TCSS 422 A — Spring 2020
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

INTRODUCTION TO
OPERATING SYSTEMS,
PROCESSES

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

EAIE Y School of Engineering and Technology, University of Washington [l Tacoma

OBJECTIVES - 4/9

I = Questions from 4/7 I
= Assignment O
= Chapter 6: LImited Direct Execution
= Direct execution

= Limited direct execution

= CPU modes

= System calls and traps

= Cooperative multi-tasking

= Context switching and preemptive multi-tasking
= Chapter 7: Scheduling Introduction

= Scheduling metrics

= SJF, STCF, RR schedulers

TCS5422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

‘ April 9, 2020 ‘ .2 ‘

MATERIAL / PACE

= Please classify your perspective on material covered in
today’s class (53 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 7.51 (1 from 7.03)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.82 (T from 5.76)

TCS5422: Operating Systems [Spring 2020] ‘ w3 ‘

EYIER Y e oolol Enpinearns rdiechnoloryil nve sty hiNes hineronikTacoma

FEEDBACK FROM 4/7

= REVIEW: What were the key takeaways from
Tuesday'’s lecture?

= Ch. 4: Kernel data structures: What are they?
Where are they? How do you find them?

= Ch. 5: Process APIs: fork(), wait(), and exec()

= Ch. 6:
Direct Execution, Operating system control trade-off

TCS5422: Operating Systems [Spring 2020]

44
School of Engineering and Technology, University of Washington - Tacoma ‘ u ‘

‘ April 9, 2020

FEEDBACK - 2

= Can you quickly summarize what Is Exec() Is, and when It
should be used?
= Exec() is used to direct the currently running process to execute

another program on the file-system

= Think of this like a “hand-off”

= When the other program concludes, the process does not
return, but exits

= The original process passes its three file systems to the new
executable:

C constants:

" stdin (input stream, reads from the keyboard)

" stdout (output stream, writes to the screen)

" stderr (output stream, typically writes to the screen)

Apell 9, 2020 TCSS422: Operating Systems [Spring 2020] ‘ s ‘

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

FEEDBACK - 3

= | was confused about when you discussed booting up
Linux and forking. When Linux Is booted up, It becomes
the root process with pid = 1. I'm not sure what happens
when we try to create a new process.

= The Linux kernel boots as PID 1
Every subsequent process is a child “forked” from PID 1

wlloyd@dion

TCS5422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

‘ April 9, 2020

4/9/2020

L4.1

TCSS 422 A — Spring 2020

4/9/2020
School of Engineering and Technology

= In the Ubuntu VM, Is it true that processes and threads are
equlivalent?

FEEDBACK -4 = |n Linux, threads and processes both receive process IDs (PIDs).
= Threads also receive a TGID (thread group ID) which is the PID of
the parent process.
= The polnts that remaln least clear to me Is time sharing. = The parent process will have a TGID equal to it's own PID.
= Here's how the numbering might work for a group of 3 processes:
= Time sharing is where multiple programs share system PEEEOSs thread 1 thread 2
resources (e.g. CPU, memory, DISK, network)atthe | | _________ ________ ..
same time pid=123 -——> pid=124 —-—=> pid=125
® 4 Processes, no time sharing of the CPU Eete=ias EECELAY EgEe=lay

sequential

process 2
Proc A 1ProcB - Propcb 1 | ===
pid=126

= 4 Processes, with time sharing of the CPU tgid=126

Vs, Milmasking with contsxi switdi!g]) I I_ " process 3 thread 1

pid=127 ---> pid=128 --->

‘ April 9, 2020 ‘ TCSS422: Operating Systems [Spring 2020] ‘ 7 ‘ tgid=127 tgid=127 Eeple=iaT
, e 5 - :

school of chnology, y ington - Tacoma

= In the Ubuntu VM, Is It true that processes and threads are
equlvalent?
= |n Linux, threads and processes both receive process IDs (PIDs).

= Threads also receive a TGID (thread group ID) which is the PID of
the parent process.

= The parent process will have a TGID equal to it's own PID.
= Here's how the numbering might work for a group of 3 processes:

FEEDBACK - 7

= In the Ubuntu VM, Is It true that processes and threads are
equlvalent?

