
TCSS 422 A – Spring 2020
School of Engineering and Technology

4/9/2020

L4.1Slides by Wes J. Lloyd

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

INTRODUCTION TO
OPERATING SYSTEMS,

PROCESSES

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/7

 Assignment 0

 Chapter 6: Limited Direct Execution
 Direct execution

 Limited direct execution

 CPU modes

 System calls and traps

 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics

 SJF, STCF, RR schedulers

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.2

OBJECTIVES – 4/9

 Please classify your perspective on material covered in
today’s class (53 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.51 (from 7 .03)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.82 (from 5.76)

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.3

MATERIAL / PACE

REVIEW: What were the key takeaways from
Tuesday’s lecture?

 Ch. 4: Kernel data structures: What are they?
Where are they? How do you find them?

 Ch. 5: Process APIs: fork(), wait(), and exec()

 Ch. 6:
Direct Execution, Operating system control trade-off

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.4

FEEDBACK FROM 4/7

 Can you quickly summarize what is Exec() is, and when it
should be used?
 Exec() is used to direct the currently running process to execute

another program on the file-system
 Think of this like a “hand-off”
 When the other program concludes, the process does not

return, but exits
 The original process passes its three file systems to the new

executable:

C constants:
 stdin (input stream, reads from the keyboard)

 stdout (output stream, writes to the screen)

 stderr (output stream, typically writes to the screen)

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.5

FEEDBACK - 2

 I was confused about when you discussed booting up
Linux and forking. When Linux is booted up, it becomes
the root process with pid = 1. I 'm not sure what happens
when we try to create a new process.

 The Linux kernel boots as PID 1

 Every subsequent process is a child “forked” from PID 1

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.6

FEEDBACK - 3

1 2

3 4

5 6

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/9/2020

L4.2Slides by Wes J. Lloyd

 The points that remain least clear to me is t ime sharing.

 Time sharing is where multiple programs share system
resources (e.g. CPU, memory, DISK, network) at the
same time

 4 Processes, no time sharing of the CPU

 4 Processes, with time sharing of the CPU

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.7

FEEDBACK - 4

Proc A Proc B Proc C Proc D

L4.8

 In the Ubuntu VM, is it true that processes and threads are
equivalent?

 In Linux, threads and processes both receive process IDs (PIDs).
 Threads also receive a TGID (thread group ID) which is the PID of

the parent process.
 The parent process will have a TGID equal to it's own PID.
 Here's how the numbering might work for a group of 3 processes:

process 1 thread 1 thread 2
--------- -------- --------
pid=123 ---> pid=124 ---> pid=125
tgid=123 tgid=123 tgid=123

process 2

pid=126
tgid=126

process 3 thread 1 thread 2
--------- -------- --------
pid=127 ---> pid=128 ---> pid=129
tgid=127 tgid=127 tgid=127

L4.9

 In the Ubuntu VM, is it true that processes and threads are
equivalent?

 In Linux, threads and processes both receive process IDs (PIDs).
 Threads also receive a TGID (thread group ID) which is the PID of

the parent process.
 The parent process will have a TGID equal to it's own PID.
 Here's how the numbering might work for a group of 3 processes:

process 1 thread 1 thread 2
--------- -------- --------
pid=123 ---> pid=124 ---> pid=125
tgid=123 tgid=123 tgid=123

process 2

pid=126
tgid=126

process 3 thread 1 thread 2
--------- -------- --------
pid=127 ---> pid=128 ---> pid=129
tgid=127 tgid=127 tgid=127

All PIDs (processes & threads) share the same
sequence of numbers from 1 to 32768.

When PID 32768 is created, the numbering wraps around.

 In the Ubuntu VM, is it true that processes and threads are
equivalent?

 Threads share with the parent process:
the data segment (global memory)
the heap segment (used for malloc)
the code segment

 When a new thread is created, they only need to allocate
memory for their own stack segment.

 Creating threads is seen as faster than processes because
far less memory needs to be allocated.

 When creating a process, it is necessary to allocate new
memory for the data, heap, code, and stack segments.

 All threads will have a parent process identified by the TGID.

L4.10

FEEDBACK - 7

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

 Questions from 4/7

 Assignment 0

 Chapter 6: Limited Direct Execution
 Direct execution

 Limited direct execution

 CPU modes

 System calls and traps

 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics

 SJF, STCF, RR schedulers

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.11

OBJECTIVES – 4/9

Available via Canvas System

Under:
Assignments Tutorials/Quizzes/In-class Activities

Please disregard grade assigned by Canvas

All submissions will receive 10 pts after assignment
closes - (closes Thursday 4/9 @ 11:59p)

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.12

“QUIZ” 0 – C PROGRAMMING
BACKGROUND SURVEY

7 8

9 10

11 12

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/9/2020

L4.3Slides by Wes J. Lloyd

Virtual Machine Survey

Request for Ubuntu 18.04 VMs has been sent to
the School of Engineering and Technology LABS

Expect response soon regarding connection
information

 Thank you!

