
TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.1Slides by Wes J. Lloyd

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

INTRODUCTION TO
OPERATING SYSTEMS,

PROCESSES

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

CHAPTER 2:
INTRODUCTION TO

OPERATING SYSTEMS

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.2

1

2

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.2Slides by Wes J. Lloyd

 Please classify your perspective on material covered in today’s
class (52 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 5.83 (-)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.17 (-)

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.3

MATERIAL / PACE

 What are the actual programming Assignments?

 In Canvas…

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.4

FEEDBACK FROM 3/31

3

4

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.3Slides by Wes J. Lloyd

 I am not sure if I could just use VSCode to develop the
program since I prefer it over VM?

 How to install VSCode on Ubuntu 18.04:
https://linuxize.com/post/how-to-install-visual-studio-
code-on-ubuntu-18-04/

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.5

FEEDBACK - 2

 How to invoke concurrency through the use of PIDs?

 In Linux, concurrency (multiple things happening at the same
time) is implementing using either PROCESSES or THREADS

 When we create a new PROCESS or THREAD Linux assigns a
Process ID (PID) as a unique identifier

 Linux then creates data records that capture lots of state
information regarding PROCESSES and THREADS that are
indexed by the PID

 This data is exposed using “vir tual fi les” that are generated
on-the-fly by Linux which can be found under a directory on
the filesystem, (one for each PID) here “/proc/{pid}/
 cd /proc/1
 ls

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.6

FEEDBACK - 3

5

6

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.4Slides by Wes J. Lloyd

 CTRL-C - CANCEL/EXIT a process
 CTRL-Z - SUSPEND/PAUSE process, return to command prompt
 bg – SEND paused process to background and RESUME
 Disconnects the standard input (keyboard)
 Standard output still written to console

 fg – BRINGS top most process from jobs l ist to foreground
 Reconnects the standard input (keyboard)

 jobs – shows list of suspended/backgrounded jobs

 jobs -p – shows PID of suspended/backgrounded jobs

 top – “task manager” l ike User Inter face that shows PIDs

 htop – another “task manager” alternative

 ps– command to inspect processes in Linux

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.7

WORKING WITH PROCESSES IN LINUX

 Please complete the Course Background Survey:

Computer science, demographics, employment, goals,
covid-19, etc.

https://forms.gle/MucS87eDQSs4B3328

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.8

COURSE BACKGROUND SURVEY

7

8

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.5Slides by Wes J. Lloyd

Available via Canvas System

 Under:
Assignments Tutorials/Quizzes/In-class Activities

 Please disregard grade assigned by Canvas

All submissions will receive 10 pts after assignment
closes

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.9

“QUIZ” 0 – C PROGRAMMING
BACKGROUND SURVEY

 Please complete the Virtual Machine Survey to request
a “School of Engineering and Technology” remotely
hosted Ubuntu VM

 Requires log-in to UW Google for verification:

https://forms.gle/R8N4HTjx6qKf1VJ88

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.10

VIRTUAL MACHINE SURVEY

9

10

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.6Slides by Wes J. Lloyd

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.11

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.12

11

12

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.7Slides by Wes J. Lloyd

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.13

 Chapter 2: Operating Systems – Three Easy Pieces
 Introduction to operating systems

 Management of resources

 Concepts of virtualization/abstraction

 THREE EASY PIECES:

 Virtualizing the CPU

 Virtualizing Memory

 Virtualizing I/O

 Operating system design goals

 Chapter 4: Processes
 Process states, context switches

 Kernel data structures for processes and threads

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.14

OBJECTIVES – 4/2

13

14

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.8Slides by Wes J. Lloyd

 The OS is a resource manager

Manages CPU, disk, network I/O

Enables many programs to

Share the CPU

Share the underlying physical memory (RAM)

Share physical devices
 Disks

 Network Devices

…

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.15

RESOURCE MANAGEMENT

 Operating systems present physical resources
as vir tual representations to the programs sharing
them
 Physical resources: CPU, disk, memory, …

 The virtual form is “abstract”

 The OS presents an illusion that each user program
runs in isolation on its own hardware

 This virtual form is general, powerful, and easy-to-use

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.16

VIRTUALIZATION

15

16

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.9Slides by Wes J. Lloyd

What form of abstraction does the OS provide?

