TCSS 422 A — Spring 2020
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

CPU Schedulers: MLFQ,
Proportional Share Schedulers, Q
Linux Completely Fair Scheduler

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

Bl 2t P School of Engineering and Technology, University of Washington (RN

4/21/2020

OBJECTIVES - 4/16

I = Questlons from 4/14 I

= C Tutorlal

= Active Reading Quiz - Ch. 7

= Assignment O

= Chapter 8: Multl-level Feedback Queue
= Examples

= Chapter 9: Proportlonal Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler

= Chapter 26: Concurrency: An Introduction

TCS5422: Operating Systems [Spring 2020]

RRalle 2020 School of Engineering and Technology, University of Washington - Tacoma

162 ‘

MATERIAL / PACE

FEEDBACK FROM 4/14

= Please classify your perspective on material covered in
today’s class (45 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 7.6 (1 from 7.875)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.45 ({ from 5.93)

April 16, 2020 Tcsz:lzz; Operating Systems [Spring 2020]

Technology, ity ington - Tacoma

= No survey questions from 4/14

TCS5422: Operating Systems [Spring 2020]

RRalle 2020 School of Engineering and Technology, University of Washington - Tacoma

6.4

OBJECTIVES - 4/16

OBJECTIVES - 4/16

= Questlons from 4/14
| = C Tutorial |
= Active Reading Quiz - Ch. 7
= Asslgnment O
= Chapter 8: Multl-level Feedback Queue
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction

April 16, 2020

TCS5422: Operating Systems [Spring 2020]
0ol of Engineeri Technology, University i - Tacoma

Slides by Wes J. Lloyd

= Questlons from 4/14
= C Tutorial
= Active Reading Quiz - Ch. 7
= Asslgnment O
= Chapter 8: Multl-level Feedback Queue
= Examples
= Chapter 9: Proportlonal Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction

TCS5422: Operating Systems [Spring 2020]

RRalle 2020 School of Engineering and Technology, University of Washington - Tacoma

166

L6.1

TCSS 422 A — Spring 2020
School of Engineering and Technology

OBJECTIVES - 4/16

= Questlons from 4/14
= C Tutorial

= Active Reading Quiz - Ch. 7
| = Asslgnment O

= Chapter 8: Multl-level Feedback Queue
= Examples
= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction

April 16, 2020 Tcsz:lz‘z); Operating Systems [Spring 2020]

hnology, ity

- Tacoma

4/21/2020

CHAPTER 8 -

MULTI-LEVEL FEEDBACK
QUEUE (MLFQ) SCHEDULER

TCSS422: Operating Systems [Spring 2020]

Al T D School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/16

= Questlons from 4/14

= C Tutorial

= Active Reading Quiz - Ch. 7
= Asslgnment O

= Chapter 8: Multl-level Feedback Queue
= Examples

= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction

April 16, 2020 Tcsz:lz‘z); Operating Systems [Spring 2020]

hnology, ity

- Tacoma

MULTI-LEVEL FEEDBACK QUEUE

= QObjectives:

=*Improve turnaround time:
Run shorter jobs first

=Minimize response time:
Important for interactive jobs (Ul)

= Achieve without a priori knowledge of job length

16.10

April 16, 2020 TBSMZ; Operating Systems [Spring 2020]

School o Technology, i i Tacoma

= Multiple job queues

= Adjust job priority based on
observed behavior

= Interactive Jobs
= Frequent 1/0 > keep priority high
= Interactive jobs require fast
response time (GUI/UI)

= Batch Jobs
= Require long periods of CPU
utilization

= Keep priority low [Low Priority]

Q7
Q6

[High Priority] Q8 —> @ —

April 16, 2020

TCS5422: Operating Systems [Spring 2020]
0ol of Engineeri hnology, University

611

RESPONDING TO BEHAVIOR CHANGE

@, TR

Q
S
®l

— Starvation 4§ & &
Without Priority Boost A:I B: c:g ‘ =
INN

= Priority Boost
= Reset all jobs to topmost queue after some time interval S

April 16, 2020

TCSS422: Operating Systems [Spring 2020]
L J

School o Technology, ity i Tacoma ‘ Le12

Slides by Wes J. Lloyd

L6.2

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

RESPONDING TO BEHAVIOR CHANGE - 2 PREVENTING GAMING

= With priority boost = Improved time accounting:
= Prevents starvation = Track total job execution time in the queue
= Each job receives a fixed time allotment
= When allotment is exhausted, job priority is lowered

