
TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.1Slides by Wes J. Lloyd

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

INTRODUCTION TO
OPERATING SYSTEMS,

PROCESSES

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

CHAPTER 2:
INTRODUCTION TO

OPERATING SYSTEMS

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.2

1

2

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.2Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s
class (52 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.83 (-)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.17 (-)

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.3

MATERIAL / PACE

 What are the actual programming Assignments?

 In Canvas…



April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.4

FEEDBACK FROM 3/31

3

4

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.3Slides by Wes J. Lloyd

 I am not sure if I could just use VSCode to develop the
program since I prefer it over VM?

 How to install VSCode on Ubuntu 18.04:
https://linuxize.com/post/how-to-install-visual-studio-
code-on-ubuntu-18-04/

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.5

FEEDBACK - 2

 How to invoke concurrency through the use of PIDs?

 In Linux, concurrency (multiple things happening at the same
time) is implementing using either PROCESSES or THREADS

 When we create a new PROCESS or THREAD Linux assigns a
Process ID (PID) as a unique identifier

 Linux then creates data records that capture lots of state
information regarding PROCESSES and THREADS that are
indexed by the PID

 This data is exposed using “vir tual fi les” that are generated
on-the-fly by Linux which can be found under a directory on
the filesystem, (one for each PID) here  “/proc/{pid}/
 cd /proc/1
 ls

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.6

FEEDBACK - 3

5

6

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.4Slides by Wes J. Lloyd

 CTRL-C - CANCEL/EXIT a process
 CTRL-Z - SUSPEND/PAUSE process, return to command prompt
 bg – SEND paused process to background and RESUME
 Disconnects the standard input (keyboard)
 Standard output still written to console

 fg – BRINGS top most process from jobs l ist to foreground
 Reconnects the standard input (keyboard)

 jobs – shows list of suspended/backgrounded jobs

 jobs -p – shows PID of suspended/backgrounded jobs

 top – “task manager” l ike User Inter face that shows PIDs

 htop – another “task manager” alternative

 ps– command to inspect processes in Linux

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.7

WORKING WITH PROCESSES IN LINUX

 Please complete the Course Background Survey:

Computer science, demographics, employment, goals,
covid-19, etc.

https://forms.gle/MucS87eDQSs4B3328

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.8

COURSE BACKGROUND SURVEY

7

8

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.5Slides by Wes J. Lloyd

Available via Canvas System

 Under:
Assignments  Tutorials/Quizzes/In-class Activities

 Please disregard grade assigned by Canvas

All submissions will receive 10 pts after assignment
closes

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.9

“QUIZ” 0 – C PROGRAMMING
BACKGROUND SURVEY

 Please complete the Virtual Machine Survey to request
a “School of Engineering and Technology” remotely
hosted Ubuntu VM

 Requires log-in to UW Google for verification:

https://forms.gle/R8N4HTjx6qKf1VJ88

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.10

VIRTUAL MACHINE SURVEY

9

10

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.6Slides by Wes J. Lloyd

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.11

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.12

11

12

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.7Slides by Wes J. Lloyd

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.13

 Chapter 2: Operating Systems – Three Easy Pieces
 Introduction to operating systems

 Management of resources

 Concepts of virtualization/abstraction

 THREE EASY PIECES:

 Virtualizing the CPU

 Virtualizing Memory

 Virtualizing I/O

 Operating system design goals

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.14

OBJECTIVES – 4/2

13

14

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.8Slides by Wes J. Lloyd

 The OS is a resource manager

Manages CPU, disk, network I/O

Enables many programs to

Share the CPU

Share the underlying physical memory (RAM)

Share physical devices
 Disks

 Network Devices

…

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.15

RESOURCE MANAGEMENT

 Operating systems present physical resources
as vir tual representations to the programs sharing
them
 Physical resources: CPU, disk, memory, …

 The virtual form is “abstract”

 The OS presents an illusion that each user program
runs in isolation on its own hardware

 This virtual form is general, powerful, and easy-to-use

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.16

VIRTUALIZATION

15

16

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.9Slides by Wes J. Lloyd

What form of abstraction does the OS provide?

CPU
 Processes and threads

Memory
 Address space

 large array of bytes

 All programs see the same “size” of RAM

Disk
 Files, file systems

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

ABSTRACTIONS

What level of abstraction?

How much of the underlying hardware should be
exposed?
What if too much?

What if too little?

What are the correct abstractions?