CPU
 Processes and threads

Memory
 Address space

 large array of bytes

 All programs see the same “size” of RAM

Disk
 Files, file systems

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.17

ABSTRACTIONS

What level of abstraction?

How much of the underlying hardware should be
exposed?
What if too much?

What if too little?

What are the correct abstractions?

Security concerns

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.18

ABSTRACTION CHALLENGES

17

18

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.10Slides by Wes J. Lloyd

 Each running program gets its own “vir tual” representation of
the CPU

 Many programs seem to run at once

 Linux: “top” command shows
process l ist

 Windows: task manager

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.19

VIRTUALIZING THE CPU

 Simple Looping C Program

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.20

VIRTUALIZING THE CPU - 2

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/time.h>
4 #include <assert.h>
5 #include "common.h"
6
7 int
8 main(int argc, char *argv[])
9 {
10 if (argc != 2) {
11 fprintf(stderr, "usage: cpu <string>\n");
12 exit(1);
13 }
14 char *str = argv[1];
15 while (1) {
16 Spin(1); // Repeatedly checks the time and

returns once it has run for a second
17 printf("%s\n", str);
18 }
19 return 0;
20 }

19

20

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.11Slides by Wes J. Lloyd

 Runs forever, must Ctrl -C to halt…

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.21

VIRTUALIZING THE CPU - 3

prompt> gcc -o cpu cpu.c -Wall
prompt> ./cpu "A"
A
A
A
ˆC
prompt>

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.22

VIRTUALIZATION THE CPU - 4

prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &
[1] 7353
[2] 7354
[3] 7355
[4] 7356
A
B
D
C
A
B
D
C
A
C
B
D
...

Even though we have only one processor, all four instances
of our program seem to be running at the same time!

21

22

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.12Slides by Wes J. Lloyd

 Computer memory is treated as a large array of bytes

 Programs store all data in this large array

 Read memory (load)

 Specify an address to read data from

Write memory (store)

 Specify data to write to an address

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

VIRTUALIZING MEMORY

 Program to read/write memory (mem.c):

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

VIRTUALIZING MEMORY - 2

1 #include <unistd.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include "common.h"
5
6 int
7 main(int argc, char *argv[])
8 {
9 int *p = malloc(sizeof(int)); // a1: allocate some

memory
10 assert(p != NULL);
11 printf("(%d) address of p: %08x\n",
12 getpid(), (unsigned) p); // a2: print out the

address of the memmory
13 *p = 0; // a3: put zero into the first slot of the memory
14 while (1) {
15 Spin(1);
16 *p = *p + 1;
17 printf("(%d) p: %d\n", getpid(), *p); // a4
18 }
19 return 0;
20 }

23

24

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.13Slides by Wes J. Lloyd

 Output of mem.c

 int value stored at vir tual memory address: 00200000

 program increments int value

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.25

VIRTUALIZING MEMORY - 3

prompt> ./mem
(2134) memory address of p: 00200000
(2134) p: 1
(2134) p: 2
(2134) p: 3
(2134) p: 4
(2134) p: 5
ˆC

 Multiple instances of mem.c

 THE BOOK IS WRONG – Linux has changed !!

 What could be wrong about having malloc() return the same
vir tual memory address for every program instance?

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.26

VIRTUALIZING MEMORY - 4

prompt> ./mem &; ./mem &
[1] 24113
[2] 24114
(24113) memory address of p: 00200000
(24114) memory address of p: 00200000
(24113) p: 1
(24114) p: 1
(24114) p: 2
(24113) p: 2
(24113) p: 3
(24114) p: 3
...