= Threads share with the parent process:
the data segment (global memory)

All PIDs (processes & threads) share the same

the heap segment (used for malloc
sequence of numbers from 1 to 32768. e codg segment ‘)
When PID 32768 is created, the numbering wraps around. - ‘n’z:r"n"ofy“fi"r"t‘hh;ﬁa:wi; Sl BUEY GUlly LU2CE [0 Bieais

g .
pid=126 = Creating threads is seen as faster than processes because
tgid=126 far less memory needs to be allocated.
= When creating a process, it is necessary to allocate new
r_’ffffffj t_-'l_"_"f?f_i f?ff?if memory for the data, heap, code, and stack segments.
pid=127 ---> pid=128 ---> pid=129 = All threads will have a parent process identified by the TGID.
tgid=127 tgid=127 tgid=127 : Operating Systems (Sprin
* e e [s I om0 ot ashngon - o un |
9 10

OBJECTIVES - 4/9 QUIZ” 0 - C PROGRAMMING

BACKGROUND SURVEY

= Questions from 4/7

= Available via Canvas System
I = Assighment O I
= Chapter 6: LImited Direct Executlon = Under:
= Direct execution U . . -
e — Assignments - Tutorials/Quizzes/In-class Activities

= CPU modes

= System calls and traps

= Cooperative multi-tasking

= Context switching and preemptive multi-tasking

= Please disregard grade assigned by Canvas

) _ = All submissions will receive 10 pts after assignment
= Chapter 7: Scheduling Introduction closes - (closes Thursday 4/9 @ 11:59p)
= Scheduling metrics
= SJF, STCF, RR schedulers
[mimam I e e eyttt - o an | [i I e eyttt -

11 12

Slides by Wes J. Lloyd L4.2

TCSS 422 A — Spring 2020
School of Engineering and Technology

VIRTUAL MACHINE SURVEY

= Virtual Machine Survey

= Expect response soon regarding connection
information

=Thank you!

= Request for Ubuntu 18.04 VMs has been sent to
the School of Engineering and Technology LABS

April 3, 2020 TCS$4|22; Operating Systems [Spring 2020]

School o Technology, ity ington - Tacoma

413

CH. 6:

LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Spring 2020]

A Eh D School of Engineering and Technology, University of Washington -

13

14

OBJECTIVES - 4/9

= Questions from 4/7

= Assighment O

= Chapter 6: LImited Direct Executlon
= Direct execution

= Limited direct execution

= CPU modes

= System calls and traps

= Cooperative multi-tasking

= Context switching and preemptive multi-tasking
= Chapter 7: Scheduling Introduction

= Scheduling metrics

= SJF, STCF, RR schedulers

‘ April 5, 2020 TCS$4|22; Operating Systems [Spring 2020]

school o Technology, ity ington - Tacoma

1415

LIMITED DIRECT EXECUTION

= 0S implements LDE to support time/resource sharing

= Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

= TRUSTED means the process is trusted, and it can do
anything... (e.g. it is a system / kernel level process)

= Enabled by protected (safe) control transfer
= CPU supported context switch

= Provides data isolation

TCS5422: Operating Systems [Spring 2020]

a;
School of Technology, University of Washi Tacoma La.16

April 9, 2020

15

16

CPU MODES

= Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access _ no access
= User mode:
Application is running, but w/o direct I/0 access

= Kernel mode:

0S kernel is running performing restricted operations

‘ April 3, 2020 TCS$4|22; Operating Systems [Spring 2020]

School o Technology, ity i Tacoma

a7

CPU MODES

= User mode: ring 3 - untrusted
=Some instructions and registers are disabled by the CPU
= Exception registers
= HALT instruction
= MMU instructions
= 0S memory access
=1/0 device access

= Kernel mode: ring O - trusted
= All instructions and registers enabled

TCS5422: Operating Systems [Spring 2020] 418

school of Technology, University of Washi Tacoma

April 9, 2020

17

Slides by Wes J. Lloyd

18

4/9/2020

L4.3

TCSS 422 A — Spring 2020
School of Engineering and Technology

SYSTEM CALLS

= Implement restricted “OS” operations
= Kernel exposes key functions through an API:
=Device I/0 (e.g.file 1/0)

= Memory management/allocation: malloc()
= Creating/destroying processes

= Task swapping: context switching between processes

‘ April 3, 2020 TCS$42§: Operating Systems [Spring 2020]

school of chnology, ity i Tacoma

‘ 419 ‘

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Mainline Code Intermupt Service Routine

loop({
= Trap: any transfer to kernel mode

instruction &
instruction 4
instruction

= Three kinds of traps

= System call: (planned) user > kernel
SYSCALL for 1/0, etc.