Security concerns

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

ABSTRACTION CHALLENGES

17

18

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.10Slides by Wes J. Lloyd

 Each running program gets its own “vir tual” representation of
the CPU

 Many programs seem to run at once

 Linux: “top” command shows
process l ist

 Windows: task manager

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.19

VIRTUALIZING THE CPU

 Simple Looping C Program

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.20

VIRTUALIZING THE CPU - 2

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/time.h>
4 #include <assert.h>
5 #include "common.h"
6
7 int
8 main(int argc, char *argv[])
9 {
10 if (argc != 2) {
11 fprintf(stderr, "usage: cpu <string>\n");
12 exit(1);
13 }
14 char *str = argv[1];
15 while (1) {
16 Spin(1); // Repeatedly checks the time and

returns once it has run for a second
17 printf("%s\n", str);
18 }
19 return 0;
20 }

19

20

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.11Slides by Wes J. Lloyd

 Runs forever, must Ctrl -C to halt…

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

VIRTUALIZING THE CPU - 3

prompt> gcc -o cpu cpu.c -Wall
prompt> ./cpu "A"
A
A
A
ˆC
prompt>

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.22

VIRTUALIZATION THE CPU - 4

prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &
[1] 7353
[2] 7354
[3] 7355
[4] 7356
A
B
D
C
A
B
D
C
A
C
B
D
...

Even though we have only one processor, all four instances
of our program seem to be running at the same time!

21

22

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.12Slides by Wes J. Lloyd

 Computer memory is treated as a large array of bytes

 Programs store all data in this large array

 Read memory (load)

 Specify an address to read data from

Write memory (store)

 Specify data to write to an address

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

VIRTUALIZING MEMORY

 Program to read/write memory (mem.c):

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

VIRTUALIZING MEMORY - 2

1 #include <unistd.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include "common.h"
5
6 int
7 main(int argc, char *argv[])
8 {
9 int *p = malloc(sizeof(int)); // a1: allocate some

memory
10 assert(p != NULL);
11 printf("(%d) address of p: %08x\n",
12 getpid(), (unsigned) p); // a2: print out the

address of the memmory
13 *p = 0; // a3: put zero into the first slot of the memory
14 while (1) {
15 Spin(1);
16 *p = *p + 1;
17 printf("(%d) p: %d\n", getpid(), *p); // a4
18 }
19 return 0;
20 }

23

24

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.13Slides by Wes J. Lloyd

 Output of mem.c

 int value stored at vir tual memory address: 00200000

 program increments int value

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.25

VIRTUALIZING MEMORY - 3

prompt> ./mem
(2134) memory address of p: 00200000
(2134) p: 1
(2134) p: 2
(2134) p: 3
(2134) p: 4
(2134) p: 5
ˆC

 Multiple instances of mem.c

 THE BOOK IS WRONG – Linux has changed !!

 What could be wrong about having malloc() return the same
vir tual memory address for every program instance?

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.26

VIRTUALIZING MEMORY - 4

prompt> ./mem &; ./mem &
[1] 24113
[2] 24114
(24113) memory address of p: 00200000
(24114) memory address of p: 00200000
(24113) p: 1
(24114) p: 1
(24114) p: 2
(24113) p: 2
(24113) p: 3
(24114) p: 3
...

25

26

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.14Slides by Wes J. Lloyd

 Multiple instances of mem.c

 ORIGINALLY: (int*)p receives the same memory location 00200000
 Why does modifying (int*)p in program #1 (PID=24113), not

inter fere with (int*)p in program #2 (PID=24114) ?
 The OS has “virtualized” memory. Each program has it’s own virtual

address space

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

VIRTUALIZING MEMORY - 5

prompt> ./mem &; ./mem &
[1] 24113
[2] 24114
(24113) memory address of p: 00200000
(24114) memory address of p: 00200000
(24113) p: 1
(24114) p: 1
(24114) p: 2
(24113) p: 2
(24113) p: 3
(24114) p: 3
...

 cat /proc/$$/maps

 $$ is the current process, can replace with an PID

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

INSPECTING THE
VIRTUAL MEMORY MAP OF A PROCESS

27

28

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.15Slides by Wes J. Lloyd

Key take-aways:

 Each process (program) has its own vir tual address space

 The OS maps virtual address spaces onto
physical memory

 A memory reference from one process can not affect the
address space of others.

 Isolation

 Physical memory, a shared resource, is managed by the OS

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

VIRTUAL MEMORY

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

CONCURRENCY

29

30

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.16Slides by Wes J. Lloyd

 Linux: 654 tasks

 Windows: 37 processes

 The OS appears to run many programs at once, juggling
them

 Modern multi-threaded programs feature concurrent
threads and processes

 What is a key difference between a process and a thread?

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

CONCURRENCY

thread.c listing continues …

Good ar tic le on Java volati le keyword:
(hint–not enough to ensure correctness w/ concurrent threads in JAVA)
http://tutorials.jenkov.com/java-concurrency/volati le.html

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.32

CONCURRENCY - 2

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "common.h"
4
5 volatile int counter = 0;
6 int loops;
7
8 void *worker(void *arg) {
9 int i;
10 for (i = 0; i < loops; i++) {
11 counter++;
12 }
13 return NULL;
14 }
15 ...

