - 2

® Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

= What is an embarrassingly parallel program?

® Enables a single process (program) to have multiple “workers”
= This is parallel programming...

® Supports independent path(s) of execution within a program
with shared memory ...

® Threads share code segment, memory, and heap are shared

April 16, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L6.52

Slides by Wes J. Lloyd

4/21/2020

L6.26

TCSS 422 A — Spring 2020
School of Engineering and Technology

Slides by Wes J.

PROCESS AND THREAD METADATA

® Thread Control Block vs. Process Control Block

Thread identification
Thread state
CPU information:

Program counter
Register contents

Thread priority
Pointer to process that created this thread
Pointers to all other threads created by this thread

Process identification
Process status
Process state:
Process status word
Register contents
Main memory
Resources
Process priority
Accounting

April 16, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L6.53

SHARED ADDRESS SPACE

® Every thread has it’s own stack / PC

OKB The code segment: OKB
Program Code where instructions live Program Code
1KB s ; 1KB
e heap segment:
e contains malloc'd data KB Heap
2KB dynamic data structures
(it grows downward)
(free)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
15KB contains local variables 15KB
Stack 1) arguments to routines, Stack (1)
16KB return values, etc. 16KB
A Single-Threaded Two threaded
Address Space Address Space
. TCSS422: Operating Systems [Spring 2020]
April 16, 2020 School of Engineering and Technology, University of Washington - Tacoma L6.54

Lloyd

4/21/2020

L6.27

TCSS 422 A — Spring 2020
School of Engineering and Technology

}

int

THREAD CREATION EXAMPLE

tinclude <stdie.h>
#include <assert.h>
#include <pthread.h>

void smythread(void +arg) {
printf ("$s\n", (char «) arg);
return NULL;

main(int argc, char *argv[]) {
pthread t pl, p2;
int rc;
printf ("main: begin\n"];
rc = pthread create(&pl, NULL, mythread, "A"); assert(rc == 0);

hread create(&p2, NULL, mythread, "B"); assert(rc == 0);

// join waits for the threads to finish
rc =

thread_join(pl, NULL); assert(rc == 0);

rc = pthread join(p2, NULL); assert(rc == 0);
printf("main: end\n");
return 0;

April 16, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L6.55

Starts running
Prints ‘main: begin’

»Creates Thread 1
Creates Thread 2
Waits for T1

» Waits for T2

» Prints ‘main: end’

POSSIBLE ORDERINGS OF EVENTS

Runs

» Prints ‘A’

Returns

Runs
Prints ‘B’

Returns

April 16, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L6.56

Slides by Wes J. Lloyd

4/21/2020

L6.28

TCSS 422 A — Spring 2020

School of Engineering and Technology

Starts running
Prints ‘main: begin’

Creates Thread 1

—= Creates Thread 2

Waits for T1

Waits for T2

Prints ‘main: end’

Runs
Prints ‘A’

Returns

Returns immediately

Runs
Prints ‘B’

Returns

POSSIBLE ORDERINGS OF EVENTS - 2

Returns immediately

April 16, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L6.57

Starts running
Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

—

Waits for T2

Prints ‘main: end’

Runs

Prints ‘A’

Returns

What if execution order of
g events in the program matters?

POSSIBLE ORDERINGS OF EVENTS - 3

Immediately returns

April 16, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L6.58

Slides by Wes J. Lloyd

4/21/2020

L6.29

TCSS 422 A — Spring 2020
School of Engineering and Technology

COUNTER EXAMPLE

® Counter example

= A+ B: ordering
® Counter: incrementing global variable by two threads

m |s the counter example embarrassingly parallel?

= What does the parallel counter program require?

April 16, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L6.59

PROCESSES VS. THREADS

® What’'s the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplicate of code/heap, lightweight execution threads

Process

Process State: PC,
registers, SP, etc...

B CodaSernent |
Data Segment
. Heap
*

.

Process State: PC, reg smm|
registers, 5P, etc...

Data Segment

Cod
i e

| coda |

dala || fies |
Process = L

[code || data || files |

1 .
T
| stack | i:q:;.slmsi ragistars rcgsMM|

| slack || slun:k]

=3

theoad ——

AN

:

¢
L

singl-hreaded procass

L
&

<

& +—1 thirzad

muitithreadad process

April 16, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L6.60

Slides by Wes J. Lloyd

4/21/2020

L6.30

TCSS 422 A — Spring 2020
School of Engineering and Technology

Slides by Wes J.

RACE CONDITION

® What is happening with our counter?

= When counter=50, consider code: counter = counter + 1

= |f synchronized, counter will = 52
(after instruction)
0s Threadl Thread?2 PC %eax counter
before critical section 100 0 50
mov 0x804%zalc, %eax 105 50 50
add $0x1l, %eax 108 51 50
save Tl's state
restore T2's state 100 0 50
mov 0x804%alc, %eax 105 50 50
add £0x1, %eax 108 51 50
mov %eax, 0x804%alc 153 L% 51
save T2's state
restore T1l's state 108 51 50
mov %eax, 0x8049%alc 113 51

-

TCSS422: Operating Systems [Spring 2020]

April 16,2020 School of Engineering and Technology, University of Washington - Tacoma

L6.61

CRITICAL SECTION

® Code that accesses a shared variable must not be
concurrently executed by more than one thread

® Multiple active threads inside a critical section produce a

race condition.

m Atomic execution (all code executed as a unit) must be

ensured in critical sections
= These sections must be mutually exclusive

TCSS422: Operating Systems [Spring 2020]

April 16, 2020 School of Engineering and Technology, University of Washington - Tacoma

L6.62

Lloyd

4/21/2020

L6.31

TCSS 422 A — Spring 2020
School of Engineering and Technology

LOCKS

(S IR VYR S I

lock_t mutex;

lock (smutex) :

balance = balance + 1;

unlock (&mutex) ;

® Counter example revisited

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

Critical section

April 16, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L6.63

QUESTIONS

Slides by Wes J. Lloyd

4/21/2020

L6.32

TCSS 422 A — Spring 2020

School of Engineering and Technology

WILL RETURN IN A FEW

MINUTES

Slides by Wes J. Lloyd

4/21/2020

L6.33