= Exception: (error) user > kernel

Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

19

EXCEPTION TYPES

Synchronous vs. Userrequestvs. Usermaskable va.
coered sonmeskonie

Whthinva.betwesn
Instructions

prm— coerced Nonmaskable setween Resume
Symotvonous s recuest Nonmaskable Between Resume
Symotvonous r— Usar maskatle Betvsen Resume
Synctvonous s recuest Usar maskatle Between Resume
G o e winin Resumo
Symctvonous Coerced Usar maskatle witin Resume
Gz = e winin Resumo
Synctvonous Coerced Usar maskatle witin Resume
Symotvonous Coerced Nonmaskable witin Resume
G o (o wiin Terminats
e o [wiin Terminate
Aspnotvonous coerced Nonmaskable witin Torminate
TCSS422: Operating Systems [Spring 2020]
April 9,2020 FEETIEEE En A) w21
School of Technology, y Tacoma
0S @ boot Hardware

(kernel mode)

initialize trap table
remember address of
syscall handler

Hardware Program
(kernel mode) (user mode)

Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv

Computer BOOT Sequence:

move to kernel mode
jump to trap handler

Handle trap

Do work of syscall

feturn; foin-tiap restore regs from kernel stack
move to user mode
jump to PC after trap

return from main
trap (via exit ())
Free memory of process
Remove from process list

TCSS422: Operating Systems [Spring 2020]

ARri 12020 School of Engineering and Technology, University of Washington - Tacoma

OS with Limited Direct Execution

L4.23

23

Slides by Wes J. Lloyd

TCSS422: Operating Systems [Spring 2020] .
‘ G|, 200 o BT T T o e A S T e .20
0S @ boot Hardware
(kernel mode)
- ize trap table

remember address of
syscall handler
Hardware Program

(kernel mode) (user mode)

Create entry for process list
‘ Allocate memory for program
Load program into memory
Setup user stack with argy
Fill kernel stack with reg/PC

return-from -trap.
restore regs from kernel stack

‘ move to user mode
jump to main
Run main()

Call system
trap into OS

save regs to kernel stack
move to kernel mode
jump to trap handler
Handle trap
- Do work of syseall
fetuth flom:-fiap restore regs from kernel stack

move to user mode
jump to PC after trap
‘ return from main
trap (via exit ()
Free memory of process

Remove from process list

TCSS422: Operating Systems [Spring 2020]

Spail 2020 School of Engineering and Technology, University of Washington - Tacoma L4.22

22

MULTITASKING

= How/when should the OS regain control of the CPU to
switch between processes?

= Cooperative multitasking (mostly pre 32-bit)
= < Windows 95, Mac 0SX
= Opportunistic: running programs must give up control
User programs must call a special yleld system call
When performing 1/0
lllegal operations

= (POLLEV)
What problems could you for see with this approach?
[a0yttt Taoms =

24

4/9/2020

L4.4

TCSS 422 A — Spring 2020
School of Engineering and Technology

MULTITASKING

= How/when should the OS regain control of the CPU to
switch between processes?

Illegal operations

= (POLLEV)
What problems could you for see with this approach?

‘ April 3, 2020 Tcss4lzz; Operating Systems [Spring 2020]

School o Technology, ity i Tacoma

u2s

25

QUESTION: MULTITASKING

= What problems exist for regaining the control of
the CPU with cooperative multitasking 0Ses?

‘ April 5, 2020 Tcss4lzz; Operating Systems [Spring 2020]

school o Technology, ity i Tacoma

27

27

MULTITASKING - 2

= Preemptive multitasking (32 & 64 bit OSes)
= >= Mac 0SX, Windows 95+

gives OS the ability to

run again on a CPU.

Current program is halted
Program states are saved
OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, University i Tacoma

‘ April 9, 2020

1429

What problems exist for regaining the control

W of the CPU with cooperative multitasking
OSes?

26

MULTITASKING - 2

= Preemptive multitasking (32 & 64 bit 0Ses)
= >= Mac 0SX, Windows 95+

= Timer interrupt
= Raised at some regular interval (in ms)
= Interrupt handling
Current program is halted
Program states are saved
0OS Interrupt handler is run (kernel mode)

= (PollEV) What is a good interval for the timer interrupt?

