TCSS 422 A — Spring 2020
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

INTRODUCTION TO
OPERATING SYSTEMS,
PROCESSES K

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

April 7, 2020 School of Engineering and Technology, University of Washington [l Tacoma

OBJECTIVES - 4/7

I = Questlons from 4/2 I
= Chapter 4: Processes
= Kernel data structures for processes and threads
= Chapter 5: Process API
= fork(), wait(), exec()
= Asslgnment O
= Chapter 6: LImited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCS5422: Operating Systems [Spring 2020]

Qrulizzz02g School of Engineering and Technology, University of Washington - Tacoma

‘ 132 ‘

MATERIAL / PACE

FEEDBACK FROM 4/2

= Please classify your perspective on material covered in
today’s class (60 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 7.03 (! from 5.83)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.76 (1 from 5.17)

April 7, 2020

TCS5422: Operating Systems [Spring 2020]
e d

School of Technology, ity i - Tacoma ‘ o2 ‘

= On Chapter 2:
= “] feel like I got lost at points but | can't drlil down

exactly what the Issue was or what | was missing to fully
understand what you were showing us. | just recall you
saylng this was an Intro Instead of a deep dive Into the
materlal”

= YES! Chapter 2 provides a broad survey of the “three easy
pieces” all in one lecture. We will revisit everything in
more detail as we go along...

= | also introduced “context switches” ahead of time with
the mem.c example. We’ll go over this again today
in Ch. 6

TCS5422: Operating Systems [Spring 2020]

Qrulizz02g School of Engineering and Technology, University of Washington - Tacoma

‘ 134 ‘

FEEDBACK - 2

= Processes have their own address space (i.e. memory),
threads do not. A process crashing won't affect another
process.
= j.e. Chrome tabs are processes, and a crashed tab does not
crash the entire browser

= ** Are there any other differences between threads and
processes?

= > Linux threads have a smaller data structure than processes
= > Threads are owned by processes

= > Creating a new thread is faster than creating a new process
= > Threads share memory, and can communicate through RAM

= > Inter-process communication involves opening a file or
network stream (pipe) between processes
(covered in TCSS 430)

April 7, 2020 Tc554lzz; Operating Systems [Spring 2020]

School o Technology, ity ington - Tacoma

‘ 35 ‘

FEEDBACK - 3

= The overall process of concurrency Is stlil a bit unclear to me.

= Concurrency simply means doing multiple things at the same
time on a computer.

= Today’s computer have
multiple processing
cores
(i.e. CPU cores)

= Each core can perform
a different independent
task “concurrently”
at the same time

= Check how many CPU
cores in Ubuntu with
“Iscpu”

TCS5422: Operating Systems [Spring 2020]

Bl 20 Sehoollof Mechnolosy|University ofWashinatoniSecoma

Slides by Wes J. Lloyd

4/7/2020

L3.1

TCSS 422 A — Spring 2020 4/7/2020
School of Engineering and Technology

FEEDBACK - 4 FEEDBACK - 5
=Why is it best for the CPU to perform a context = Another student suggested that a single program
switch when a thread is blocked? that didn't have any concurrency would be able to
// AN beschedule ,/ \\ run without an OS, however | am having trouble
= Which states is the Running | ——¢—— (Ready /\ imagining a computer without an 0S.
process (job) idle? y/ Bictil AN
— — ®|n a sense, sort of, yes
= What are the 1/0: initiate o //O: done = We talk about DIRECT EXECUTION today as part of
consequences of suspending an ~ \\ Chapter 6, which is a bit like a computer without
idle process? (Blocked | an OS.
. 2 /
" a running process \v/
[e e Byttt - o [o] [mmnam I o e estycrvshngan - coms [oo]
7 8