W N

Boost
Bogst

100 150 200

Q0 Qo 5
(ARRNNRRRUNNRRRUNTT] | |
0 50 100 150 200 0

Without(Left) and With(Right) Gaming Tolerance

With priority Boost A| &N B

TCS5422: Operating Systems [Spring 2020]

TCS5422: Operating Systems [Spring 2020]
Bl 2t P 1613 o BT T T o e A S T e

AT o T B S oy ATt A T T CIEG 2

MLFQ: TUNING MLFQ RULE SUMMARY

= Consider the tradeoffs: = The refined set of MLFQ rules:
= How many queues?

What is a good ti lice? = Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= What is a good time slice?

= How often should we “Boost” priority of jobs? = Rule 2: If Priority(A) = Priority(B), A & B run in RR.
= What about different time slices to different queues? = Rule 3: When a job enters the system, it is placed at the
l§ highest priority.
Q

= Rule 4: Once a job uses up its time allotment at a given

Q1 level (regardless of how many times it has given up the
- y CPU), its priority is reduced(i.e., it moves down on queue).
o N) p y (q)
_— _ = Rule 5: After some time period S, move all the jobs in the
] 50 100 150 200

. ? system to the topmost queue.
Example) 10ms for the highest queue, 20ms for the middle,

40ms for the lowest

April 16, 2020 TCS5422: Operating Systems [Spring 2020] ‘ 615 ‘ April 16, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma School of Engineering and Technology, University of Washington - Tacoma ‘ Lo ‘

Jackson deploys a 3-level MLFQ scheduler. The time slice is 1 for high priority jobs, 2 for medium
priority, and 4 for low priority. This MLFQ scheduler performs a Priority Boost every 6 timer units.
When the priority boost fires, the current job is preempted, and the next scheduled job is run in
round-robin order. EXAMPLE
Job Arrival Time Job Length
A T=0 4
g $=g ;6 = Question:
- = Given a system with a quantum length of 10 ms in its highest
(11 points) Show a scheduling graph for the MLFQ scheduler for the jobs above. queue, how often would you have to boost jobs back to the
Draw vertical lines for key events and be sure to label the X-axis times as in the example. highest priority level to guarantee that a single long-running
Please draw clearly. An unreadable graph will loose points. (and potentially starving) job gets at least 5% of the CPU?
= Some combination of n short jobs runs for a total of 10 ms per
cycle without relinquishing the CPU
= E.g. 2 jobs = 5 ms ea; 3 jobs = 3.33 ms ea, 10 jobs = 1 ms ea

HIGH | = n jobs always uses full time quantum (10 ms)

| = Batch jobs starts, runs for full quantum of 10ms
MED | = All other jobs run and context switch totaling the quantum per cycle

i = If 10ms is 5% of the CPU, when must the priority boost be 2?2?

| = ANSWER -> Priority boost should occur every 200ms
Low |

: i spri)
. I e e E

Slides by Wes J. Lloyd L6.3

TCSS 422 A — Spring 2020
School of Engineering and Technology

CHAPTER 9 -
PROPORTIONAL SHARE
SCHEDULER

. TCSS422: Operating Systems [Spring 2020]
Tl 2D School of Engineering and Technology, University of Washington -

4/21/2020

OBJECTIVES - 4/16

= Questlons from 4/14
= C Tutorial
= Active Reading Quiz - Ch. 7
= Asslgnment O
= Chapter 8: Multl-level Feedback Queue
= Examples
= Chapter 9: Proportlonal Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler
= Chapter 26: Concurrency: An Introduction

TCSS422: Operating Systems [Spring 2020]
CIEG 2 e BT T e Uy i = e

16.20

PROPORTIONAL SHARE SCHEDULER

= Also called fair-share scheduler
or lottery scheduler

= Guarantees each job receives some percentage of CPU
time based on share of “tickets”

= Each job receives an allotment of tickets
= % of tickets corresponds to potential share of a resource

= Can conceptually schedule any resource this way
CPU, disk I/0, memory

April 16, 2020 Tcsz:lz‘z); Operating Systems [Spring 2020]

