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OBJECTIVES – 4/9

 Please classify your perspective on material covered in 
today’s class (53 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.51 ( from 7 .03)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.82 ( from 5.76)
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MATERIAL / PACE

REVIEW: What were the key takeaways from 
Tuesday’s lecture? 

 Ch. 4: Kernel data structures: What are they?
Where are they?  How do you find them?

 Ch. 5: Process APIs: fork(), wait(), and exec() 

 Ch. 6:
Direct Execution, Operating system control trade-off
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FEEDBACK FROM 4/7

 Can you quickly summarize what is Exec() is, and when it  
should be used?
 Exec() is used to direct the currently running process to execute 

another program on the file-system
 Think of this like a “hand-off”
 When the other program concludes, the process does not 

return, but exits
 The original process passes its three file systems to the new 

executable:

C constants:
 stdin (input stream, reads from the keyboard)

 stdout (output stream, writes to the screen) 

 stderr (output stream, typically writes to the screen)
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FEEDBACK - 2

 I  was confused about when you discussed booting up 
Linux and forking. When Linux is booted up, it becomes 
the root process with pid = 1. I 'm not sure what happens 
when we try to create a new process.

 The Linux kernel boots as PID 1

 Every subsequent process is a child “forked” from PID 1
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FEEDBACK - 3
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 The points that remain least clear to me is t ime sharing.

 Time sharing is where multiple programs share system 
resources (e.g. CPU, memory, DISK, network) at the
same time

 4 Processes, no time sharing of the CPU

 4 Processes, with time sharing of the CPU
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FEEDBACK - 4

Proc A Proc B Proc C Proc D

L4.8

 In the Ubuntu VM, is it  true that processes and threads are 
equivalent?

 In Linux, threads and processes both receive process IDs (PIDs).
 Threads also receive a TGID (thread group ID) which is the PID of 

the parent process.
 The parent process will have a TGID equal to it's own PID.
 Here's how the numbering might work for a group of 3 processes:

process 1         thread 1         thread 2
--------- -------- --------
pid=123    --->   pid=124   --->   pid=125
tgid=123          tgid=123         tgid=123

process 2
---------
pid=126 
tgid=126

process 3         thread 1         thread 2
--------- -------- --------
pid=127    --->   pid=128   --->   pid=129
tgid=127          tgid=127         tgid=127

L4.9

 In the Ubuntu VM, is it  true that processes and threads are 
equivalent?

 In Linux, threads and processes both receive process IDs (PIDs).
 Threads also receive a TGID (thread group ID) which is the PID of 

the parent process.
 The parent process will have a TGID equal to it's own PID.
 Here's how the numbering might work for a group of 3 processes:

process 1         thread 1         thread 2
--------- -------- --------
pid=123    --->   pid=124   --->   pid=125
tgid=123          tgid=123         tgid=123

process 2
---------
pid=126 
tgid=126

process 3         thread 1         thread 2
--------- -------- --------
pid=127    --->   pid=128   --->   pid=129
tgid=127          tgid=127         tgid=127

All PIDs (processes & threads) share the same 
sequence of numbers from 1 to 32768.

When PID 32768 is created, the numbering wraps around.

 In the Ubuntu VM, is it  true that processes and threads are 
equivalent?

 Threads share with the parent process:
the data segment (global memory)
the heap segment (used for malloc)
the code segment

 When a new thread is created, they only need to allocate 
memory for their own stack segment.

 Creating threads is seen as faster than processes because 
far less memory needs to be allocated.

 When creating a process, it is necessary to allocate new 
memory for the data, heap, code, and stack segments.

 All threads will have a parent process identified by the TGID.
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FEEDBACK - 7
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OBJECTIVES – 4/9

Available via Canvas System

Under:
Assignments  Tutorials/Quizzes/In-class Activities

Please disregard grade assigned by Canvas

All submissions will receive 10 pts after assignment 
closes - (closes Thursday 4/9 @ 11:59p)

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L4.12

“QUIZ” 0 – C PROGRAMMING 
BACKGROUND SURVEY

7 8

9 10

11 12



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/9/2020

L4.3Slides by Wes J. Lloyd

Virtual Machine Survey 

Request for Ubuntu 18.04 VMs has been sent to
the School of Engineering and Technology LABS

Expect response soon regarding connection 
information

 Thank you!
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VIRTUAL MACHINE SURVEY

CH. 6:
LIMITED DIRECT 

EXECUTION
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OBJECTIVES – 4/9

 OS implements LDE to support time/resource sharing

 Limited direct execution means “only limited” processes 
can execute DIRECTLY on the CPU in trusted mode

 TRUSTED means the process is trusted, and it can do 
anything… (e.g. it is a system / kernel level process)

