TCSS 422 A — Spring 2020
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

INTRODUCTION TO
OPERATING SYSTEMS,
PROCESSES

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

prilizzo2y School of Engineering and Technology, University of Washington

CHAPTER 2:
INTRODUCTION TO
OPERATING SYSTEMS

TCSS422: Operating Systems [Spring 2020]

Rl 2, 2 School of Engineering and Technology, University of Washington -

2

Slides by Wes J. Lloyd

4/2/2020

L2.1

TCSS 422 A — Spring 2020 4/2/2020
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in today’s
class (52 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 5.83 (-)

® Please rate the pace of today’s class:
® 1-slow, 5-just right, 10-fast
= Average - 5.17 (-)

TCSS422: Operating Systems [Spring 2020]

April2,2020 School of Engineering and Technology, University of Washington - Tacoma

L2.3

FEEDBACK FROM 3/31

® What are the actual programming Assignments?

— TCss422B

®E |n Canvas... . TCSS 422 B Sp 20: Computer Operating Systems
| Announcements | Syllabus | Grading | Schedule §i Assignments § Home |
Assignments
Cnmmg soon.
Zoo
. TCSS422: Operating Systems [Spring 2020]
April 2, 2020 School of Engineering and Technology, University of Washington - Tacoma L24

Slides by Wes J. Lloyd L2.2

TCSS 422 A — Spring 2020 4/2/2020
School of Engineering and Technology

FEEDBACK - 2

® | am not sure if | could just use VSCode to develop the
program since | prefer it over VM?

® How to install VSCode on Ubuntu 18.04:
https://linuxize.com/post/how-to-install-visual-studio-
code-on-ubuntu-18-04/

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L25

April 2, 2020

FEEDBACK - 3

= How to invoke concurrency through the use of PIDs?

® |n Linux, concurrency (multiple things happening at the same
time) is implementing using either PROCESSES or THREADS

® When we create a new PROCESS or THREAD Linux assigns a
Process ID (PID) as a unique identifier

® Linux then creates data records that capture lots of state
information regarding PROCESSES and THREADS that are
indexed by the PID

® This data is exposed using “virtual files” that are generated
on-the-fly by Linux which can be found under a directory on
the filesystem, (one for each PID) here = “/proc/{pid}/
= cd /proc/1
=1ls

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L26

April 2, 2020

Slides by Wes J. Lloyd L2.3

TCSS 422 A — Spring 2020 4/2/2020
School of Engineering and Technology

WORKING WITH PROCESSES IN LINUX

® CTRL-C - CANCEL/EXIT a process
® CTRL-Z - SUSPEND/PAUSE process, return to command prompt
® bg - SEND paused process to background and RESUME

= Disconnects the standard input (keyboard)
= Standard output still written to console

® fg - BRINGS top most process from jobs list to foreground
= Reconnects the standard input (keyboard)

® jobs - shows list of suspended/backgrounded jobs

® jobs -p - shows PID of suspended/backgrounded jobs

® top - “task manager” like User Interface that shows PIDs

®" htop - another “task manager” alternative

B ps- command to inspect processes in Linux

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L27

April 2, 2020

COURSE BACKGROUND SURVEY

= Please complete the Course Background Survey:

Computer science, demographics, employment, goals,
covid-19, etc.

®https://forms.gle/MucS87eDQSs4B3328

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L28

April 2, 2020

Slides by Wes J. Lloyd L2.4

TCSS 422 A — Spring 2020
School of Engineering and Technology

“QUIZ" 0 - C PROGRAMMING

BACKGROUND SURVEY

= Available via Canvas System

=Under:

= Please disregard grade assighed by Canvas

closes

Assignments > Tutorials/Quizzes/In-class Activities

= All submissions will receive 10 pts after assignment

TCSS422: Operating Systems [Spring 2020]

April2,2020 School of Engineering and Technology, University of Washington - Tacoma

L2.9

VIRTUAL MACHINE SURVEY

a “School of Engineering and Technology” remotely
hosted Ubuntu VM

® Requires log-in to UW Google for verification:

mhttps://forms.gle/R8N4HTjx6qKf1VJ88

= Please complete the Virtual Machine Survey to request

TCSS422: Operating Systems [Spring 2020]

April 2, 2020 School of Engineering and Technology, University of Washington - Tacoma

L2.10

10

Slides by Wes J. Lloyd

4/2/2020

L2.5

TCSS 422 A — Spring 2020 4/2/2020
School of Engineering and Technology

"u
Have you previously used Oracle Virtual Box

to create a Virtual Machine?