25

26

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.14Slides by Wes J. Lloyd

 Multiple instances of mem.c

 ORIGINALLY: (int*)p receives the same memory location 00200000
 Why does modifying (int*)p in program #1 (PID=24113), not

inter fere with (int*)p in program #2 (PID=24114) ?
 The OS has “virtualized” memory. Each program has it’s own virtual

address space

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

VIRTUALIZING MEMORY - 5

prompt> ./mem &; ./mem &
[1] 24113
[2] 24114
(24113) memory address of p: 00200000
(24114) memory address of p: 00200000
(24113) p: 1
(24114) p: 1
(24114) p: 2
(24113) p: 2
(24113) p: 3
(24114) p: 3
...

 cat /proc/$$/maps

 $$ is the current process, can replace with an PID

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

INSPECTING THE
VIRTUAL MEMORY MAP OF A PROCESS

27

28

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.15Slides by Wes J. Lloyd

Key take-aways:

 Each process (program) has its own vir tual address space

 The OS maps virtual address spaces onto
physical memory

 A memory reference from one process can not affect the
address space of others.

 Isolation

 Physical memory, a shared resource, is managed by the OS

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.29

VIRTUAL MEMORY

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.30

CONCURRENCY

29

30

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.16Slides by Wes J. Lloyd

 Linux: 654 tasks

 Windows: 37 processes

 The OS appears to run many programs at once, juggling
them

 Modern multi-threaded programs feature concurrent
threads and processes

 What is a key difference between a process and a thread?

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.31

CONCURRENCY

thread.c listing continues …

Good ar tic le on Java volati le keyword:
(hint–not enough to ensure correctness w/ concurrent threads in JAVA)
http://tutorials.jenkov.com/java-concurrency/volati le.html

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.32

CONCURRENCY - 2

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include "common.h"
4
5 volatile int counter = 0;
6 int loops;
7
8 void *worker(void *arg) {
9 int i;
10 for (i = 0; i < loops; i++) {
11 counter++;
12 }
13 return NULL;
14 }
15 ...

Not the same as Java volatile:
Provides a compiler hint than an object may change value
unexpectedly (in this case by a separate thread) so aggressive
optimization must be avoided.

31

32

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.17Slides by Wes J. Lloyd

 Program creates two threads

 Check documentation: “man pthread_create”

 worker() method counts from 0 to argv[1] (loop)

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.33

CONCURRENCY - 3

16 int
17 main(int argc, char *argv[])
18 {
19 if (argc != 2) {
20 fprintf(stderr, "usage: threads <value>\n");
21 exit(1);
22 }
23 loops = atoi(argv[1]);
24 pthread_t p1, p2;
25 printf("Initial value : %d\n", counter);
26
27 Pthread_create(&p1, NULL, worker, NULL);
28 Pthread_create(&p2, NULL, worker, NULL);
29 Pthread_join(p1, NULL);
30 Pthread_join(p2, NULL);
31 printf("Final value : %d\n", counter);
32 return 0;
33 }

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.34

Linux
“man”
page

example

33

34

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.18Slides by Wes J. Lloyd

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.35

CONCURRENCY - 4

 Command l ine parameter argv[1] provides loop length

 Defines number of times the shared counter is incremented

 Loops: 1000

 Loops 100000

prompt> gcc -o thread thread.c -Wall -pthread
prompt> ./thread 1000
Initial value : 0
Final value : 2000

prompt> ./thread 100000
Initial value : 0
Final value : 143012 // huh??
prompt> ./thread 100000
Initial value : 0
Final value : 137298 // what the??

 When loop value is large why do we not achieve 200000 ?