" . 1621
nology, y Tacoma

LOTTERY SCHEDULER

= Simple implementation

= Just need a random number generator
Picks the winning ticket

= Maintain a data structure of jobs and tickets (list)
=Traverse list to find the owner of the ticket

= Consider sorting the list for speed

TCSS422: Operating Systems [Spring 2020]
CIEAG, 7 Sehosl o Ergineering andTechnolosyjUniversity ot Washi Tecoma

1622

LOTTERY SCHEDULER IMPLEMENTATION

head

1t counter = 0;

winner = getrandom(0, totaltickets);

node_t *current = head;

12 (current) {
13 counter = counter + current->tickets;
11 (counter > winner)
15 ;
16 current = current->next;
17)
18
April 16, 2020 TCS5422; Operating Systems [Spring 2020]) 623
0ol of chnology, y Tacoma

Slides by Wes J. Lloyd

TICKET MECHANISMS

= Ticket currency / exchange
= User allocates tickets in any desired way
= 0S converts user currency into global currency

= Example:
=There are 200 global tickets assigned by the 0S

User A > 500 (A's currency) to AL > 50 (global currency)
> 500 (A's currency) to A2 > 50 (global currency)

User B > I10(B's currency) to B1 - 100 (global currency)

TCSS422: Operating Systems [Spring 2020]
GG, 22 Sehool of Engineering and Technolosy/University ot Washi Tacoma

1624

L6.4

TCSS 422 A — Spring 2020
School of Engineering and Technology

TICKET MECHANISMS - 2

= Ticket transfer
= Temporarily hand off tickets to another process

= Ticket inflation

= Process can temporarily raise or lower the number of
tickets it owns

= If a process needs more CPU time, it can boost tickets.

4/21/2020

April 16, 2020 TCS8422; Operating Systems [Spring 2020])
ool of nology, y Tacoma

1625

LOTTERY SCHEDULING

= Scheduler picks a winnlng ticket
= Load the job with the winning ticket and run it

= Example:

= Given 100 tickets in the pool
= Job A has 75 tickets: 0 - 74
= Job B has 25 tickets: 75 - 99

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Scheduledjob: A B A A B A A A A AAB ABA

= But what do we know about probability of a coin flip?

April 16, 2020 TBSMZ; Operating Systems [Spring 2020]

School of Technology, i i Tacoma L6.26

COIN FLIPPING

= Equality of distribution (fairness) requires a lot of flips!

100
20

" Al heads

—
Increasing number of coin tosses

1627

April 16, 2020 TCS8422; Operating Systems [Spring 2020])
0ol of nology, y Tacoma

LOTTERY FAIRNESS

= With two jobs
= Each with the same number of tickets (t=100)

1.0

e o o
g 5 &

Unfaimess (Average)

°

10 100 1000
Job Length

When the job length is not very long,
average unfairness can be

TCSS422: Operating Systems [Spring 2020]
CIEAG, 7 Sehoslo Ergineerins andTechnokosyjUnvest f Tecoma

LOTTERY SCHEDULING CHALLENGES

= What is the best approach to assign tickets to jobs?
= Typical approach is to assume users know best

= Users are provided with tickets, which they allocate as
desired

= How should the OS automatically distribute tickets upon
job arrival?

= What do we know about incoming jobs a priori ?
= Ticket assignment is really an open problem...

April 16, 2020 Tcsz:fg; Operating Systems [Spring 2020]

" . 16.29
nology, y Tacoma

Slides by Wes J. Lloyd

TCSS 422 WILL RETURN

AT ~2:40PM

: TCSS422: Operating Systems [Spring 2020]
Gl T A School of Engineering and Technology, University of Washington -

L6.5

TCSS 422 A — Spring 2020 4/21/2020
School of Engineering and Technology

STRIDE SCHEDULER STRIDE SCHEDULER - 2
= Addresses statistical probability issues with = Jobs have a “stride” value
Iottery scheduling = A stride value describes the counter pace when the job should

give up the CPU

= Stride value is inverse in proportion to the job’s number of
= |nstead of guessing a random number to select a tickets (more tickets = smaller stride)

job, simply count...
= Total system tickets = 10,000
= Job A has 100 tickets > Aqe = 10000/100 = 100 stride
= Job B has 50 tickets > Bg,qe = 10000/50 = 200 stride
= Job C has 250 tickets > Cq,qo = 10000/250 = 40 stride