Yes
no
.. Seri2y2020 Slar“hepm%gsggﬁz?rg?ﬁrgggé?ﬁl:émm%%%ﬁ%mﬁf'Wakmﬂgwnm!alracoma '-2-1-.
11
.. [] L]
Have you previously used Oracle Virtual Box
to create a Virtual Machine?
| | no
.. Spill2 12020 SmmeDre&%%%t%x&s&s&%m&@%&%wf'wgsﬁ?ﬁg\wnmfilmcoma L2-1!.
12

Slides by Wes J. Lloyd L2.6

TCSS 422 A — Spring 2020 4/2/2020
School of Engineering and Technology

"n
Have you previously used Oracle Virtual Box

to create a Virtual Machine?

T(¥§§Operating Systems [Spring 2020] n O

.. April 2, 2020 startthe presgspisIte HE RiSiFEEHRGTANR RO SRR RIS IV ASPAHEXSAT TR coma L2-1!.

13

OBJECTIVES - 4/2

= Chapter 2: Operating Systems - Three Easy Pieces
= Introduction to operating systems
= Management of resources
= Concepts of virtualization/abstraction
= THREE EASY PIECES:
Virtualizing the CPU
Virtualizing Memory
Virtualizing 1/0
= Operating system design goals
= Chapter 4: Processes
= Process states, context switches
= Kernel data structures for processes and threads

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L2.14

April 2, 2020

14

Slides by Wes J. Lloyd L2.7

TCSS 422 A — Spring 2020
School of Engineering and Technology

RESOURCE MANAGEMENT

®"The OS is a resource manager
= Manages CPU, disk, network I/0
= Enables many programs to
=Share the CPU
=Share the underlying physical memory (RAM)

=Share physical devices
Disks
Network Devices

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L215

April 2, 2020

15

VIRTUALIZATION

® Operating systems present physical resources
as virtual representations to the programs sharing
them

Physical resources: CPU, disk, memory, ...
*The virtual form is “abstract”

*The OS presents an illusion that each user program
runs in isolation on its own hardware

= This virtual form is general, powerful, and easy-to-use

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L2.16

April 2, 2020

16

Slides by Wes J. Lloyd

4/2/2020

L2.8

TCSS 422 A — Spring 2020
School of Engineering and Technology

ABSTRACTIONS

= What form of abstraction does the OS provide?

“CPU

Processes and threads
*Memory

Address space

- large array of bytes

All programs see the same “size” of RAM
=*Disk

Files, file systems

TCSS422: Operating Systems [Spring 2020]

April2,2020 School of Engineering and Technology, University of Washington - Tacoma

L2.17

17

ABSTRACTION CHALLENGES

® What level of abstraction?

*How much of the underlying hardware should be
exposed?
What if too much?
What if too little?
= What are the correct abstractions?

=Security concerns

TCSS422: Operating Systems [Spring 2020]

April 2, 2020 School of Engineering and Technology, University of Washington - Tacoma

L2.18

18

Slides by Wes J. Lloyd

4/2/2020

L2.9

TCSS 422 A — Spring 2020
School of Engineering and Technology

the CPU

process list

® Windows: task manager o

VIRTUALIZING THE CPU

® Many programs seem to run at once
® Linux: “top” command shows

top - 18:25:07 up 430 days, 1:03, 3 users, load average: 0.32, 0.28, 0.29
[Tasks: 652 total, 1 running, 653 sieeping. 0 stoppes, 0 zowbie

. 0.1st, 0.0%t
Se41316K bufters

Swap: 21835772k total,

® Each running program gets its own “virtual” representation of

15276 eucalypt 10.7g 1.58 5
8527 eucaypt G0 2

2:07 eucalyptus-clou
2.91 postgres
93 postgres
66 postgres
52 T

= s ok Mg
Fi opon: Vi ity
e,

== 11017 eucalype

30740 eucalypt 20 0 60m

31530 eucalypt 20 0
oot 20 0

2rot 2 0

Sroot AT 0

srot 2 0

Sroot AT 0

Groot BT 0

Trot AT 0

Broot AT 0

e Sroot 20 0
Wrost R0

Mot R0

Zrot AT 0

April 2, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.19

19

[
(%)

VIRTUALIZING THE CPU - 2

imple Looping C Program

#include
#include
#include
#include
#include

int
main (int
9 {

O J o) Ul WM

<stdio.h>
<stdlib.h>
<sys/time.h>
<assert.h>
"common.h"

argc, char *argv[])

if (argc != 2) {

fprintf (stderr, "usage: cpu <string>\n");
exit (1) ;

}
char *str = argv[1l];
while (1) {

Spin(l); //
returns it S

printf ("$s\n", str);

=cond

}

return 0;

the time and

April 2, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.20

20

Slides by Wes J. Lloyd

4/2/2020

L2.10

TCSS 422 A — Spring 2020

School of Engineering and Technology

VIRTUALIZING THE CPU - 3

prompt> gcc -o cpu cpu.c -Wall
prompt> ./cpu "A"

A

A

A

e

prompt>

® Runs forever, must Ctrl-C to halt...