TCS5422: Operating Systems [Spring 2020]

.
School of Engineering and Technology, University of Washington - Tacoma .28

‘ April 9, 2020

28

For an OS that uses a system timer to force

arbitrary context switches to share the CPU,

what is a good value (in seconds) for the timer
interrupt?

TCSS422: Operating Systems [Spring 2020
.I April 9, 2020 perating Syalome i ek) u_3!.

29

Slides by Wes J. Lloyd

30

4/9/2020

L4.5

TCSS 422 A — Spring 2020
School of Engineering and Technology

QUESTION: TIME SLICE

= For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

‘ April 3, 2020 TCSS42§: Operating Systems [Spring 2020]

school of chnology, ity i Tacoma ‘ L3t

31

CONTEXT SWITCH - 2

1. Save register values of the current process to its kernel
stack

= General purpose registers
= PC: program counter (instruction pointer)
= kernel stack pointer

2. Restore soon-to-be-executing process from its kernel

stack
3. Switch to the kernel stack for the soon-to-be-executing
process
TCSS422: Operating Systems [Spring 2020]
‘ April 9, 2020 e - K haolosUnversity . TET 14.33
0S @ boot
(kernel mode) s
initialize trap table
remember address of ...
syscall handler
timer handler
start interrupt timer
start timer
interrupt CPU in X ms
Program
Hardware .
Context Switch
Call switch() routine
save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(B)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(B)
move to user mode
jump to B's PC
q Process B
TCSS422: Operating Systems [Spring 2020]
ARri 12020 School of Engineering and Technology, University of Washington - Tacoma L435

35

Slides by Wes J. Lloyd

CONTEXT SWITCH

= Preemptive multitasking initiates “trap”
into the OS code to determine:

+ Whether to continue running the current process,
or switch to a different one.

+ If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

‘ April 9, 2020 TCS5422: Operating Systems [Spring 2020]

4.
School of Engineering and Technology, University of Washington - Tacoma ‘ .32
05 @ boot
(kernel mode) Handners
‘ initialize trap table
remember address of ..
‘ syscall handler
timer handler
qmn interrupt timer
‘ start timer
interrupt CPU in X ms
05@ run Program
(kernel mode) Hardware (user mode)
‘ Process A
timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler
Handle the trap
Call switch(routine
‘ save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(8)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(8)
move to user mode
jump to 85 PC
q Process B
TCSS422: Operating Systems [Spring 2020]
Spail 2020 School of Engineering and Technology, University of Washington - Tacoma L4.34

34

INTERRUPTED INTERRUPTS

= What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

= Linux
= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

TCS5422: Operating Systems [Spring 2020]

‘ QeulDi202g School of Engineering and Technology, University of Washington - Tacoma

| s]

36

4/9/2020

L4.6

TCSS 422 A — Spring 2020
School of Engineering and Technology

PREEMPTIVE KERNEL

= Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

= Preemption counter (preempt_count)
= begins at zero
=increments for each lock acquired (not safe to preempt)
= decrements when locks are released

= nterrupt can be interrupted when preempt_count=0
= It is safe to preempt (maskable interrupt)
= the interrupt is more important

1437

‘ April 3, 2020 TCS$4|22; Operating Systems [Spring 2020]

School o Technology, ity i Tacoma

37

CHAPTER 7-
SCHEDULING:
INTRODUCTION

TCSS422: Operating Systems [Spring 2020]

AT Eh 2D School of Engineering and Technology, University of Washington -

SCHEDULING METRICS

= Metrics: A standard measure to quantify to what degree a
system possesses some property. Metrics provide repeatable
techniques to quantify and compare systems.

= Measurements are the numbers derived from the application
of metrics

= Scheduling Metric #1: Turnaround time

= The time at which the job completes minus the time at which
the job arrived in the system

‘ T vurnaround = T completion — Tarrival ‘
)

= How is turnaround time different than execution time?