= Stride scheduler tracks “pass” values for each job (A, B, C)

April 16, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma te.32

TCS5422: Operating Systems [Spring 2020]
o3 ‘ RRalle 2020 School of Engineering and Technology, University of Washington - Tacoma

STRIDE SCHEDULER - 3 STRIDE SCHEDULER - EXAMPLE

= Basic algorithm: = Stride values
1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

=Tickets = priority to select job
=Stride is inverse to tickets

2 Gt selhecller MErEmETS 6 COUiesT =Lower stride = more chances to run (higher priority)
4. When counter exceeds pass value of current job, pick a Priorit
new job (go to 1) rori
C stride = 40
= KEY: When the counter reaches a job’s “PASS” value, A stride = 100
the scheduler passes on to the next job... B stride = 200
wieamo |G e e o 1 o sty Wt Tcoms

= Three-way tie: randomly pick job A (all pass values=0) = We set A’s counter (pass value) to A’s stride = 100
= Set A’s pass value to A’s stride = 100 ” = Next scheduling decision between B (pass=0) and C (pass=0)
. Tickets
= Increment counter until > 100 ¢ =250 * Randomly choose B Tickets
= Pick a new job: two-way tie A =100 = C has the lowest counter for next 3 rounds C =250
Pass(A) Pass(£) Pass(C) Who Runs? B = 50 Pass(A) Pass(£) Pass(C) Who Runs? A =100
(stride=100) ~ (stride=200) (stride=40) (stride=100) (stride=200) (stride=40) B = 50
0 0 0 A 4 initial job selection o o o "
100 0 0 is random.All @ 0 100 0 0
100 200 0 c 100 200 0 c
100 200 40 C « C has the most tickets 100 200 40 [« C has the most tickets
100 200 80 C and receives a lot of 100 200 80 € and is selected to run
100 200 120 A opportunities to run... 100 200 120 A more often ...
200 200 120 c 200 200 120 (o
200 200 160 c 200 200 160 [
200 200 200 200 200 200
TCSS422: Of ting Syste [Spring 2020] TCS5422: Of ting Systs [Spring 2020]
Bl 2t ZD School of Engineering and Technolagy, University of Washington - Tacoma 1633 GG, 22 Schoolof Engineering and Technolagy, University of Washington - Tacoma 1636

Slides by Wes J. Lloyd L6.6

TCSS 422 A — Spring 2020
School of Engineering and Technology

STRIDE SCHEDULER EXAMPLE - 4

= Job counters support determining which job to run next
= Qver time jobs are scheduled to run based on their

priority represented as their share of tickets... Tickets
= Tickets are analogous to job priority f\ = i(s)g
Pass(A) Pass(B) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 0 0 A
100 0 0
100 200 0 c
100 200 40 c
100 200 80 €
100 200 120 A
200 200 120 c
200 200 160 c
200 200 200
April 16, 2020 TCSS422: Operating Systems [Spring 2020] ‘ 1637 ‘

School of Engineering and Technology, University of Washington - Tacoma

4/21/2020

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Large Google datacenter study:
“Profiling a Warehouse-scale Computer” (Kanev et al.)
= Monitored 20,000 servers over 3 years
= Found 20% of CPU time spent in the Linux kernel
= 5% of CPU time spent
in the CPU scheduler!

= Study highlights
importance for
high performance

kernel

kernel/sched

Cycles in kernel code (%)
e NN W
ER-RrR-RR-]

0S kernels and SIS S I SO I
g 9 & & XN o F O a § 2
CPU schedulers ! 5P LI LEIRZFTESSE

Figure 5: Kernel time, especially time spent in the scheduler,
is a significant fraction of WSC cycles.