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.13

VIRTUAL MACHINE SURVEY

CH. 6:
LIMITED DIRECT

EXECUTION

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.14

 Questions from 4/7

 Assignment 0

 Chapter 6: Limited Direct Execution
 Direct execution

 Limited direct execution

 CPU modes

 System calls and traps

 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics

 SJF, STCF, RR schedulers

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.15

OBJECTIVES – 4/9

 OS implements LDE to support time/resource sharing

 Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

 TRUSTED means the process is trusted, and it can do
anything… (e.g. it is a system / kernel level process)

 Enabled by protected (safe) control transfer

 CPU supported context switch

 Provides data isolation

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.16

LIMITED DIRECT EXECUTION

 Utilize CPU Privilege Rings (Intel x86)
 rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

 User mode:
Application is running, but w/o direct I/O access

 Kernel mode:
OS kernel is running performing restricted operations

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.17

CPU MODES

access no access

 User mode: r ing 3 - untrusted

 Some instructions and registers are disabled by the CPU

 Exception registers

 HALT instruction

MMU instructions

 OS memory access

 I/O device access

 Kernel mode: r ing 0 – trusted

 All instructions and registers enabled

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.18

CPU MODES

13 14

15 16

17 18

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/9/2020

L4.4Slides by Wes J. Lloyd

 Implement restricted “OS” operations

 Kernel exposes key functions through an API:

 Device I/O (e.g. file I/O)

 Task swapping: context switching between processes

Memory management/allocation: malloc()

 Creating/destroying processes

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.19

SYSTEM CALLS

 Trap: any transfer to kernel mode

 Three kinds of traps
 System call: (planned) user kernel
 SYSCALL for I/O, etc.

 Exception: (error) user kernel
 Div by zero, page fault, page protection error

 Interrupt: (event) user kernel
 Non-maskable vs. maskable
 Keyboard event, network packet arrival, timer ticks
 Memory parity error (ECC), hard drive failure

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.20

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Exception type
Synchronous vs.

asynchronous
User request vs.

coerced
User maskable vs.

nonmaskable
Within vs. between

instructions
Resume vs. terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic overflow
or underflow

Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.21

EXCEPTION TYPES

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.22

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.23

Computer BOOT Sequence:
OS with Limited Direct Execution

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.24

MULTITASKING

19 20

21 22

23 24

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/9/2020

L4.5Slides by Wes J. Lloyd

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.25

MULTITASKING

A process gets stuck in an infinite loop.
 Reboot the machine

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.26

What problems exist for regaining the control of
the CPU with cooperative multitasking OSes?

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.27

QUESTION: MULTITASKING

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.28

MULTITASKING - 2

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.29

MULTITASKING - 2

A timer interrupt gives OS the ability to
run again on a CPU.

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.30

25 26

27 28

29 30

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/9/2020

L4.6Slides by Wes J. Lloyd

For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.31

QUESTION: TIME SLICE

 Preemptive multitasking initiates “trap”
into the OS code to determine:

 Whether to continue running the current process,
or switch to a dif ferent one.

 If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.32

CONTEXT SWITCH

1. Save register values of the current process to its kernel
stack

 General purpose registers

 PC: program counter (instruction pointer)

 kernel stack pointer

2. Restore soon-to-be-executing process from its kernel
stack

3. Switch to the kernel stack for the soon-to-be-executing
process

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.33

CONTEXT SWITCH - 2

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.34

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.35

Context Switch

 What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

 Linux

 < 2.6 kernel: non-preemptive kernel

 >= 2.6 kernel: preemptive kernel

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.36

INTERRUPTED INTERRUPTS

31 32

33 34

35 36

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/9/2020

L4.7Slides by Wes J. Lloyd

Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)
 begins at zero

 increments for each lock acquired (not safe to preempt)

 decrements when locks are released

 Interrupt can be interrupted when preempt_count=0
 It is safe to preempt (maskable interrupt)

 the interrupt is more important

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.37

PREEMPTIVE KERNEL

TCSS 422 WILL RETURN
AT 2:40PM

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.38

CHAPTER 7-
SCHEDULING:

INTRODUCTION

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.39

 Questions from 4/7

 Assignment 0

 Chapter 6: Limited Direct Execution
 Direct execution

 Limited direct execution

 CPU modes

 System calls and traps

 Cooperative multi-tasking

 Context switching and preemptive multi-tasking

 Chapter 7: Scheduling Introduction
 Scheduling metrics

 SJF, STCF, RR schedulers

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.40

OBJECTIVES – 4/9

 Metrics: A standard measure to quantify to what degree a
system possesses some property. Metrics provide repeatable
techniques to quantify and compare systems.

 Measurements are the numbers derived from the application
of metrics

 Scheduling Metric #1: Turnaround time
 The time at which the job completes minus the time at which

the job arrived in the system

 How is turnaround time different than execution time?