= |t is worth noting the importance of Linux for today’s = Consider an example where you're asked to develop a web
developers and computer scientists. services backend that requires 10 x 8-CPU-core virtual servers
= The CLOUD runs many virtual machines, recently in 2019 a key = Your organization investigates hosting costs on Amazon cloud
milestone was reached. = 8-core VM is “c5d.2xlarge”
= Even on Microsoft Azure (the Microsoft Cloud), there were e Thstance type | Wemory | vCPUs | Limux On Demand cost | Windows On Demand cost |
more Linux Virtual Machines (> 50%) than Windows. High-CPU Exira Laige c5dxlaige | 8.0 GIBE_| AvCPU: 50192000 hourly 376000 hourly
. . C: ngn-c Ulm\arge c&fjl&x\avE 1440 GiB | 72 vCPUs. 53.4550007muvly Jﬁmnuuv\!
= https://www.zdnet.com/article/microsoft-developer-reveals- CotnChUlage. | chdiame [40GH [2vCPLy $0.005000 oty LBE000 oty |
. M . High-CPU 24xlarge cbd.24xlarge | 192.0 GiB | 96 vCPUs $4.608000 hourly .024000 hourly
linux-is-now-more-used-on-azure-than-windows-server IC5 High-CPU Quadruple Exira Lar C50 xiarge | 320 GIB_| 16 vCPUs | $0.768000 hourly 504000 hourly
. ; i e Y T R e S R E—
= https://www.zdnet.com/article/it-runs-on-the-cloud-and-the- [C5 High-CPU Double Extra Large c50 2xiarge_| 16.0 GIE_| BVCPUS $0.384000 hourly 752000 hourly]
cloud-runs-on-linux-any-questions, B R z 2
IC5 High-CPU 9xlarge c5d.9xlarge | 72.0 GIB_| 36 vCPUs $1.728000 hourly $3.384000 hourly

= The majority of application back-ends (server-side), cloud or = Windows hourly price 75.2¢

not, run on Linux. = Linux hourly price 38.4¢
= This is due to licensing costs, example: = See: https://www.ec2instances.info/
TCSS422: Operating Systems [Spring 2020] TCSS422: Operating Systems [Spring 2020]
ENh Y e oolol Enginearins erdiechnolonyiU e sty S = TR ‘ 139 ‘ Bl 200 Sehoollof Erineering andTech nolosyiUnversity oWashinstonkTeconta B0

“QUIZ” 0 - C PROGRAMMING

MOTIVATION FOR LINUX - 2 BACKGROUND SURVEY

gy One year cloud hosting cost: = Available via Canvas System

= Under:
Assignments - Tutorials/Quizzes/In-class Activities

= Please disregard grade assigned by Canvas

= All submissions will receive 10 pts after assignment
closes - (closes Thursday 4/9 @ 11:59p)

= See: https://www.ec2instances.info/

TCS5422: Operating Systems [Spring 2020]
lEas d

TCS5422: Operating Systems [Spring 2020]
School of Technology, ity i - Tacoma ineeri

School of Technology, University of Washington - Tacoma .12

[EXT

‘ April 7,2020

‘ April 7, 2020 ‘

11 12

Slides by Wes J. Lloyd L3.2

TCSS 422 A — Spring 2020
School of Engineering and Technology

VIRTUAL MACHINE SURVEY

= Virtual Machine Survey

= Request for Ubuntu 18.04 VMs has been sent to
the School of Engineering and Technology LABS

= Expect response soon regarding connection
information

=Thank you!

TCS5422: Operating Systems [Spring 2020]
e d

School of Technology, ity ington - Tacoma 313

‘ April 7, 2020

OBJECTIVES - 4/7

= Questions from 4/2
= Chapter 4: Processes
= Kernel data structures for processes and threads
= Chapter 5: Process API
= fork(), wait(), exec()
= Asslgnment O
= Chapter 6: LImited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

1314

‘ April 7,2020 TBSMZ; Operating Systems [Spring 2020]

School o Technology, i ington - Tacoma

13

Process State

T scheouler aspaich
o

or or
event completion ~ event vat

g /proc

CHAPTER 4:
PROCESSES

TCSS422: Operating Systems [Spring 2020]