Not the same as Java volatile:
Provides a compiler hint than an object may change value
unexpectedly (in this case by a separate thread) so aggressive
optimization must be avoided.

31

32

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.17Slides by Wes J. Lloyd

 Program creates two threads

 Check documentation: “man pthread_create”

 worker() method counts from 0 to argv[1] (loop)

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

CONCURRENCY - 3

16 int
17 main(int argc, char *argv[])
18 {
19 if (argc != 2) {
20 fprintf(stderr, "usage: threads <value>\n");
21 exit(1);
22 }
23 loops = atoi(argv[1]);
24 pthread_t p1, p2;
25 printf("Initial value : %d\n", counter);
26
27 Pthread_create(&p1, NULL, worker, NULL);
28 Pthread_create(&p2, NULL, worker, NULL);
29 Pthread_join(p1, NULL);
30 Pthread_join(p2, NULL);
31 printf("Final value : %d\n", counter);
32 return 0;
33 }

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.34

Linux
“man”
page

example

33

34

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.18Slides by Wes J. Lloyd

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.35

CONCURRENCY - 4

 Command l ine parameter argv[1] provides loop length

 Defines number of times the shared counter is incremented

 Loops: 1000

 Loops 100000

prompt> gcc -o thread thread.c -Wall -pthread
prompt> ./thread 1000
Initial value : 0
Final value : 2000

prompt> ./thread 100000
Initial value : 0
Final value : 143012 // huh??
prompt> ./thread 100000
Initial value : 0
Final value : 137298 // what the??

 When loop value is large why do we not achieve 200000 ?

 C code is translated to (3) assembly code operations

1. Load counter variable into register

2. Increment it

3. Store the register value back in memory

 These instructions happen concurrently and VERY FAST

 (P1 || P2) write incremented register values back to memory,
While (P1 || P2) read same memory

 Memory access here is unsynchronized (non-atomic)

 Some of the increments are lost

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.36

CONCURRENCY - 5

35

36

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.19Slides by Wes J. Lloyd

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.37

 To per form parallel work, a single process may:

 A. Launch multiple threads to execute code in parallel while
sharing global data in memory

 B. Launch multiple processes to execute code in parallel
without sharing global data in memory

 C. Both A and B

 D. None of the above

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.38

PARALLEL PROGRAMMING

37

38

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.20Slides by Wes J. Lloyd

 DRAM: Dynamic Random Access Memory: DIMMs/SIMMs

 Stores data while power is present

When power is lost, data is lost (volatile)

 Operating System helps “persist” data more permanently

 I/O device(s): hard disk drive (HDD), solid state drive (SSD)

 File system(s): “catalog” data for storage and retrieval

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.39

PERSISTENCE

 open(), write(), close(): OS system calls for device I/O

 Note: man page for open(), write() require page number:
“man 2 open”, ”man 2 write”, “man close”

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.40

PERSISTENCE - 2

1 #include <stdio.h>
2 #include <unistd.h>
3 #include <assert.h>
4 #include <fcntl.h>
5 #include <sys/types.h>
6
7 int
8 main(int argc, char *argv[])
9 {
10 int fd = open("/tmp/file", O_WRONLY | O_CREAT

| O_TRUNC, S_IRWXU);
11 assert(fd > -1);
12 int rc = write(fd, "hello world\n", 13);
13 assert(rc == 13);
14 close(fd);
15 return 0;
16 }

April 2, 2020

39

40

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.21Slides by Wes J. Lloyd

 To write to disk, OS must:

 Determine where on disk data should reside

 Perform sys calls to perform I/O:
 Read/write to file system (inode record)

 Read/write data to file

 Provide fault tolerance for system crashes

 Journaling: Record disk operations in a journal for replay

 Copy-on-write - replicating shared data - see ZFS

 Carefully order writes on disk

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.41

PERSISTENCE - 3

 ABSTRACTING THE HARDWARE
 Makes programming code easier to write
 Automate sharing resources – save programmer burden

 PROVIDE HIGH PERFORMANCE
 Minimize overhead from OS abstraction

(Virtualization of CPU, RAM, I/O)
 Share resources fairly
 Attempt to tradeoff performance vs. fairness  consider

priority

 PROVIDE ISOLATION
 User programs can’t interfere with each other’s virtual

machines, the underlying OS, or the sharing of resources

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.42

SUMMARY:
OPERATING SYSTEM DESIGN GOALS

41

42

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.22Slides by Wes J. Lloyd

 RELIABILITY

 OS must not crash, 24/7 Up-time

 Poor user programs must not bring down the system:

Blue Screen

 Other Issues:
 Energy-efficiency

 Security (of data)

 Cloud: Virtual Machines

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.43

SUMMARY:
OPERATING SYSTEM DESIGN GOALS - 2

CHAPTER 4:
PROCESSES

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.44

43

44

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.23Slides by Wes J. Lloyd

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 The act of swapping process A out of the CPU to run
process B is called a:
 CONTEXT SWITCH

 How do we SWAP processes in and out of the CPU
efficiently?
 Goal is to minimize overhead of the swap

 OVERHEAD is time spent performing OS management
activities that don’t help accomplish real work

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.45

VIRTUALIZING THE CPU

 Process comprises of:

Memory
 Instructions (“the code”)

 Data (heap)

 Registers
 PC: Program counter

 Stack pointer

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.46

PROCESS

A process is a running program.

45

46

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.24Slides by Wes J. Lloyd

 Modern OSes provide a Process API for process suppor t

 Create
 Create a new process

 Destroy
 Terminate a process (ctrl-c)

 Wait
 Wait for a process to complete/stop

 Miscellaneous Control
 Suspend process (ctrl-z)
 Resume process (fg, bg)

 Status
 Obtain process statistics: (top)

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.47

PROCESS API

1. Load program code (and static data) into memory

 Program executable code (binary): loaded from disk

 Static data: also loaded/created in address space

 Eager loading: Load entire program before running

 Lazy loading: Only load what is immediately needed
 Modern OSes: Supports paging & swapping

2. Run-time stack creation

 Stack: local variables, function params, return address(es)

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.48

PROCESS API: CREATE

47

48

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.25Slides by Wes J. Lloyd

3. Create program’s heap memory
 For dynamically allocated data

4. Other initialization
 I/O Setup
 Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()
 OS transfers CPU control to the new process

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.49

PROCESS API: CREATE

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.50

code
static data

heap

stack
Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

49

50

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.26Slides by Wes J. Lloyd

 RUNNING

 Currently executing instructions

 READY

 Process is ready to run, but has been preempted

 CPU is presently allocated for other tasks

 BLOCKED

 Process is not ready to run. It is waiting for another event
to complete:
 Process has already been initialized and run for awhile

 Is now waiting on I/O from disk(s) or other devices

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.51

PROCESS STATES

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.52

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

51

52

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.27Slides by Wes J. Lloyd

 Can inspect the number of CONTEXT SWITCHES made by a
process

 Let’s run mem.c (from chapter 2)

 cat /proc/{process-id}/status

 proc “status” is a vir tual fi le generated by Linux
 Provides a report with process related meta-data

 What appears to happen to the number of context switches
the longer a process runs? (mem.c)

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.53

OBSERVING PROCESS META-DATA

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.54

CONTEXT SWITCH

53

54

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.28Slides by Wes J. Lloyd

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.55

 When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.56

QUESTION: WHEN TO CONTEXT SWITCH

55

56

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.29Slides by Wes J. Lloyd

 OS provides data structures to track process information

 Process list
 Process Data

 State of process: Ready, Blocked, Running

 Register context

 PCB (Process Control Block)

 A C-structure that contains information about each
process

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.57

PROCESS DATA STRUCTURES

 xv6: pedagogical implementation of Linux

 Simplified structures

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.58

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip; // Index pointer register
int esp; // Stack pointer register
int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register
int edi; // Destination index register
int ebp; // Stack base pointer register

};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

57

58

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.30Slides by Wes J. Lloyd

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.59

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack

// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt
};

 struct task_struct, equivalent to struct proc
 Provides process description

 Large: 10,000+ bytes

 /usr/src/linux-headers-{kernel version}/include/linux/sched.h
 ~ LOC 1391 – 1852 (4.4.0-170)

earlier was LOC 1227 – 1587

 struct thread_info, provides “context”
 thread_info.h is at:

/usr/src/linux-headers-{kernel version} /arch/x86/include/asm/

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.60

LINUX: STRUCTURES

59

60

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.31Slides by Wes J. Lloyd

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.61

LINUX: THREAD_INFO

struct thread_info {
struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart_block restart_block;
void __user *sysenter_return;

#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in

case of nested (IRQ) stacks
*/

__u8 supervisor_stack[0];
#endif

int uaccess_err;
};

 List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:
https://learning.oreil ly.com/library/view/linux-kernel-
development/9780768696974/cover.html

3rd edition is online (dated from 2010):
See chapter 3 on Process Management

Safari online – accessible using UW ID SSO login
Linux Kernel Development, 3rd edition
Robert Love
Addison-Wesley

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.62

LINUX STRUCTURES - 2

61

62

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.32Slides by Wes J. Lloyd

QUESTIONS

WE WILL RETURN AT
2:40PM

March 31, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L1.64

63

64