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.41

SCHEDULING METRICS

𝑻𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 = 𝑻𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒊𝒐𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

 Scheduling Metric #2: Fairness
 Jain’s fairness index
 Quantifies if jobs receive a fair share of system resources

 n processes
 xi is time share of each process
 worst case = 1/n
 best case = 1

 Consider n=3, worst case = .333, best case=1
 With n=3 and x1=.2, x2=.7, x3=.1, fairness=.62
 With n=3 and x1=.33, x2=.33, x3=.33, fairness=1

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.42

SCHEDULING METRICS - 2

37 38

39 40

41 42

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/9/2020

L4.8Slides by Wes J. Lloyd

 FIFO: first in, first out

 Very simple, easy to implement

 Consider

 3 x 10sec jobs, arrival: A B C, duration 10 sec each

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.43

SCHEDULERS

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟑𝟎

𝟑
= 𝟐𝟎 𝒔𝒆𝒄

 Given that we know execution times in advance:

 Run in order of duration, shortest to longest

 Non preemptive scheduler

 This is not realistic

 Arrival: A B C, duration a=100 sec, b/c=10sec

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.44

SJF: SHORTEST JOB FIRST

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎 + 𝟐𝟎 + 𝟏𝟐𝟎

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

 If jobs arrive at any time: duration a=100s, b/c=10s

 A @ t=0sec, B @ t=10sec, C @ t=10sec

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.45

SJF: WITH RANDOM ARRIVAL

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
𝟏𝟎𝟎 + 𝟏𝟏𝟎 − 𝟏𝟎 + (𝟏𝟐𝟎 − 𝟏𝟎)

𝟑
= 𝟏𝟎𝟑. 𝟑𝟑 𝒔𝒆𝒄

 Consider: duration a=100sec, b/c=10sec

 Alen=100 Aarrival=0

 Blen=10, Barrival=10, Clen=10, Carrival=10

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.46

STCF - 2

𝑨𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒖𝒓𝒏𝒂𝒓𝒐𝒖𝒏𝒅 𝒕𝒊𝒎𝒆 =
(𝟏𝟐𝟎 − 𝟎) + 𝟐𝟎 − 𝟏𝟎 + (𝟑𝟎 − 𝟏𝟎)

𝟑
= 𝟓𝟎 𝒔𝒆𝒄

 Scheduling Metric #3: Response Time

 Time from when job arrives until it starts execution

 STCF, SJF, FIFO

 can perform poorly with respect to response time

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.47

𝑻𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 = 𝑻𝒇𝒊𝒓𝒔𝒕𝒓𝒖𝒏 − 𝑻𝒂𝒓𝒓𝒊𝒗𝒂𝒍

SCHEDULING METRICS - 3

What scheduling algorithm(s) can help
minimize response time?

 Run each job awhile, then switch to another distributing the
CPU evenly (fairly)

 Scheduling Quantum
is called a time slice

 Time slice must be
a multiple of the
timer interrupt
period.

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.48

RR: ROUND ROBIN

Scheduling
Quantum = 5 seconds

RR is fair, but performs poorly on metrics
such as turnaround time

43 44

45 46

47 48

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/9/2020

L4.9Slides by Wes J. Lloyd

 ABC arrive at time=0, each run for 5 seconds

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.49

RR EXAMPLE

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟓 + 𝟏𝟎

𝟑
= 𝟓𝒔𝒆𝒄

𝑻𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆 =
𝟎 + 𝟏 + 𝟐

𝟑
= 𝟏𝒔𝒆𝒄

OVERHEAD not
considered

 Time slice impact:
Turnaround time (for earlier example):

ts(1,2,3,4,5)=14,14,13,14,10
Fairness: round robin is always fair, J=1

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.50

ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from
context switching

Low overhead from
context switching

Short Time Slice Long Time Slice

 STCF scheduler

 A: CPU=50ms, I/O=40ms, 10ms intervals

 B: CPU=50ms, I/O=0ms

 Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.51

SCHEDULING WITH I/O

CPU utilization= 100/140=71%

 When a job initiates an I/O request

 A is blocked, waits for I/O to compute, frees CPU

 STCF scheduler assigns B to CPU

 When I/O completes raise interrupt

 Unblock A, STCF goes back to executing A: (10ms sub-job)

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.52

SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.53

Which scheduler, this far, best addresses fairness
and average response time of jobs?

 First In – First Out (FIFO)

Shortest Job First (SJF)

Shortest Time to Completion First (STCF)

Round Robin (RR)

None of the Above

All of the Above

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.54

QUESTION: SCHEDULING FAIRNESS

49 50

51 52

53 54

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/9/2020

L4.10Slides by Wes J. Lloyd

 Consider Three jobs (A, B, C) that require:
timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the
average response time (ART) and
average turnaround time (ATT) scheduling metrics for the
FIFO scheduler.

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.55

SCHEDULING METRICS

A B C
0 400 500 700

Example:

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.56

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.57

 Consider Three jobs (A, B, C) that require:
timeA=400ms, timeB=100ms, and timeC=200ms

 All jobs arrive at time=0 in the sequence of A B C.

 Draw a scheduling graph to help compute the
average response time (ART) and
average turnaround time (ATT) scheduling metrics for the
SJF scheduler.

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L4.58

SCHEDULING METRICS

AB C
0 100 300 700

Example:

April 9, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L4.59 April 9, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L4.60

55 56

57 58

59 60

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/9/2020

L4.11Slides by Wes J. Lloyd

QUESTIONS

WILL RETURN IN A FEW
MINUTES

61 62