TCS5422: Operating Systems [Spring 2020]
CIEG 2 e T T T o ey A S T = TPy

1638 ‘

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Loosely based on the stride scheduler

= CFS models system as a Perfect Multi-Tasking System

= In perfect system every process of the same priority (class)
receive exactly 1/nt" of the CPU time

= Each scheduling class has a runqueue
= Groups process of same class
= In class, scheduler picks task w/ lowest vruntime to run
= Time slice varies based on how many jobs in shared runqueue

= Minimum time slice prevents too many context switches
(e.g.3 ms)

April 16, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma ‘ 1639 ‘

COMPLETELY FAIR SCHEDULER - 2

= Every thread/process has a scheduling class (policy):
= Normal classes: SCHED_OTHER (TS), SCHED_IDLE,
SCHED_BATCH
= TS = Time Sharing
= Real-time classes: SCHED_FIFO (FF), SCHED_RR (RR)

= How to show scheduling class and priority:
" §class
ps -elfc

" §priority (nice value)
pPs ax -o pid,ni,cls,pri,cmd

TCS5422: Operating Systems [Spring 2020]
CIEAG, 7 Sehoollof Erineering andTech nolosyiUnversity oWashinstonkTeconta

=

COMPLETELY FAIR SCHEDULER - 3

= Linux > 2.6.23: Completely Fair Scheduler (CFS)
® Linux < 2.6.23: 0(1) scheduler

® Linux maintains simple counter (vruntime) to track how long
each thread/process has run

= CFS picks process with lowest vruntime to run next

= CFS adjusts timeslice based on # of proc waiting for the CPU

= Kernel parameters that specify CFS behavior:
$ sudo sysctl kernel.sched latency ns
kernel.sched latency ns = 24000000
$ sudo sysctl kernel.sched min granularity ns
kernel.sched min granularity ns = 3000000
$ sudo sysctl kernel.sched wakeup granularity ns
kernel.sched wakeup granularity ns = 4000000

April 16, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma ‘ Lo ‘

COMPLETELY FAIR SCHEDULER - 4

" Sched_min_granularity_ns (3ms)
= Time slice for a process: busy system (w/ full runqueue)
= If system has idle capacity, time slice exceed the min as long as
difference in vruntime between running process and process with
lowest vruntime is less than sched_wakeup_granularity_ ns
(4ms)
= Scheduling time period is: total cycle time for iterating through a
set of processes where each is allowed to run
(like round robin)
Example:
sched_latency_ns (24ms)
if (proc in runqueue < sched_latency_ns/sched_min_granularity)
or
sched_min_granularity * number of processes in runqueue

Rot: htp: min na-ached_latensy,
TCSS422: Operating Systems [Spring 2020]
GG, 22 Sehoollof Ergineenng andTechnolosyjUniversity ofWashinaton Sk Tecoma Le42

Slides by Wes J. Lloyd

L6.7

TCSS 422 A — Spring 2020
School of Engineering and Technology

CFS TRADEOFF

= HIGH sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakeup_granularity_ns

reduced context switching > less overhead
poor near-term fairness

= LOW sched_min_granularity_ns (timeslice)
sched_latency_ns
sched_wakreup_granularity_ns

increased context switching > more overhead
better near-term fairness

4/21/2020

April 16, 2020 Tcsz:lz‘z); Operating Systems [Spring 2020]

" . 16.43
nology, y - Tacoma

COMPLETELY FAIR SCHEDULER - 5

= Runqueues are stored using a linux red-black tree
= Self balancing binary tree - nodes indexed by vruntime
= Leftmost node has lowest
vruntime (approxexecution time
= Walking tree to find left
most node has very low
big O complexity:
~0(log N) for N nodes
= Completed

Nodes represent
sched_entity(s)
indexed by their
virlual runtime:

processes removed) b E b
Virtual runtime
Mostneed of CPU Least need of CPU
; TCS5422: Operating Systems [Spring 2020]
G 28, 200 School of Engineeri Technology, University i - Tacoma Lo.4s

CFS: JOB PRIORITY

a
5, 56483,
05,

= Time slice: Linux “Nlce value”
= Nice predates the CFS scheduler
=Top shows nice values

= Process command (nice & priority)v:
ps ax -o pid,ni,cmd, %cpu, pri

6100,
1991,
6

= Nice Values: from -20 to 19
= Lower is higher priority, default is O
= Vruntime is a weighted time measurement

= Priority weights the calculation of vruntime within a
runqueue to give high priority jobs a boost.
Influences job’s position in rb-tree

April 16, 2020 Tcsz:lz‘f; Operating Systems [Spring 2020] L645

nology, ity ington - Tacoma

COMPLETELY FAIR SCHEDULER - 6

= CFS tracks cumulative job run time in vruntime variable

= The task on a given runqueue with the lowest vruntime is
scheduled next

" struct sched_entity contains vruntime parameter
= Describes process execution time in nanoseconds
= Value is not pure runtime, is weighted based on job priority

= Perfect scheduler >
achieve equal vruntime for all processes of same priority

= Sleeping jobs: upon return reset vruntime to lowest value in
system

= Jobs with frequent short sleep SUFFER !!

