
TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.1Slides by Wes J. Lloyd

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

INTRODUCTION TO
OPERATING SYSTEMS,

PROCESSES

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 4/2
 Chapter 4: Processes
 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

 Assignment 0
 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.2

OBJECTIVES – 4/7

1

2

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.2Slides by Wes J. Lloyd

 Please classify your perspective on material covered in
today’s class (60 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.03 (from 5.83)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.76 (from 5.17)

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.3

MATERIAL / PACE

 On Chapter 2:
 “I feel l ike I got lost at points but I can't drill down

exactly what the issue was or what I was missing to fully
understand what you were showing us. I just recall you
saying this was an intro instead of a deep dive into the
material”

 YES! Chapter 2 provides a broad survey of the “three easy
pieces” all in one lecture. We will revisit everything in
more detail as we go along…

 I also introduced “context switches” ahead of time with
the mem.c example. We’ll go over this again today
in Ch. 6

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.4

FEEDBACK FROM 4/2

3

4

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.3Slides by Wes J. Lloyd

 Processes have their own address space (i .e. memory),
threads do not. A process crashing won't af fect another
process.
 i.e. Chrome tabs are processes, and a crashed tab does not

crash the entire browser
 ** Are there any other dif ferences between threads and

processes?

 Linux threads have a smaller data structure than processes
 Threads are owned by processes
 Creating a new thread is faster than creating a new process
 Threads share memory, and can communicate through RAM
 Inter-process communication involves opening a fi le or

network stream (pipe) between processes
(covered in TCSS 430)

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.5

FEEDBACK - 2

 The overall process of concurrency is stil l a bit unclear to me.
 Concurrency simply means doing multiple things at the same

time on a computer.
 Today’s computer have

multiple processing
cores
(i .e. CPU cores)

 Each core can perform
a different independent
task “concurrently”
at the same time

 Check how many CPU
cores in Ubuntu with
“lscpu”

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.6

FEEDBACK - 3

5

6

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.4Slides by Wes J. Lloyd

Why is it best for the CPU to perform a context
switch when a thread is blocked?

Which states is the
process (job) idle?

What are the
consequences of suspending an
idle process?

a running process?

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.7

FEEDBACK - 4

Running Ready

Blocked

Deschedule
d

Scheduled

I/O: doneI/O: initiate

Another student suggested that a single program
that didn't have any concurrency would be able to
run without an OS, however I am having trouble
imagining a computer without an OS.

 In a sense, sort of, yes

We talk about DIRECT EXECUTION today as part of
Chapter 6, which is a bit like a computer without
an OS.

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.8

FEEDBACK - 5

7

8

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.5Slides by Wes J. Lloyd

 It is worth noting the importance of Linux for today’s
developers and computer scientists.

 The CLOUD runs many vir tual machines, recently in 2019 a key
milestone was reached.

 Even on Microsoft Azure (the Microsoft Cloud), there were
more Linux Vir tual Machines (> 50%) than Windows.

 https://www.zdnet.com/article/microsoft-developer-reveals-
l inux-is-now-more-used-on-azure-than-windows-server/

 https://www.zdnet.com/article/it-runs-on-the-cloud-and-the-
cloud-runs-on-linux-any -questions/

 The majority of application back-ends (server-side), cloud or
not, run on Linux.

 This is due to licensing costs, example:

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.9

MOTIVATION FOR LINUX

 Consider an example where you’re asked to develop a web
services backend that requires 10 x 8-CPU-core vir tual servers

 Your organization investigates hosting costs on Amazon cloud
 8-core VM is “c5d.2xlarge”

 Windows hourly price 75.2
 Linux hourly price 38.4

 See: https://www.ec2instances.info/

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.10

MOTIVATION FOR LINUX - 2

9

10

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.6Slides by Wes J. Lloyd

 Consider an example where you’re asked to develop a web
services backend that requires 10 x 8-CPU-core vir tual servers

 Your organization investigates hosting costs on Amazon cloud
 8-core VM is “c5d.2xlarge”

 Windows hourly price 75.2
 Linux hourly price 38.4

 See: https://www.ec2instances.info/

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.11

MOTIVATION FOR LINUX - 2

One year cloud hosting cost:

WINDOWS
10 VMs x 8,760 hours x $.752 = $65,875.20

Linux
10 VMs x 8,760 hours x $.384 = $33,638.40

Windows comes at a 95.8% price premium

Available via Canvas System

 Under:
Assignments Tutorials/Quizzes/In-class Activities

 Please disregard grade assigned by Canvas

All submissions will receive 10 pts after assignment
closes - (closes Thursday 4/9 @ 11:59p)

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.12

“QUIZ” 0 – C PROGRAMMING
BACKGROUND SURVEY

11

12

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.7Slides by Wes J. Lloyd

Virtual Machine Survey

Request for Ubuntu 18.04 VMs has been sent to
the School of Engineering and Technology LABS

Expect response soon regarding connection
information

 Thank you!