 C code is translated to (3) assembly code operations

1. Load counter variable into register

2. Increment it

3. Store the register value back in memory

 These instructions happen concurrently and VERY FAST

 (P1 || P2) write incremented register values back to memory,
While (P1 || P2) read same memory

 Memory access here is unsynchronized (non-atomic)

 Some of the increments are lost

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.36

CONCURRENCY - 5

35

36

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.19Slides by Wes J. Lloyd

April 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.37

 To per form parallel work, a single process may:

 A. Launch multiple threads to execute code in parallel while
sharing global data in memory

 B. Launch multiple processes to execute code in parallel
without sharing global data in memory

 C. Both A and B

 D. None of the above

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.38

PARALLEL PROGRAMMING

37

38

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.20Slides by Wes J. Lloyd

 DRAM: Dynamic Random Access Memory: DIMMs/SIMMs

 Stores data while power is present

When power is lost, data is lost (volatile)

 Operating System helps “persist” data more permanently

 I/O device(s): hard disk drive (HDD), solid state drive (SSD)

 File system(s): “catalog” data for storage and retrieval

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.39

PERSISTENCE

 open(), write(), close(): OS system calls for device I/O

 Note: man page for open(), write() require page number:
“man 2 open”, ”man 2 write”, “man close”

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.40

PERSISTENCE - 2

1 #include <stdio.h>
2 #include <unistd.h>
3 #include <assert.h>
4 #include <fcntl.h>
5 #include <sys/types.h>
6
7 int
8 main(int argc, char *argv[])
9 {
10 int fd = open("/tmp/file", O_WRONLY | O_CREAT

| O_TRUNC, S_IRWXU);
11 assert(fd > -1);
12 int rc = write(fd, "hello world\n", 13);
13 assert(rc == 13);
14 close(fd);
15 return 0;
16 }

April 2, 2020

39

40

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.21Slides by Wes J. Lloyd

 To write to disk, OS must:

 Determine where on disk data should reside

 Perform sys calls to perform I/O:
 Read/write to file system (inode record)

 Read/write data to file

 Provide fault tolerance for system crashes

 Journaling: Record disk operations in a journal for replay

 Copy-on-write - replicating shared data - see ZFS

 Carefully order writes on disk

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.41

PERSISTENCE - 3

 ABSTRACTING THE HARDWARE
 Makes programming code easier to write
 Automate sharing resources – save programmer burden

 PROVIDE HIGH PERFORMANCE
 Minimize overhead from OS abstraction

(Virtualization of CPU, RAM, I/O)
 Share resources fairly
 Attempt to tradeoff performance vs. fairness consider

priority

 PROVIDE ISOLATION
 User programs can’t interfere with each other’s virtual

machines, the underlying OS, or the sharing of resources

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.42

SUMMARY:
OPERATING SYSTEM DESIGN GOALS

41

42

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.22Slides by Wes J. Lloyd

 RELIABILITY

 OS must not crash, 24/7 Up-time

 Poor user programs must not bring down the system:

Blue Screen

 Other Issues:
 Energy-efficiency

 Security (of data)

 Cloud: Virtual Machines

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.43

SUMMARY:
OPERATING SYSTEM DESIGN GOALS - 2

CHAPTER 4:
PROCESSES

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.44

43

44

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.23Slides by Wes J. Lloyd

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 The act of swapping process A out of the CPU to run
process B is called a:
 CONTEXT SWITCH

 How do we SWAP processes in and out of the CPU
efficiently?
 Goal is to minimize overhead of the swap

 OVERHEAD is time spent performing OS management
activities that don’t help accomplish real work

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.45

VIRTUALIZING THE CPU

 Process comprises of:

Memory
 Instructions (“the code”)

 Data (heap)

 Registers
 PC: Program counter

 Stack pointer

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.46

PROCESS

A process is a running program.