TCSS422: Operating Systems [Spring 2020]

April2,2020 School of Engineering and Technology, University of Washington - Tacoma

L2.21

21

VIRTUALIZATION THE CPU - 4

prompt> ./cpu A & ; ./cpu B & ; ./cpu C & ; ./cpu D &
[1] 7353
[2] 7354
[3]1 7355
[4] 7356
A

B

D

C

A

B

D

C

A

C

B

D

one processor

at the same time

TCSS422: Operating Systems [Spring 2020]

April 2, 2020 School of Engineering and Technology, University of Washington - Tacoma

L2.22

22

Slides by Wes J. Lloyd

4/2/2020

L2.11

TCSS 422 A — Spring 2020
School of Engineering and Technology

VIRTUALIZING MEMORY

B Computer memory is treated as a large array of bytes
® Programs store all data in this large array

= Read memory (load)
= Specify an address to read data from

= Write memory (store)
= Specify data to write to an address

April 2, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.23

23

VIRTUALIZING MEMORY - 2

® Program to read/write memory (mem.c):

1 #include
2 #include
3 #include
4 #include
5

6 int

7 main (int
8 {

9

10

11

12

13

14

15

16

17

18

19

20 }

<unistd.h>
<stdio.h>

<stdlib.h>
"common.h"

argc, char *argvl[])

int *p = malloc(sizeof (int)); // al: allocate some
memory

assert (p != NULL);

printf (" (%d) address of p: %08x\n",

getpid (), (unsigned) p); // a2: print out the

add 5 C -

*p = 0; // a3: put zero into the first slot of the memory

while (1) {

1;
printf (" (%d) p: %d\n", getpid(), *p); // al

return 0;

April 2, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.24

24

Slides by Wes J. Lloyd

4/2/2020

L2.12

TCSS 422 A — Spring 2020

School of Engineering and Technology

VIRTUALIZING MEMORY - 3

® Qutput of mem.c

prompt> ./mem
2134) memory address of p: 00200000
HE

'0 ‘0 'C 'O 'O

2
3
4
5

® int value stored at virtual memory address: 00200000
® program increments int value

April 2, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.25

25

VIRTUALIZING MEMORY - 4

® Multiple instances of mem.c

prompt> ./mem &; ./mem &

1] 24113

2] 24114

24113) memory address of p: 00200000

[

[

(

(24114) memory address of p: 00200000
(24113) p: 1

(24114) p: 1

(24114) p: 2

(24113) p: 2

(24113) p: 3

() p: 3

24114

= THE BOOK IS WRONG - Linux has changed !!

= What could be wrong about having malloc() return the same
virtual memory address for every program instance?

April 2, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.26

26

Slides by Wes J. Lloyd

4/2/2020

L2.13

TCSS 422 A — Spring 2020
School of Engineering and Technology

VIRTUALIZING MEMORY -5

® Multiple instances of mem.c

prompt> ./mem &; ./mem &

[1] 24113

[2] 24114

(24113) memory address of p: 00200000
(24114) memory address of p: 00200000
(24113) p: 1

(24114) p: 1

(24114) p: 2

(24113) p: 2

(24113) p: 3

(24114) p: 3

= ORIGINALLY: (int*)p receives the same memory location 00200000
® Why does modifying (int*)p in program #1 (PID=24113), not

interfere with (int*)p in program #2 (PID=24114) ?

= The OS has “virtualized” memory. Each program has it’s own virtual

address space

April 2, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.27

27

INSPECTING THE

m cat /proc/$$/maps
m $$ is the current process, can replace with an PID

$ cat proc/30492/maps

VIRTUAL MEMORY MAP OF A PROCESS

01000 r-xp 80000000 fc

00601000-00602000 rw-p 00001
02483000-024a4000 rwW-p 0000
7f2b4596c00@-772ba5b2co00
7f2b45b2c000O-7f2b45d2c000
7f2ba5d2cenn-7f2b4asd3eenn
7f2b45d30000-7f2b45d32000
7f2b45d32000-7f2b45d36000
7f2b45d36000-7f2b4a5d4e000
7f2b45d4e000-7f2b45T4d0on
7f2basfadeea-7f2basf4ennn
7f2b45f4e000-7f2b4574f000 000180