L T 2D School of Engineering and Technology, University of Washington -

14

PROCESS DATA STRUCTURES

= OS provides data structures to track process information
= Process list
= Process Data
= State of process: Ready, Blocked, Running

= Register context

= PCB (Process Control Block)
= A C-structure that contains information about each
process

‘ April 7,2020 TBSMZ; Operating Systems [Spring 2020]

School o Technology, i i Tacoma

13.16

15

XV6 KERNEL DATA STRUCTURES

= xv6: pedagogical implementation of Linux
= Simplified structures

to stop sub:
struct context {

int eip;
nt esp;
nt ebx;
nt ecx;
nt edx;
t esi;
toedi;
ebp;

e e e b b e

he different states a pr
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

317

‘ April 7, 2020 TCS$4|22; Operating Systems [Spring 2020]

School o Technology, ity i Tacoma

16

XV6 KERNEL DATA STRUCTURES - 2

ruct proc {
char *mem;
iint sz;
char *kstack;

enum proc_state state;

proc *parent;

nt killed;
struct file *ofile[NOFILE];
inode *cwd;

context context;
trapframe *tf;

13.18

‘ April 7,2020 TBSMZ; Operating Systems [Spring 2020]

School of Technology, University of Washi Tacoma

17

Slides by Wes J. Lloyd

18

4/7/2020

L3.3

TCSS 422 A — Spring 2020
School of Engineering and Technology

LINUX: STRUCTURES

= struct task struct, equivalent to struct proc
= Provides process description
= Large: 10,000+ bytes

~ LOC 1391 - 1852 (4.4.0-170)
earlier was LOC 1227 - 1587

= struct thread info, provides “context”
= thread_info.h is at:

= /usr/src/linux-headers-{kernel version}/include/linux/sched.h

/usr/src/linux-headers-{kernel version} /arch/x86/include/asm/

‘ April 7, 2020 TCS$4|22; Operating Systems [Spring 2020]

School o Technology, ity i Tacoma

‘ 319 ‘

19

LINUX STRUCTURES - 2

= List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

= Description of process data structures:
https://learning.oreilly.com/library/view/linux-kernel-

development/9780768696974/cover.html
3rd edition is online (dated from 2010):
See chapter 3 on Process Management

Safari online - accessible using UW ID SSO login
Linux Kernel Development, 3" edition

Robert Love

Addison-Wesley

‘ April 7, 2020 TCS$4|22; Operating Systems [Spring 2020]

school o Technology, ity i Tacoma

‘ 1321 ‘

21

OBJECTIVES - 4/7

= Questlons from 4/2
= Chapter 4: Processes
= Kernel data structures for processes and threads
= Chapter 5: Process API
= fork(), wait(), exec()
= Asslgnment O
= Chapter 6: LImited Direct Executlon
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, University i - Tacoma

‘ April 7, 2020

‘ 1323 ‘

LINUX: THREAD_INFO

struct thread_info {

struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */

__u32 flags; /* low level flags */

“u32 status; /* thread synchronous flags */
—u32 cpu; /* current CPU */

int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart block restart _block;
void __user *sysenter_return;
#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in
case of nested (IRQ) stacks
*

_u8 supervisor_stack[0] ;
#endif
int vaccess_err;
}i
TCSS422: Operating Systems [Spring 2020]
‘ Bl 200 e BT T e Uy f T 20

20

CHAPTER 5:
C PROCESS API

TCSS422: Operating Systems [Spring 2020]

Gl h A School of Engineering and Technology, University of Washington -

22

fork()

= Creates a new process - think of “a fork in the road”
= “Parent” process is the original
= Creates “child” process of the program from the current
executlon point
= Book says “pretty odd”
= Creates a dupllcate program instance (these are processes!)
= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent
= 0 to child

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, University of Washi Tacoma