‘ Apeil 9, 2020 ‘ TCSS4|22; Operating systems [Spring 2020]

School o Technology, ity i Tacoma

.41 ‘

41

Slides by Wes J. Lloyd

TCSS 422 WILL RETURN

AT 2:40PM

TCSS422: Operating Systems [Spring 2020]

R i2020 School of Engineering and Technology, University of Washington -

38

OBJECTIVES - 4/9

= Questions from 4/7
= Assignment O
= Chapter 6: LImited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking
= Chapter 7: Scheduling Introduction
= Scheduling metrics
= SJF, STCF, RR schedulers

TCS5422: Operating Systems [Spring 2020]
e f

B2, 20D Sehool o Technoloy) iy i = TP

L4.40

40

SCHEDULING METRICS - 2

= Scheduling Metric #2: Fairness

= Jain’s fairness index

= Quantifies if jobs receive a fair share of system resources

n
T(®1, %2, 0 %) = M

= n processes ne Y el
® X; is time share of each process
= worst case = 1/n
= best case = 1

= Consider n=3, worst case = .333, best case=1
= With n=3 and x,=.2, x,=.7, x5=.1, fairness=.62
= With n=3 and x;=.33, x,=.33, x3=.33, fairness=1

‘ April9,2020 nss«uz; Operating Systems [Spring 2020]

School o Technology, ity i Tacoma

La.42

42

4/9/2020

L4.7

TCSS 422 A — Spring 2020
School of Engineering and Technology

SCHEDULERS

= FIFO: first in, first out
=Very simple, easy to implement
= Consider

T T 1
40 60 80 100 120

Time (Second)

=3 x 10sec jobs, arrival: A B C, duration 10 sec each

. 10 + 20 + 30
Average turnaround time = T 20 sec
TCS5422: Operating Systems [Spring 2020]
‘ EIE Y ‘ e Ty S o s oy Uty f T 143

43

SJF: WITH RANDOM ARRIVAL

= A @ t=0sec, B @ t=10sec, C @ t=10sec

[B,C arrive]

0 20 40 60 80 100 120

Time (Second)

100 + (110 —10) + (120 —10) _
3

Average turnaround time =

= |f jobs arrive at any time: duration a=100s, b/c=10s

=103.33 sec

school o Technology,

April 5, 2020 TCS5422; Operating Systems [Spring 2020])
lof y Tacoma

.45

45

SCHEDULING METRICS - 3

m Scheduling Metric #3: Response Time

N

‘ Tresponse = Tfirstrun - Tarrivul J

= STCF, SJF, FIFO
= can perform poorly with respect to response time

response time?

= Time from when job arrives until it starts execution

TCS5422: Operating Systems [Spring 2020]
‘ EIE Y ‘Schoolo! neenns andlrchaoloe IUan

Y i Tacoma

.47

47

Slides by Wes J. Lloyd

SJF: SHORTEST JOB FIRST

= Given that we know execution times in advance:
= Run in order of duration, shortest to longest
= Non preemptive scheduler
=This is not realistic
= Arrival: A B C, duration a=100 sec, b/c=10sec

Time (Second)

) 10 +20 + 120
Average turnaround time = T 50 sec

TCS5422: Operating Systems [Spring 2020]

‘ QeulDa202g School of Engineering and Technology, University of Washington - Tacoma

La.44

44

STCF - 2

= Consider: duration a=100sec, b/c=10sec
- Alen=100 Aarrival=0
" Blen=10! Bavrival=10Y clen=10' carvival=10

[B,C arrive]
AyB C A

0 20 40 60 80 100 120
Time (Second)

Average turnaround time = = 50 sec

(120 -0) + (20— 10) + (30 — 10) _
B

‘ April 9,2020 TCS5422: Operating Systems [Spring 2020]

44
School of Engineering and Technology, University of Washington - Tacoma Lade

46

RR: ROUND ROBIN

= Run each job awhile, then switch to another distributing the
CPU evenly (fairly)

= Scheduling Quantum | Process \ Burst Time
is called a time slice P1 12

RR is fair, but performs poorly on metrics

such as turnaround time

Round Robin scheduling algorithm

Gantt chart
Scheduling mp [Pi[r2[P3]P4ps [p1[PfPa] Pl
Quantum ~ = 5 seconds 0 5 10 14 19 24 29 32 37 39
\ Bl 2 e Ak wa

48

4/9/2020

L4.8

TCSS 422 A — Spring 2020
School of Engineering and Technology

RR EXAMPLE

= ABC arrive at time=0, each run for 5 seconds

OVERHEAD not
consldered

0+5+10
15 T average response = —3 = 5sec
Time (Second)
SJF (Bad for Response Time)
T 0+1+2 a
= = 1sec
» % 3 average response 3

Time (Second)

RR with a time-slice of 1sec (Good for Response Time)

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma Lad9

April 9, 2020

ROUND ROBIN: TRADEOFFS

Short Time Slice Long Time Slice

Fast Response Time Slow Response Time

Low overhead from
context switching

High overhead from
context switching

= Time slice impact:
=Turnaround time (for earlier example):
ts(1,2,3,4,5)=14,14,13,14,10
=Fairness: round robin is always fair, J=1