= Key takeaway:
IdentIfying the next job to schedule Is really fast!

TCSS422: Operating Systems [Spring 2020]
CIEAG, 7 Sehosl o Ergineering andTechnolosyjUniversity ot Washi Tecoma

16.46

COMPLETELY FAIR SCHEDULER - 7

= More information:

= Man page: “man sched” : Describes Linux scheduling API
= http://manpages.ubuntu.com/manpages/bionic/man7/sched.7.html

= https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt
= https://en.wikipedia.org/wiki/Completely Fair_Scheduler

= See paper: The Linux Scheduler - a Decade of Wasted Cores
= http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

April 16, 2020 Tcsz:lzg; Operating Systems [Spring 2020]

chnology, ity ington - Tacoma Le47

Slides by Wes J. Lloyd

CHAPTER 26 -

CONCURRENCY:
AN INTRODUCTION

: TCSS422: Operating Systems [Spring 2020]
Gl T A School of Engineering and Technology, University of Washington -

L6.8

TCSS 422 A — Spring 2020
School of Engineering and Technology

OBJECTIVES - 4/16

= Questlons from 4/14

= C Tutorial

= Active Reading Quiz - Ch. 7

= Asslgnment O

= Chapter 8: Multl-level Feedback Queue
= Examples

= Chapter 9: Proportional Share Schedulers
= Lottery scheduler
= Ticket mechanisms
= Stride scheduler
= Linux Completely Fair Scheduler

| = Chapter 26: Concurrency: An Introduction |

4/21/2020

TCS5422: Operating Systems [Spring 2020]

‘ Bl 2t P AT o T B s oy ATty A T = TRy

‘ 16.49

OBJECTIVES

® Introduction to threads
= Race condition
= Critical section

= Thread API

April 16, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma ‘ Le.50 ‘

THREADS

Process Multithreaded Process
Process State: PC,
registers, SP, etc...
Single Multiple
Threaded Threaded
Process Process
©Alfred Park, hitp://randu.org/tutorialsfthreads
; TCSS422: Operating Systems [Spring 2020]
‘ Pl 25, 218D School of Engineering and Technology, University of Washington - Tacoma ‘ Les1 ‘

THREADS - 2

= Enables a single process (program) to have multiple “workers”
= This is parallel programming...

= Supports independent path(s) of execution within a program
with shared memory ...

= Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

= Threads share code segment, memory, and heap are shared

= What is an embarrassingly parallel program?

April 16, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma ‘ 1652 ‘

= Thread Control Block vs. Process Control Block

PROCESS AND THREAD METADATA

School of Engineering and Technology, University of Washington - Tacoma

Thread identification Process identification
Thread state Process status
CPU information: Process state:
Program counter Process status word
Registis cotants Register contents
o Main memory
Thread priority Resources
Pointer to process that created this thread Process priority
Pointers to all other threads created by this thread Accounting
April 16, 2020 TCSS422: Operating Systems [Spring 2020] ‘ 653 ‘

SHARED ADDRESS SPACE

= Every thread has it’s own stack / PC

School of Engineering and Technology, University of Washington - Tacoma

OKB The code segment: OKB
Program Code where instructions live Program Code
1KB A i 1KB
e heap segment:
Heap contains mallocd data S Hesp
2kB dynamic data structures
(it grows downward)
(free)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
15KB contains local variables 15KB
stack (1) arguments to routines, stack (1)
16KB return values, etc. 16KB
A single-Threaded Two threaded
Address Space Address Space
April 16, 2020 TCS$422: Operating Systems [Spring 2020] ‘ s ‘

Slides by Wes J. Lloyd

L6.9

TCSS 422 A — Spring 2020
School of Engineering and Technology

#include <stdie.h»
tinclude <assert.h»
tinclude <pthread.h>

void smythread(void sarg) {
printf("$s\n", (char «) arg);

arge, char rargvil) {
t pl, p2;