‘ April 7,2020

23

Slides by Wes J. Lloyd

24

4/7/2020

L3.4

TCSS 422 A — Spring 2020
School of Engineering and Technology

FORK EXAMPLE

= pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int arge, char *argv([]){
printf("hello world (pid:%d)\n", (int) getpid());
int re = fork();
(xrc < 0) {
fprintf (stderr, "fork failed\n");
exit (1);

(rc { (
printf("hello, I am child (pid:%d)\n", (int) getpid());:
{

printf("hello, I am parent of %d (pid:%d)\n",
re, (int) getpid());

07

TCS5422: Operating Systems [Spring 2020]

‘ ERNH Y AT o T B S oy ATt A T T

‘ 325 ‘

25

wed “ . wed ™

TCSS422: Operating Systems [Spring 2020]

il]
‘ a2 School of Engineering and Technology, University of Washington - Tacoma

EX

27

FORK WITH WAIT

#include
#include <s
#include <unistd.h>

#include <sys/wait.h>

nt main(int arge, char *argv(])(
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork():
(re < 0) |
fprintf (stderr, "fork failed\n");
exit (1);

(re 0) (
printf("hello, I am child (pid:%d)\n", (int) getpid());

{
q nt we = wait (NULL);

printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
rc, we, (int) getpid());

TCS5422: Operating Systems [Spring 2020]

‘ EAIINH Y Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

‘ 329 ‘

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> . /pl

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, T am child (pid:29147)

prompt>

or

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)
prompt>

= CPU scheduler determines which to run first

April 7, 2020 TCS$422: Operating Systems [Spring 2020]
pril 7, School of Engineering and Technology, University of Washington - Tacoma

‘ 13.26 ‘

26

wait()

= wait(), waitpid()

= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

TCS5422: Operating Systems [Spring 2020]

‘ Qrulizz02g School of Engineering and Technology, University of Washington - Tacoma

28

FORK WITH WAIT - 2

= Deterministic ordering of execution

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

TCS5422: Operating Systems [Spring 2020]

‘ Qrulizz02g School of Engineering and Technology, University of Washington - Tacoma

‘ 1330 ‘

29

Slides by Wes J. Lloyd

30

4/7/2020

L3.5

TCSS 422 A — Spring 2020
School of Engineering and Technology

FORK EXAMPLE

® Linux example

TCS5422: Operating Systems [Spring 2020]

exec()

= Supports running an external program
= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

= execl(), execlp(), execle(): const char *arg (example: execl.c)

Provide cmd and args as individual params to the function

Each arg is a pointer to a null-terminated string
ODD: pass a variable number of args: (arg0, argi, .. argn)

= Execv(), execvp(), execvpe() (example: exec.c)
Provide cmd and args as an Array of pointers to strings

Strings are null-terminated
First argument is name of command being executed
Fixed number of args passed in

‘ April 7, 2020

‘ 1331 ‘

April 7, 2020 TCSS422: Operating Systems [Spring 2020] 332
School of Engineering and Technology, University of Washington - Tacoma pril 7, School of Engineering and Technology, University of Washington - Tacoma -
= Common use case:
. . #include <stdio.h>
= Write a new program which wraps a legacy one $include <stdlib.h>
. . N #include <unistd.h>
= Provide a new interface to an old system: Web services #include <string.h>
” #include <sys/wait.h>
= Legacy program thought of as a “black box
int main(int arge, char *argv(]){
printf("hello world (pid:%d)\n", (int) getpid());
P . nt re = fork();
= We don’t want to know what is inside... @ (rc < 0) {
fprintf (stderr, "fork failed\n");
exit(1);
} (xc == 0) { (
- printf("hello, I am child (pid:%d)\n", (int) getpid());
‘ char *myargs[3];
Quput myargs[0] = strdup ("wc");
myargs[1] = strdup ("p3.c");
ot ———— [myargs(2] = NULL;
nterml beboviar of the code s unknown
TCS$422: Operating Systems [Spring 2020] TCSS422: Operating Systems [Spring 2020]
‘ EAINh Y e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome 1333 Bl 200 ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma 1334
execvp (myargs (0], myargs);
, printf("this shouldn’t print out"); $include <stdio.h>
#include <stdlib.h>
nt = wait (NULL); y
printf("hello, I am parent of %d (wc:d) (pid:%d)\n", finelude <unistd.h>
re, we, (int) getpid()); #include <string.h>
) 4 4 #include <fcntl.h>
0 #include <sys/wait.h>
) nt
main(int arge, char *argu(]){
int rk();
(<0) { 3. i;
fprintf (stderr, "fork failed\n");
exit(1);
prompt> ./p3 } (rc
hello world (pid:29383) close (STDOUT_F H
hello, I am child (pid:29384) ‘ open ("./p4.output”, O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);
29 107 1030 p3.c -
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>
TCSS5422: Operating Systems [Spring 2020] TCSS422: Operating Systems [Spring 2020]
‘ EAIINH Y Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms 1333 Bl 20 ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma 1336