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.13

VIRTUAL MACHINE SURVEY

 Questions from 4/2
 Chapter 4: Processes
 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

 Assignment 0
 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.14

OBJECTIVES – 4/7

13

14

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.8Slides by Wes J. Lloyd

CHAPTER 4:
PROCESSES

April 7, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.15

 OS provides data structures to track process information

 Process list
 Process Data

 State of process: Ready, Blocked, Running

 Register context

 PCB (Process Control Block)

 A C-structure that contains information about each
process

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.16

PROCESS DATA STRUCTURES

15

16

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.9Slides by Wes J. Lloyd

 xv6: pedagogical implementation of Linux

 Simplified structures

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.17

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip; // Index pointer register
int esp; // Stack pointer register
int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register
int edi; // Destination index register
int ebp; // Stack base pointer register

};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.18

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack

// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt
};

17

18

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.10Slides by Wes J. Lloyd

 struct task_struct, equivalent to struct proc
 Provides process description

 Large: 10,000+ bytes

 /usr/src/linux-headers-{kernel version}/include/linux/sched.h
 ~ LOC 1391 – 1852 (4.4.0-170)

earlier was LOC 1227 – 1587

 struct thread_info, provides “context”
 thread_info.h is at:

/usr/src/linux-headers-{kernel version} /arch/x86/include/asm/

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.19

LINUX: STRUCTURES

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.20

LINUX: THREAD_INFO

struct thread_info {
struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart_block restart_block;
void __user *sysenter_return;

#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in

case of nested (IRQ) stacks
*/

__u8 supervisor_stack[0];
#endif

int uaccess_err;
};

19

20

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.11Slides by Wes J. Lloyd

 List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:
https://learning.oreil ly.com/library/view/linux-kernel-
development/9780768696974/cover.html

3rd edition is online (dated from 2010):
See chapter 3 on Process Management

Safari online – accessible using UW ID SSO login
Linux Kernel Development, 3rd edition
Robert Love
Addison-Wesley

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.21

LINUX STRUCTURES - 2

CHAPTER 5:
C PROCESS API

April 7, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.22

21

22

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.12Slides by Wes J. Lloyd

 Questions from 4/2
 Chapter 4: Processes
 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

 Assignment 0
 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.23

OBJECTIVES – 4/7

 Creates a new process - think of “a fork in the road”
 “Parent” process is the original
 Creates “child” process of the program from the current

execution point
 Book says “pretty odd”
 Creates a duplicate program instance (these are processes!)
 Copy of

 Address space (memory)
 Register
 Program Counter (PC)

 Fork returns
 child PID to parent
 0 to child

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.24

fork()

23

24

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.13Slides by Wes J. Lloyd

 p1.c

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.25

FORK EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

}
return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.26

FORK EXAMPLE - 2

prompt> ./p1
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>

prompt> ./p1
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>

25

26

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.14Slides by Wes J. Lloyd

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.27

:(){ :|: & };:

 wait(), waitpid()

 Called by parent process

 Waits for a child process to finish executing

 Not a sleep() function

 Provides some ordering to multi-process execution

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.28

wait()

27

28

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.15Slides by Wes J. Lloyd

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.29

FORK WITH WAIT

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, wc, (int) getpid());

}
return 0;

}

 Deterministic ordering of execution

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.30

FORK WITH WAIT - 2

prompt> ./p2
hello world (pid:29266)
hello, I am child (pid:29267)
hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

29

30

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.16Slides by Wes J. Lloyd

 Linux example

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.31

FORK EXAMPLE

 Supports running an external program

 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

 execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function
Each arg is a pointer to a null -terminated string
ODD: pass a variable number of args: (arg0, arg1, .. argn)

 Execv(), execvp(), execvpe() (example: exec.c)
Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.32

exec()

31

32

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.17Slides by Wes J. Lloyd

 Common use case:

 Write a new program which wraps a legacy one

 Provide a new interface to an old system: Web services

 Legacy program thought of as a “black box”

 We don’t want to know what is inside…

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.33

EXEC() - 2

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.34

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p3.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
…

33

34

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.18Slides by Wes J. Lloyd

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.35

EXEC EXAMPLE - 2

…
execvp(myargs[0], myargs); // runs word count
printf("this shouldn’t print out");

