

MATERIAL / PACE
 Please classify your perspective on material covered in today's class (53 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new
 Average - 7.51 (↑ from 7.03)

 Please rate the pace of today's class:

 1-slow, 5-just right, 10-fast
 Average - 5.82 (↑ from 5.76)

3

In the Ubuntu VM, is it true that processes and threads are equivalent?	
 In Linux, threads and processes both receive process IDs (PIDs). Threads also receive a TGID (thread group ID) which is the PID of the parent process. The parent process will have a TGID equal to it's own PID. Here's how the numbering might work for a group of 3 processes: 	
All PIDs (processes & threads) share the same sequence of numbers from 1 to 32768. When PID 32768 is created, the numbering wraps around.	
pid=126 tgid=126 process 3 thread 1 thread 2	
pid=127> pid=128> pid=129 tgid=127 tgid=127 tgid=127	

14

15

EXCEPTION TYPES						
Exception type	Synchronous va. asynchronous	User request vs. coerced	User maskable va. nonmaskable	Within va. between Instructions	Resume va. terminata	
/O device request	Asynchronous	Coerced	Nonmaskable	Between	Resume	
Invoke operating system	Synchronous	User request	Nonmaskable	Between	Resume	
Tracing Instruction execution	Synchronous	User request	User maskable	Between	Resume	
Breakpoint	Synchronous	User request	User maskable	Between	Resume	
Integer erithmetic overflow	Synchronous	Coerced	User maskable	Within	Resume	
Floating-point arithmetic overflow or underflow	Synchronous	Coerced	User maskable	Within	Resume	
Paga fault	Synchronous	Coerced	Nonmaskable	Within	Resume	
Missigned memory accesses	Synchronous	Coerced	User maskable	Within	Resume	
Nemory protection violation	Synchronous	Coerced	Nonmaskable	Within	Resume	
Veing undefined instruction	Synchronous	Coerced	Nonmaskable	Within	Terminate	
Herdware melfunction	Asynchronous	Coerced	Nonmaskable	Within	Terminate	
Power failure	Asynchronous	Coerced	Nonmaskable	Within	Terminate	
April 9, 2020	TCSS422: Operat School of Engine	ting Systems [Sprin eering and Technol	ng 2020] logy, University of Washin	gton - Tacoma	L4.21	

21

23

 How/when should the OS regain control of the CPU to switch between processes?
 Cooperative multitasking (mostly pre 32-bit)
 Cooperative multitasking (mostly pre 32-bit)
 Windows 95, Mac OSX
 Opportunistic: running programs must give up control
 User programs must call a special yield system call
 When performing I/O
 Illegal operations
 (POLLEV) What problems could you for see with this approach?

27

29

28

35

39

40

SJF: WITH RANDOM ARRIVAL = If jobs arrive at any time: duration a=100s, b/c=10s = A @ t=0sec, B @ t=10sec, C @ t=10sec $\begin{bmatrix} B,C arrive \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ \hline$

45

51