35

Slides by Wes J. Lloyd

36

4/7/2020

L3.6

TCSS 422 A — Spring 2020
School of Engineering and Technology

FILE MODE BITS

- S_IRWKU
read, write, execute/search by owner
S_IRUSR
read permission, owner
S_IWUSR
write permission, owner
S_IXUSR
eXecute/search permission, owner
S_IRWXG
read, write, execute/search by group
S_IRGRP
read permission, group
S_IWGRP
write permission, group
S_IXGRP
execute/search permission, group
S_IRWXO
read, write, execute/search by others
S_IROTH
read permission, others
S_IWOTH
write permission, others

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, University i Tacoma

‘ April 7, 2020

1337

37

Which Process API call is used to launch a

different program from the current program?

Fork() Exec() Wait() Noneof Allof
the the
above above

39

TCSS 422 WILL RETURN

AT 2:40PM

. TCSS422: Operating Systems [Spring 2020]
L T 2D School of Engineering and Technology, University of Washington -

41

Slides by Wes J. Lloyd

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

char *myargs(3];

myargs[0] = strdup ("wc"); program:
myargs[1] = strdup("p4.c");: 2 rgument
myargs[2] = NULL; n r

execvp (myargs [0], myargs);
int we = wait (NULL);

rn 0;

prompt> . /pd

prompt> cat pd.output
32 109 846 pd.c
prompt>

TCS5422: Operating Systems [Spring 2020]
e

School of Technology, University i Tacoma 1338

‘ April 7,2020

38

QUESTION: PROCESS API

= Which Process API call is used to launch a different
program from the current program?

= (a) Fork()

= (b) Exec()

= (c) Wait()

= (d) None of the above
= (e) All of the above

13.40

‘ April 7,2020 TBSMZ; Operating Systems [Spring 2020]

School of Technology, University of Washi Tacoma

40

OBJECTIVES - 4/7

= Questlons from 4/2
= Chapter 4: Processes
= Kernel data structures for processes and threads
= Chapter 5: Process API
= fork(), wait(), exec()
= Asslgnment O
= Chapter 6: LImited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

‘ April 7,2020 TBSMZ; Operating Systems [Spring 2020]

School of Technology, University of Washi - Tacoma

1342

42

4/7/2020

L3.7

TCSS 422 A — Spring 2020
School of Engineering and Technology

CH. 6:

LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Spring 2020]

L T 2D School of Engineering and Technology, University of Washington -

OBJECTIVES - 4/7

= Questlons from 4/2
= Chapter 4: Processes
= Kernel data structures for processes and threads
= Chapter 5: Process API
= fork(), wait(), exec()
= Asslgnment O

= Chapter 6: LImited Direct Execution
= Direct execution
= Limited direct execution
= CPU modes
= System calls and traps
= Cooperative multi-tasking
= Context switching and preemptive multi-tasking

April 7,2020 13.44

TCS5422: Operating Systems [Spring 2020)
School of Engineeri Technology, Universi ington - Tacoma

43

VIRTUALIZING THE CPU

= How does the CPU support running so many jobs
simultaneously?