} else { // parent goes down this path (main)
int wc = wait(NULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",

rc, wc, (int) getpid());
}
return 0;

}

prompt> ./p3
hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.36

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fcntl.h>
#include <sys/wait.h>

int
main(int argc, char *argv[]){

int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child: redirect standard output to a file
close(STDOUT_FILENO);
open("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
…

35

36

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.19Slides by Wes J. Lloyd

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.37

FILE MODE BITS

S_IRWXU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
execute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.38

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

…
// now exec "wc"...
char *myargs[3];
myargs[0] = strdup("wc"); // program: "wc" (word count)
myargs[1] = strdup("p4.c"); // argument: file to count
myargs[2] = NULL; // marks end of array
execvp(myargs[0], myargs); // runs word count

} else { // parent goes down this path (main)
int wc = wait(NULL);

}
return 0;

}

prompt> ./p4
prompt> cat p4.output
32 109 846 p4.c
prompt>

37

38

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.20Slides by Wes J. Lloyd

April 7, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.39

 Which Process API call is used to launch a different
program from the current program?

 (a) Fork()

 (b) Exec()

 (c) Wait()

 (d) None of the above

 (e) All of the above

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.40

QUESTION: PROCESS API

39

40

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.21Slides by Wes J. Lloyd

TCSS 422 WILL RETURN
AT 2:40PM

April 7, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L1.41

 Questions from 4/2
 Chapter 4: Processes
 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

 Assignment 0
 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.42

OBJECTIVES – 4/7

41

42

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.22Slides by Wes J. Lloyd

CH. 6:
LIMITED DIRECT

EXECUTION

April 7, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.43

 Questions from 4/2
 Chapter 4: Processes
 Kernel data structures for processes and threads

 Chapter 5: Process API
 fork(), wait(), exec()

 Assignment 0
 Chapter 6: Limited Direct Execution
 Direct execution
 Limited direct execution
 CPU modes
 System calls and traps
 Cooperative multi-tasking
 Context switching and preemptive multi-tasking

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.44

OBJECTIVES – 4/7

43

44

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.23Slides by Wes J. Lloyd

 How does the CPU support running so many jobs
simultaneously?

 Time Sharing

 Tradeoffs:

 Performance
 Excessive overhead

 Control
 Fairness

 Security

 Both HW and OS support
is used

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.45

VIRTUALIZING THE CPU

 What if programs could directly control the CPU / system?

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.46

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

45

46

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.24Slides by Wes J. Lloyd

 What if programs could directly control the CPU / system?

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.47

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

OS Program
1. Create entry for process list
2. Allocate memory for
program
3. Load program into memory
4. Set up stack with argc /
argv
5. Clear registers
6. Execute call main()

9. Free memory of process
10. Remove from process list

7. Run main()
8. Execute return from main()

Without limits on running programs,
the OS wouldn’t be in control of anything

and would “just be a library”

 With direct execution:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform I/O if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.48

DIRECT EXECUTION - 2

47

48

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.25Slides by Wes J. Lloyd

 Too little control:
 No security

 No time sharing

 Too much control:
 Too much OS overhead

 Poor performance for compute & I/O

 Complex APIs (system calls), difficult to use

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.49

CONTROL TRADEOFF

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.50

CONTEXT SWITCHING OVERHEAD

Time

Overhead

49

50

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.26Slides by Wes J. Lloyd

 OS implements LDE to support time/resource sharing

 Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

 TRUSTED means the process is trusted, and it can do
anything… (e.g. it is a system / kernel level process)

 Enabled by protected (safe) control transfer

 CPU supported context switch

 Provides data isolation

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.51

LIMITED DIRECT EXECUTION

 Utilize CPU Privilege Rings (Intel x86)
 rings 0 (kernel), 1 (VM kernel), 2 (unused), 3 (user)

 User mode:
Application is running, but w/o direct I/O access

 Kernel mode:
OS kernel is running performing restricted operations

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.52

CPU MODES

access no access

51

52

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.27Slides by Wes J. Lloyd

 User mode: ring 3 - untrusted

 Some instructions and registers are disabled by the CPU

 Exception registers

 HALT instruction

MMU instructions

 OS memory access

 I/O device access

 Kernel mode: ring 0 – trusted

 All instructions and registers enabled

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.53

CPU MODES

 Implement restricted “OS” operations

 Kernel exposes key functions through an API:

 Device I/O (e.g. file I/O)

 Task swapping: context switching between processes

Memory management/allocation: malloc()

 Creating/destroying processes

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.54

SYSTEM CALLS

53

54

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.28Slides by Wes J. Lloyd

 Trap: any transfer to kernel mode

 Three kinds of traps
 System call: (planned) user kernel
 SYSCALL for I/O, etc.