45

46

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.24Slides by Wes J. Lloyd

 Modern OSes provide a Process API for process suppor t

 Create
 Create a new process

 Destroy
 Terminate a process (ctrl-c)

 Wait
 Wait for a process to complete/stop

 Miscellaneous Control
 Suspend process (ctrl-z)
 Resume process (fg, bg)

 Status
 Obtain process statistics: (top)

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.47

PROCESS API

1. Load program code (and static data) into memory

 Program executable code (binary): loaded from disk

 Static data: also loaded/created in address space

 Eager loading: Load entire program before running

 Lazy loading: Only load what is immediately needed
 Modern OSes: Supports paging & swapping

2. Run-time stack creation

 Stack: local variables, function params, return address(es)

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.48

PROCESS API: CREATE

47

48

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.25Slides by Wes J. Lloyd

3. Create program’s heap memory
 For dynamically allocated data

4. Other initialization
 I/O Setup
 Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()
 OS transfers CPU control to the new process

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.49

PROCESS API: CREATE

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.50

code
static data

heap

stack
Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

49

50

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.26Slides by Wes J. Lloyd

 RUNNING

 Currently executing instructions

 READY

 Process is ready to run, but has been preempted

 CPU is presently allocated for other tasks

 BLOCKED

 Process is not ready to run. It is waiting for another event
to complete:
 Process has already been initialized and run for awhile

 Is now waiting on I/O from disk(s) or other devices

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.51

PROCESS STATES

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.52

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

51

52

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.27Slides by Wes J. Lloyd

 Can inspect the number of CONTEXT SWITCHES made by a
process

 Let’s run mem.c (from chapter 2)

 cat /proc/{process-id}/status

 proc “status” is a vir tual fi le generated by Linux
 Provides a report with process related meta-data

 What appears to happen to the number of context switches
the longer a process runs? (mem.c)

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.53

OBSERVING PROCESS META-DATA

 How long does a context switch take?

 10,000 to 50,000 ns (.01 to .05 ms)

 2,000 context switches is near 100ms

April 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.54

CONTEXT SWITCH

53

54

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.28Slides by Wes J. Lloyd

January 9, 2019
TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma L2.55

 When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.56

QUESTION: WHEN TO CONTEXT SWITCH

55

56

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.29Slides by Wes J. Lloyd

 OS provides data structures to track process information

 Process list
 Process Data

 State of process: Ready, Blocked, Running

 Register context

 PCB (Process Control Block)

 A C-structure that contains information about each
process

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.57

PROCESS DATA STRUCTURES

 xv6: pedagogical implementation of Linux

 Simplified structures

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.58

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip; // Index pointer register
int esp; // Stack pointer register
int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register
int edi; // Destination index register
int ebp; // Stack base pointer register

};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

57

58

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.30Slides by Wes J. Lloyd

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.59

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack

// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt
};

 struct task_struct, equivalent to struct proc
 Provides process description

 Large: 10,000+ bytes

 /usr/src/linux-headers-{kernel version}/include/linux/sched.h
 ~ LOC 1391 – 1852 (4.4.0-170)

earlier was LOC 1227 – 1587

 struct thread_info, provides “context”
 thread_info.h is at:

/usr/src/linux-headers-{kernel version} /arch/x86/include/asm/

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.60

LINUX: STRUCTURES

59

60

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.31Slides by Wes J. Lloyd

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.61

LINUX: THREAD_INFO

struct thread_info {
struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart_block restart_block;
void __user *sysenter_return;

#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in

case of nested (IRQ) stacks
*/

__u8 supervisor_stack[0];
#endif

int uaccess_err;
};

 List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:
https://learning.oreil ly.com/library/view/linux-kernel-
development/9780768696974/cover.html

3rd edition is online (dated from 2010):
See chapter 3 on Process Management

Safari online – accessible using UW ID SSO login
Linux Kernel Development, 3rd edition
Robert Love
Addison-Wesley

January 9, 2019 TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.62

LINUX STRUCTURES - 2

61

62

TCSS 422 A – Spring 2020
School of Engineering and Technology

4/2/2020

L2.32Slides by Wes J. Lloyd

QUESTIONS

WE WILL RETURN AT
2:40PM

March 31, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L1.64

63

64