=Time Sharing

" Tradeoffs:
= Performance
= Excessive overhead
= Control
= Fairness
= Security

= Both HW and OS support
is used

TCS5422: Operating Systems [Spring 2020]
e d

‘ April 7, 2020 School o Technology,

y i Tacoma

1345

45

COMPUTER BOOT SEQUENCE:
0OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0s Program

1. Create entry for process list
2. Allocate memory for

Without /imits on running programs,

the OS wouldn't be in control of anything
and would

7. Run main ()
8. Execute return from main ()

5. Clear registers
6. Execute call main ()

9. Free memory of process
10. Remove from process list

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, University i Tacoma

‘ April 7, 2020

347

47

Slides by Wes J. Lloyd

44

COMPUTER BOOT SEQUENCE:
OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0os Program

1. Create entry for process list
2. Allocate memory for
program

3. Load program into memory
4. Set up stack with argc /
argv

5. Clear registers

6. Execute call main ()

7. Run main ()
8. Execute return from main ()

9. Free memory of process
10. Remove from process list

TCS5422: Operating Systems [Spring 2020]
e f

”
School of Technology, i i Tacoma 1346

April 7,2020

46

DIRECT EXECUTION - 2

= With direct executlon:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform I/0 if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

TCS5422: Operating Systems [Spring 2020]
e

4
School of Technology, University of Washi Tacoma 148

April 7,2020

48

4/7/2020

L3.8

TCSS 422 A — Spring 2020
School of Engineering and Technology

CONTROL TRADEOFF

= Too little control:
= No security
= No time sharing

=Too much control:
=Too much OS overhead
= Poor performance for compute & 1I/0
= Complex APls (system calls), difficult to use

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 1349

‘ April 7, 2020

CONTEXT SWITCHING OVERHEAD

Context Switching Total cost of

context switching
vs. Multitasking with context switching

Sequential

Overhead
|

Multitasking

Time

TCS5422: Operating Systems [Spring 2020]

‘ Bl 200 o BT T T o e A S T e

1350

49

LIMITED DIRECT EXECUTION

= 0S implements LDE to support time/resource sharing

= Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

= TRUSTED means the process is trusted, and it can do
anything... (e.g. it is a system / kernel level process)

= Enabled by protected (safe) control transfer
= CPU supported context switch

= Provides data isolation

50

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 1351

‘ April 7, 2020

CPU MODES

= Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access _ no access
= User mode:
Application is running, but w/o direct I/0 access

= Kernel mode:
0S kernel is running performing restricted operations

TCS5422: Operating Systems [Spring 2020]

‘ Qrulizz02g School of Engineering and Technology, University of Washington - Tacoma

[EX7)

51

CPU MODES

= User mode: ring 3 - untrusted
= Some instructions and registers are disabled by the CPU
= Exception registers
= HALT instruction
= MMU instructions
= 0S memory access
=1/0 device access

= Kernel mode: ring 0 - trusted
= All instructions and registers enabled

52

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 1353

‘ April 7, 2020

SYSTEM CALLS

= Implement restricted “OS” operations
= Kernel exposes key functions through an API:
= Device I/0 (e.g.file 1/0)
= Task swapping: context switching between processes
= Memory management/allocation: malloc()
= Creating/destroying processes

TCS5422: Operating Systems [Spring 2020]

‘ Qrulizz02g School of Engineering and Technology, University of Washington - Tacoma

1354

53

Slides by Wes J. Lloyd

54

4/7/2020

L3.9

TCSS 422 A — Spring 2020
School of Engineering and Technology

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Mainline Code AN internupt service Routine

loop() {
= Trap: any transfer to kernel mode

instruction 3
instruction 4
instruction

= Three kinds of traps

= System call: (planned) user > kernel
SYSCALL for 1/0, etc.