TCS5422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

1450

‘ April 9, 2020

49

SCHEDULING WITH I/0

= STCF scheduler

= A: CPU=50ms, I/0=40ms, 10ms intervals
= B: CPU=50ms, I/0=0ms
= Consider A as 10ms subjobs (CPU, then 1/0)

= Without considering 1/0:

A A A A A B B B B B
l . l . CPU utilization=100/140=71%
| T ik — T T

0 20 40 60 80 1

T 1
00 120 140
Time (msec)

Poor Use of Resources

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma st

April 9, 2020 ‘

51

Shortest Job First (SJF)

Completion First (STCF)

Which scheduler, thus far, best address fairness

and average response time of jobs?

l;l Respond at PollEv.com/wesleylloyd641
D Text WESLEYLLOYD641 to 22333 once tojoin, then 1, 2, 3, 4, 5...

First In - First Out (FIFO) | 1

Shortest Time to

None of the Above

2
3
Round Robin |4
5
6

All of the Above

53

Slides by Wes J. Lloyd

50

SCHEDULING WITH I/0 - 2

= When a job initiates an 1/0 request
= A is blocked, waits for I/0 to compute, frees CPU
= STCF scheduler assigns B to CPU
= When 1I/0 completes = raise interrupt
= Unblock A, STCF goes back to executing A: (10ms sub-job)

A A B A B AB A B

N N
‘ Cpu utilization = 100/100=100%

IRZ-

T T T T
60 80 100 120

Time (msec)

5

Overlap Allows Better Use of Resources

TCS5422: Operating Systems [Spring 2020]

4
School of Engineering and Technology, University of Washington - Tacoma L2

‘ April 9, 2020

52

QUESTION: SCHEDULING FAIRNESS

= Which scheduler, this far, best addresses fairness
and average response time of jobs?

= First In - First Out (FIFO)

=Shortest Job First (SJF)

mShortest Time to Completion First (STCF)
® Round Robin (RR)

= None of the Above

= All of the Above

TCS5422: Operating Systems [Spring 2020]

4
School of Engineering and Technology, University of Washington - Tacoma L4

‘ April 9, 2020

4/9/2020

54

L4.9

TCSS 422 A — Spring 2020 4/9/2020
School of Engineering and Technology

LI When poll is active, respond at PollEv.com/wesleylloyd641 L)

SCHEDULING METRICS /2 Text WESLEYLLOYD641 to 22333 once to join

What is the Average Response Time of the

= Consider Three jobs (A, B, C) that require:
time,=400ms, time;=100ms, and time;=200ms FIFO scheduler?

= All jobs arrive at time=0 in the sequence of A B C.

= Draw a scheduling graph to help compute the
average response time (ART) and

average turnaround time (ATT) scheduling metrics for the
FIFO scheduler.

Example:
A /8 _C |
0 400 500 700
[mimam I e B eyttt - -~ .
| |
u CJ When poll is active, respond at PollEv.com/wesleylloyd641 -
(& Text WESLEYLLOYD641 to 22333 once to join SCHEDULING METRICS

What is the Average Turnaround Time of the

= Consider Three jobs (A, B, C) that require:
FIFO scheduler? time,=400ms, timez;=100ms, and time;=200ms

= All jobs arrive at time=0 in the sequence of A B C.

= Draw a scheduling graph to help compute the
average response time (ART) and

average turnaround time (ATT) scheduling metrics for the
SJF scheduler.

Example:
5 ¢ A
0 100 300 700
- . B
57 58
| | | |
. J When poll is active, respond at PollEv.com/wesleylloyd641 - - L3 When poll is active, respond at PollEv.com/wesleylloyd641 L)
51 Text WESLEYLLOYD641 to 22333 once to join =1 Text WESLEYLLOYD641 to 22333 once to join
What is the Average Response Time of the What is the Average Turnaround Time of the
Shortest Job First Scheduler? Shortest Job First Scheduler?
u | o |
u] u u
59 60

Slides by Wes J. Lloyd L4.10

TCSS 422 A — Spring 2020
School of Engineering and Technology

QUESTIONS

61

Slides by Wes J. Lloyd

WILL RETURN IN A FEW
MINUTES

s e

v

62

4/9/2020

L4.11