A
mythread, "B");
ads to finish

NULL); assert(rc == 0);
NULL); assert(rc == 0);

read_create (sp2, N
waits for the
read_join (pl
read_join(p2,
5 main: end\n®);
return 0;

THREAD CREATION EXAMPLE

"}; assert(rc == 0);
assert (rc == 0);

April 16, 2020 Tcsz:lzz; Operating Systems [Spring 2020]

chnology, ity

Tacoma 1655

POSSIBLE ORDERINGS OF EV

Starts running

Prints ‘main: begin’

Creates Thread 1
Runs
Prints ‘A’
Retums

Creates Thread 2

Prints ‘main: end’

ENTS - 2

Runs
Prints ‘B’
Returns
Waits for T1 Returns immediately
Waits for T2 Returns immediately

April 16, 2020 TCSSA[ZZ; Operating Systems [Spring 2020]

school o Technology, ity

1657

Tacoma

4/21/2020

POSSIBLE ORDERINGS OF EVENTS

Starts running
' Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

Waits for T1
Runs
’ Prints ‘A"
Returns
‘ Waits for T2
Runs
Prints ‘B’
Returns

* Prints ‘main: end’

‘ April 16, 2020

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L5

POSSIBLE ORDERINGS OF EVENTS - 3

Int maln() Thread 2

Starts running
Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

What if execution order of

events in the program matters?

Waits for T:
Runs
Prints ‘A'
Returns

Waits for T2 Immediately returns

Prints ‘main: end’

; TCS5422: Operating Systems [Spring 2020]
G283, 20D School of Engineering and Technology, University i Tacoma Le.s8

COUNTER EXAMPLE

= Counter example

= A + B: ordering

= Counter: incrementing global variable by two threads

= |s the counter example embarrassingly parallel?

= What does the parallel counter program require?

PROCESSES VS. THREADS

= What's the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplicate of code/heap, lightweight execution threads

April 16, 2020 Tcsz:lzcz‘; Operating Systems [Spring 2020]

chnology, ity i Tacoma 1659

Process

Process State: PC.
register

1
| T |

Process

Process State: PC,
registers, 5P, etc...

ooda aata { ™
ragslm;l =3

[J oo]| o]
| [sator][rgtor [ogto]

bttt
i i S 3 é S

R thenad — € L throaz
. e S| <

singla-throaded procoss

ElEa e

muttithioadad prozoss

April 16, 2020

16.60

‘ TCSS422: Operating Systems [Spring 2020]

School of

Technology, ity

Tacoma

Slides by Wes J. Lloyd

L6.10

TCSS 422 A — Spring 2020
School of Engineering and Technology

RACE CONDITION

® What is happening with our counter?
= When counter=50, consider code: counter = counter + 1

= |If synchronized, counter will = 52
(after instruction)
0s Thread1l Thread2 PC %eax counter
before critical section 100 0 50
mov 0x8049%alc, %eax 105 50 50
add $0x1, %eax 108 51 50

save T1's state

restore T2's state 100 0 50
mov 0x8049alc, %eax 105 50 50
add $0x1, %eax 108 51 50
mov %eax, 0x804%alc 113 51 51

{ sa-ve !'s state

restore T1's state 108 51
mov %eax, 0x8049alc 13 51
TCS5422: Operating Systems [Spring 2020]
‘ April 16, 2020 ‘khwlo, e Technology, University ’ P 1661

4/21/2020

CRITICAL SECTION

= Code that accesses a shared variable must not be
concurrently executed by more than one thread

= Multiple active threads inside a critical section produce a
race condition.

= Atomlic executlon (all code executed as a unit) must be
ensured in critical sections
= These sections must be mutually excluslve

TCSS422: Operating Systems [Spring 2020]
CCIl e School of Engineering and Technology, University ington - Tacoma 1662

LOCKS

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock_t mutex;

lbalance = balance + 1;] Critical section

unlock (smutex) i

1

2 P

3 lock (gmntex):
4

5

= Counter example revisited

TCS5422: Operating Systems [Spring 2020]
RERl-2r2y e oolol Enginearins erdiechnolonyiU e sty f Tacoms

‘ 1663 ‘

QUESTIONS

WILL RETURN IN A FEW

MINUTES

Slides by Wes J. Lloyd

L6.11