= Exception: (error) user > kernel

Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

TCS5422: Operating Systems [Spring 2020] ‘ 1355 ‘
kel e -

‘ ElNh Y School of atoe 5 f T

EXCEPTION TYPES

55

05 @ boot Hardware
(kernel mode)

- ialize trap table
remember address of

syscall handler

Hardware Program
(kernel mode) (user mode)

Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argv
Fill kernel stack with reg/PC
return-from -trap
restore regs from kernel stack

‘ move to user mode
Jump to main
Run maing

Call system
trap into OS
save regs to kemel stack
move to kernel mode
jump to trap handler

Handle trap
- Do work of syscall

return-from-traj
B restore regs from kernel stack
B rmove to User mocie

jump to PC after trap
=) return from main
trap (via exit ()

Free memory of process
Remove from process list

TCSS422: Operating Systems [Spring 2020]

Synchwanousvs. Userrequestvs. Usermaskablevs. 'Withinvs. between
‘asynchronous. ooerced nonmaskable Instructions.
Hsmehronous Goereed Nonmaskable Between Resume
syretronous ros— Nonmaskatle Botween Resume
syretronous rov— User maskatle Botween Resume
symetronous ros— User maskatle Botween Resume
[e I wiin Resume
syretronous Goorcad User maskatle witin Resume
G == Nonmaskable wiin Resume
cconeos syretronous Goorcad User maskatle wiin Resume
{Memory protection violation Synchronous Coerced Nonmaskable Within Resume
Synehronous Cooresa Nonmaskable wiin Terminate
e o Nonmaskatle wiin Terminats
Aenotronous Goerced Nonmaskatle witin Terminate
TCSS422: Operating Systems [Spring 2020]
" b o " " 13.56
‘ Bl 200 Sehoslor e Ty T
0S @ boot Hardware
(kernel mode)
initialize trap table

ARCITI2020 School of Engineering and Technology, University of Washington - Tacoma L357
57
MULTITASKING
= How/when should the OS regain control of the CPU to
switch between processes?
= Cooperative multitasking (mostly pre 32-bit)
= < Windows 95, Mac 0SX
= Opportunistic: running programs must give up control
User programs must call a special yleld system call
When performing 1/0
Illegal operations
= (POLLEV)
What problems could you for see with this approach?
[e e ety Wetnto T [o= |

59

Slides by Wes J. Lloyd

remember address of
syscall handler

Hardware Program
(kernel mode) (user mode)

Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argy

Computer BOOT Sequence

OS with Limited Direct Execution

move to kernel mode
jump to trap handler

Handle trap
Do work of syscall
turn-from-tre
e omne restore regs from kernel stack
move to user mode
jump to PC after trap

return from main
trap (via exit ())
Free memory of process
Remove from process list

TCSS422: Operating Systems [Spring 2020]

Gl v D School of Engineering and Technology, University of Washington - Tacoma L3.58

58

MULTITASKING

= How/when should the OS regain control of the CPU to
switch between processes?

lllegal operations

= (POLLEV)
What problems could you for see with this approach?
e EX

60

4/7/2020

L3.10

TCSS 422 A — Spring 2020 4/7/2020
School of Engineering and Technology

What problems exist for regaining the control

QUESTION: MULTITASKING

W of the CPU with cooperative multitasking
OSes?

= What problems exist for regaining the control of
the CPU with cooperative multitasking 0Ses?

TCS5422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

1362

April 7,2020

61 62

MULTITASKING - 2 MULTITASKING - 2
= Preemptive multitasking (32 & 64 bit OSes) = Preemptive multitasking (32 & 64 bit 0Ses)
= >= Mac 0SX, Windows 95+ = >= Mac 0SX, Windows 95+

=Timer interrupt

= Raised at some regular interval (in ms) glves OS the ability to
] run again on a CPU.
= Interrupt handling
Current program is halted Current program is halted
Program states are saved Program states are saved
OS Interrupt handler is run (kernel mode) OS Interrupt handler is run (kernel mode)
= (PollEV) What is a good interval for the timer interrupt? = (PollEV) What is a good interval for the timer interrupt?