 Exception: (error) user kernel
 Div by zero, page fault, page protection error

 Interrupt: (event) user kernel
 Non-maskable vs. maskable
 Keyboard event, network packet arrival, timer ticks
 Memory parity error (ECC), hard drive failure

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.55

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Exception type
Synchronous vs.
asynchronous

User request vs.
coerced

User maskable vs.
nonmaskable

Within vs. between
instructions

Resume vs. terminate

I/O device request Asynchronous Coerced Nonmaskable Between Resume

Invoke operating system Synchronous User request Nonmaskable Between Resume

Tracing instruction execution Synchronous User request User maskable Between Resume

Breakpoint Synchronous User request User maskable Between Resume

Integer arithmetic overflow Synchronous Coerced User maskable Within Resume

Floating-point arithmetic overflow
or underflow

Synchronous Coerced User maskable Within Resume

Page fault Synchronous Coerced Nonmaskable Within Resume

Misaligned memory accesses Synchronous Coerced User maskable Within Resume

Memory protection violation Synchronous Coerced Nonmaskable Within Resume

Using undefined instruction Synchronous Coerced Nonmaskable Within Terminate

Hardware malfunction Asynchronous Coerced Nonmaskable Within Terminate

Power failure Asynchronous Coerced Nonmaskable Within Terminate

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.56

EXCEPTION TYPES

55

56

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.29Slides by Wes J. Lloyd

April 7, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.57

April 7, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.58

Computer BOOT Sequence:
OS with Limited Direct Execution

57

58

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.30Slides by Wes J. Lloyd

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.59

MULTITASKING

 How/when should the OS regain control of the CPU to
switch between processes?

 Cooperative multitasking (mostly pre 32-bit)

 < Windows 95, Mac OSX

 Opportunistic: running programs must give up control
 User programs must call a special yield system call

 When performing I/O

 Illegal operations

 (POLLEV)
What problems could you for see with this approach?

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.60

MULTITASKING

A process gets stuck in an infinite loop.
 Reboot the machine

59

60

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.31Slides by Wes J. Lloyd

April 7, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.61

What problems exist for regaining the control of
the CPU with cooperative multitasking OSes?

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.62

QUESTION: MULTITASKING

61

62

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.32Slides by Wes J. Lloyd

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.63

MULTITASKING - 2

 Preemptive multitasking (32 & 64 bit OSes)

 >= Mac OSX, Windows 95+

 Timer interrupt
 Raised at some regular interval (in ms)

 Interrupt handling
1. Current program is halted

2. Program states are saved

3. OS Interrupt handler is run (kernel mode)

 (PollEV) What is a good interval for the timer interrupt?

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.64

MULTITASKING - 2

A timer interrupt gives OS the ability to
run again on a CPU.

63

64

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.33Slides by Wes J. Lloyd

April 7, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.65

 For an OS that uses a system timer to force
arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.66

QUESTION: TIME SLICE

65

66

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.34Slides by Wes J. Lloyd

 Preemptive multitasking init iates “trap”
into the OS code to determine:

 Whether to continue running the current process,
or switch to a dif ferent one.

 If the decision is made to switch, the OS performs a context
switch swapping out the current process for a new one.

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.67

CONTEXT SWITCH

1. Save register values of the current process to its kernel
stack

 General purpose registers

 PC: program counter (instruction pointer)

 kernel stack pointer

2. Restore soon-to-be-executing process from its kernel
stack

3. Switch to the kernel stack for the soon-to-be-executing
process

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.68

CONTEXT SWITCH - 2

67

68

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.35Slides by Wes J. Lloyd

April 7, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.69

April 7, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L3.70

Context Switch

69

70

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.36Slides by Wes J. Lloyd

 What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

 Linux

 < 2.6 kernel: non-preemptive kernel

 >= 2.6 kernel: preemptive kernel

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.71

INTERRUPTED INTERRUPTS

Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

Preemption counter (preempt_count)
 begins at zero

 increments for each lock acquired (not safe to preempt)

 decrements when locks are released

 Interrupt can be interrupted when preempt_count=0
 It is safe to preempt (maskable interrupt)

 the interrupt is more important

April 7, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L3.72

PREEMPTIVE KERNEL

71

72

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/7/2020

L3.37Slides by Wes J. Lloyd

QUESTIONS

73