 Enabled by protected (safe) control transfer

 CPU supported context switch

 Provides data isolation
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LIMITED DIRECT EXECUTION

 Utilize CPU Privilege Rings (Intel x86)
 rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

 User mode: 
Application is running, but w/o direct I/O access

 Kernel mode: 
OS kernel is running performing restricted operations
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CPU MODES

access no access

 User mode: r ing 3 - untrusted

 Some instructions and registers are disabled by the CPU

 Exception registers

 HALT instruction

MMU instructions

 OS memory access

 I/O device access

 Kernel mode: r ing 0 – trusted

 All instructions and registers enabled
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CPU MODES
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 Implement restricted “OS” operations

 Kernel exposes key functions through an API:

 Device I/O  (e.g. file I/O)

 Task swapping: context switching between processes

Memory management/allocation:  malloc()

 Creating/destroying processes
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SYSTEM CALLS

 Trap: any transfer to kernel mode

 Three kinds of traps
 System call: (planned)  user  kernel
 SYSCALL for I/O, etc.

 Exception: (error) user  kernel
 Div by zero, page fault, page protection error

 Interrupt: (event) user  kernel
 Non-maskable vs. maskable
 Keyboard event, network packet arrival, timer ticks
 Memory parity error (ECC), hard drive failure
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TRAPS: 
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Exception type
Synchronous vs. 

asynchronous
User request vs. 

coerced
User maskable vs. 

nonmaskable
Within vs. between 

instructions
Resume vs. terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic overflow 
or underflow

Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate
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EXCEPTION TYPES

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.22

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.23

Computer BOOT Sequence: 
OS with Limited Direct Execution

 How/when should the OS regain control of the CPU to 
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV) 
What problems could you for see with this approach?
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MULTITASKING
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21 22

23 24



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/9/2020

L4.5Slides by Wes J. Lloyd

 How/when should the OS regain control of the CPU to 
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV) 
What problems could you for see with this approach?
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MULTITASKING

A process gets stuck in an infinite loop. 
 Reboot the machine
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What problems exist for regaining the control of 
the CPU with cooperative multitasking OSes?
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QUESTION: MULTITASKING

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?
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MULTITASKING - 2

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?
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MULTITASKING - 2

A timer interrupt gives OS the ability to 
run again on a CPU.
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For an OS that uses a system timer to force 
arbitrary context switches to share the CPU, what 
is a good value (in seconds) for the timer 
interrupt?
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QUESTION: TIME SLICE

 Preemptive multitasking initiates “trap” 
into the OS code to determine:

 Whether to continue running the current process,
or switch to a dif ferent one.

 If the decision is made to switch, the OS performs a context 
switch swapping out the current process for a new one.

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.32

CONTEXT SWITCH

1. Save register values of the current process to its kernel 
stack

 General purpose registers

 PC: program counter (instruction pointer)

 kernel stack pointer

2. Restore soon-to-be-executing process from its kernel 
stack

3. Switch to the kernel stack for the soon-to-be-executing 
process 

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.33

CONTEXT SWITCH - 2
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Context Switch

 What happens if during an interrupt (trap to kernel 
mode), another interrupt occurs?

 Linux

 < 2.6 kernel: non-preemptive kernel

 >= 2.6 kernel: preemptive kernel
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INTERRUPTED INTERRUPTS
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Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)
 begins at zero

 increments for each lock acquired (not safe to preempt)

 decrements when locks are released

 Interrupt can be interrupted when preempt_count=0
 It is safe to preempt (maskable interrupt) 

 the interrupt is more important
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PREEMPTIVE KERNEL

TCSS 422 WILL RETURN 
AT 2:40PM
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CHAPTER 7-
SCHEDULING:

INTRODUCTION
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 Questions from 4/7

 Assignment 0

 Chapter 6: Limited Direct Execution
 Direct execution

 Limited direct execution

 CPU modes

 System calls and traps

 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics

 SJF, STCF, RR schedulers
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OBJECTIVES – 4/9

 Metrics: A standard measure to quantify to what degree a 
system possesses some property.  Metrics provide repeatable
techniques to quantify and compare systems.