TCS5422: Operating Systems [Spring 2020]

TCS5422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington - Tacoma

1363 1364

‘ April 7, 2020 ‘ April 7, 2020

63 64

For an OS that uses a system timer to force QUESTION: TIME SLICE

arbitrary context switches to share the CPU, ’

what is a good value (in seconds) for the timer

. o " For an OS that uses a system timer to force

Interrupt? arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer
interrupt?

B A LS e s o 220 iy [wrame [B veshngon Teoms
65 66

Slides by Wes J. Lloyd L3.11

TCSS 422 A — Spring 2020

4/7/2020
School of Engineering and Technology

CONTEXT SWITCH CONTEXT SWITCH - 2

= Preemptive multitasking initiates “trap”

1. Save register values of the current process to its kernel
into the OS code to determine:

stack
= General purpose registers
+ Whether to continue running the current process, = PC: program counter (instruction pointer)
or switch to a dIfferent one. .
= kernel stack pointer
+ If the decision is made to switch, the OS performs a context

switch swapping out the current process for a new one. 2. Restore soon-to-be-executing process from its kernel
stack
3. Switch to the kernel stack for the soon-to-be-executing
process
TCSS422: Operating Systems [Spring 2020] TCSS422: Operating Systems [Spring 2020]
‘ ElNh Y i G S AT Uty f T ‘ 1367 ‘ ‘ Bl 200 o BT T T o e A S T e ‘ 1368 ‘
0S @ boot 0S @ boot
(kernel :fude) s (kernel omoode) Hardwars
initialize trap table initialize trap table
remember address of ... remember address of ...
‘ syscall handler syscall handler
timer handler timer handler
#sﬁart interrupt timer start interrupt timer
‘ start timer start timer
interrupt CPU in X ms

interrupt CPU in X ms

Program — Program
(user mode)

- Process A
L]
timer interrupt
gy N oniext owitcC
move to kernel mode

jump to trap handler

(kernel mode) Hardware

Handle the trap
Call switch(routine

Call switch() routine
‘ save regs(A) to proc-struct(A) save regs(A) to proc-struct(A)
restore regs(8) from proc-struct(8) restore regs(B) from proc-struct(3)
switch to k-stack(B) switch to k-stack(B)
return-from-trap (into B) return-from-trap (into B)

restore regs(B) from k-stack(®) restore regs(B) from k-stack(8)
move to user mode move to user mode
jump to B's PC

jump to B's PC

q Process B q Process B

TCSS422: Operating Systems [Spring 2020] TCSS422: Operating Systems [Spring 2020]
ARCITI2020 School of Engineering and Technology, University of Washington - Tacoma L3.69 Spail2020) School of Engineering and Technology, University of Washington - Tacoma L3.70

INTERRUPTED INTERRUPTS PREEMPTIVE KERNEL

= What happens if during an interrupt (trap to kernel

mUse “locks” as markers of regions of non-
mode), another interrupt occurs?

preemptibility (non-maskable interrupt)

= Linux = Preemption counter (preempt_count)

= < 2.6 kernel: non-preemptive kernel = begins at zero

= >= 2.6 kernel: preemptive kernel = increments for each lock acquired (not safe to preempt)

= decrements when locks are released

= |nterrupt can be interrupted when preempt_count=0
= It is safe to preempt (maskable interrupt)
=the interrupt is more important

TCS5422: Operating Systems [Spring 2020] TCSS422: Operating Systems [Spring 2020]
‘ ElNh Y SeFoo[of Enginearing andiechnolonyiUnve sty q Tacoma 371 Bl 20 ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma w72

71 72

Slides by Wes J. Lloyd L3.12

TCSS 422 A — Spring 2020 4/7/2020
School of Engineering and Technology

QUESTIONS

73

Slides by Wes J. Lloyd L3.13