 Measurements are the numbers derived from the application 
of metrics

 Scheduling Metric #1: Turnaround time
 The time at which the job completes minus the time at which 

the job arrived in the system

 How is turnaround time different than execution time?
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SCHEDULING METRICS

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = 𝑻𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒊𝒐𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

 Scheduling Metric #2: Fairness
 Jain’s fairness index
 Quantifies if jobs receive a fair share of system resources

 n processes
 xi is time share of each process
 worst case = 1/n
 best case = 1

 Consider n=3, worst case = .333, best case=1
 With n=3 and x1=.2, x2=.7, x3=.1, fairness=.62
 With n=3 and x1=.33, x2=.33, x3=.33, fairness=1
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SCHEDULING METRICS - 2

37 38

39 40

41 42



TCSS 422 A – Spring 2020
School of Engineering and Technology

4/9/2020

L4.8Slides by Wes J. Lloyd

 FIFO: first in, first out

 Very simple, easy to implement

 Consider

 3 x 10sec jobs, arrival: A B C, duration 10 sec each
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SCHEDULERS

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟑𝟎

𝟑
= 𝟐𝟎 𝒔𝒆𝒄

 Given that we know execution times in advance:

 Run in order of duration, shortest to longest

 Non preemptive scheduler

 This is not realistic

 Arrival: A B C, duration a=100 sec, b/c=10sec
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SJF: SHORTEST JOB FIRST

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟏𝟐𝟎

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

 If jobs arrive at any time: duration a=100s, b/c=10s

 A @ t=0sec, B @ t=10sec, C @ t=10sec
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SJF: WITH RANDOM ARRIVAL

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎𝟎 + 𝟏𝟏𝟎 − 𝟏𝟎 + (𝟏𝟐𝟎 − 𝟏𝟎)

𝟑
= 𝟏𝟎𝟑. 𝟑𝟑 𝒔𝒆𝒄

 Consider: duration a=100sec, b/c=10sec

 Alen=100 Aarrival=0

 Blen=10, Barrival=10, Clen=10, Carrival=10
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STCF - 2

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
(𝟏𝟐𝟎 − 𝟎) + 𝟐𝟎 − 𝟏𝟎 + (𝟑𝟎 − 𝟏𝟎)

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

 Scheduling Metric #3: Response Time

 Time from when job arrives until it starts execution

 STCF, SJF, FIFO 

 can perform poorly with respect to response time
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𝑻𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 = 𝑻𝒇𝒊𝒓𝒔𝒕𝒓𝒖𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

SCHEDULING METRICS - 3

What scheduling algorithm(s) can help 
minimize response time?

 Run each job awhile, then switch to another distributing the 
CPU evenly (fairly)

 Scheduling Quantum
is called a time slice

 Time slice must be
a multiple of the
timer interrupt
period.
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RR: ROUND ROBIN

Scheduling 
Quantum    = 5 seconds

RR is fair, but performs poorly on metrics
such as turnaround time
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 ABC arrive at time=0, each run for 5 seconds
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RR EXAMPLE

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟓 + 𝟏𝟎

𝟑
= 𝟓𝒔𝒆𝒄

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟏 + 𝟐

𝟑
= 𝟏𝒔𝒆𝒄

OVERHEAD not 
considered

 Time slice impact:
Turnaround time (for earlier example): 

ts(1,2,3,4,5)=14,14,13,14,10
Fairness: round robin is always fair, J=1
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ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from 
context switching

Low overhead from 
context switching

Short Time Slice Long Time Slice

 STCF scheduler

 A: CPU=50ms, I/O=40ms, 10ms intervals

 B: CPU=50ms, I/O=0ms

 Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:
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SCHEDULING WITH I/O

CPU utilization= 100/140=71%

 When a job initiates an I/O request

 A is blocked, waits for I/O to compute, frees CPU

 STCF scheduler assigns B to CPU

 When I/O completes  raise interrupt

 Unblock A, STCF goes back to executing A: (10ms sub-job)
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SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%
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Which scheduler, this far, best addresses fairness 
and average response time of jobs?

 First In – First Out (FIFO)

Shortest Job First (SJF)

Shortest Time to Completion First (STCF)

Round Robin (RR)

None of the Above

All of the Above
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QUESTION: SCHEDULING FAIRNESS
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 Consider Three jobs (A, B, C) that require:
timeA=400ms, timeB=100ms, and timeC=200ms 

 All jobs arrive at time=0 in the sequence of A B C.  

 Draw a scheduling graph to help compute the 
average response time (ART) and 
average turnaround time (ATT) scheduling metrics for the 
FIFO scheduler. 
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SCHEDULING METRICS

A B C
0 400  500 700

Example:
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 Consider Three jobs (A, B, C) that require:
timeA=400ms, timeB=100ms, and timeC=200ms 

 All jobs arrive at time=0 in the sequence of A B C.  

 Draw a scheduling graph to help compute the 
average response time (ART) and 
average turnaround time (ATT) scheduling metrics for the 
SJF scheduler. 
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SCHEDULING METRICS

AB C
0 100 300 700

Example:
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QUESTIONS

WILL RETURN IN A FEW 
MINUTES
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