0@-7f2b45Ff79000
7f2bac14feen-7f2
7f2b46178080-7f2b46179600
7f2b46179000-7f2b4617a000
7f2ba617a0008-7f2b4617bo00
7ffc83735000-7ffc83756000

8 r-xp 60808

00000000 @

6611568

0 15730979

001c800e
001c4000

15730979
15730979
15738979
¢]

0 15730966

00017000

15730966
15738966
15730966
¢}

0 15738965

2]

© 15730965
© 15730965

0 9
Frffffffff600000-FFffffffff601000 r-xp 00000060 00:00 O

fhome /wlloyd/Dropbox/courses/tcss422/examples/mem
/home /wlloyd/Dropbox/courses/tcss422/exampl e
/home /wlloyd/Dropbox/courses/tcss422/examples/men

-linux-gnu/libc-2. s
-linux-gnu/libc-2.23
-linux-gnu/libc-
-linux-gnu/libc-2.2

-linux-gnu/libpthread-2
-1linux-gnu/libpthread
64-1linux-gnu/libpthread-2.23.
f1ib/x86_64-1linux-gnu/libpthread-2.23.

J1lib/x86_64-1inux-gnu/ld-2.23.50

/1ib/x86_64-1inux-gnu/ld-2.23.s0

/lib/x86_64-1inux-gnu/ld-2.23.s0
[stack]

[vvar]

[vdso]

[vsyscall]

April 2, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L2.28

28

Slides by Wes J. Lloyd

4/2/2020

L2.14

TCSS 422 A — Spring 2020 4/2/2020
School of Engineering and Technology

VIRTUAL MEMORY

= Key take-aways:
®m Each process (program) has its own virtual address space

® The OS maps virtual address spaces onto
physical memory

= A memory reference from one process can not affect the
address space of others.

» lIsolation

® Physical memory, a shared resource, is managed by the 0S

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L2.29

April 2, 2020

29

[Task:| " Windows Task Manager | == o = |
1S File Options View Help
Swop || | Appications | Processes | Services | Performance | Helwerking | Users
< I
1527¢ | 1mage Name. UserName CPU Memory (... Desaiption
lorsill | = SYSTEM.. 89 330,504K_HostProc.]
{3062 shwowsdexe wioyd 00 L4s2K Printdiv.,
4430 toskmgrexe wioyd 00 2,084K Windows...
6280 OSPPSVC.EXE NETWO. 00 2,0%K Mirosoft..
oy Seachlndexe.. SYSTEM 00 3,372K Miosoft..
lioazd|| | PowemenTE... wioys 00 3,564K Microsoft.
ot ssscheduer.... wloyd 00 884K Moafees...
15153 eplorerexe wloyd 00 15284K Windows..
Jiked] Prntisoaton,.. SYSTEM 00 110K Prntisola...
;23% VBoxTray.exe wiloyd 00 L764K virtualBox...
4 taskhostexe wloyd 00 378K HostProc.,
106¢ dum.exe wloyd 00 L132K Deskiop...
3504 GaminServiee ., SYSTEM 00 18004K Gaminse
6121 sdhosters SYSTEM 00 279K HestProc..
i) smsvcexe 2 SISTEM 00 904K Adobe Ac..
s svehostexe LOCAL.. 00 7,156K HostProc..
8521 soobv.exe SISTEM 00 520K SpookerS..
FE EBxpressTray.... wloyd 00 14960K GaminEx
1428 schostexs SYSTEM 00 LE0OK HostProc
1575 xe LOCAL.. 00 2,924K HostProc.
Hak schostexe SYSTEM 00 3052K HestProc..
1653 toskengexe SISTEM 00 L140K TaskSthe
2178 swostexe LOCAL.. 00 9,264K HostProc..
3074 swchosters METWO.. 00 3016K HostProc.
3153t VBoxService.... SYSTEM 00 LA76K VirtualBox...
svhostexe SYSTEM 00 2884K HostProc.,
: I\:mex: SYSTEM 00 1,204K Local Ses. A
i 7] Show processes from al users I
¢
Y Processes:37 CPU Usage: 100% Physical Memory: 36%
16 root W g T TSy s iy w.u uiss.ss watcnoogri
11 root RT 0 0 0 0S5 0.0 0.0130:03.04 migration/2
12 root RT 0 0 0 05 0.0 0.0 0:00.00 stopper/2

TCSS422: Operating Systems [Spring 2020]

April 2, 2020 School of Engineering and Technology, University of Washington - Tacoma

L2.30

30

Slides by Wes J. Lloyd L2.15

TCSS 422 A — Spring 2020
School of Engineering and Technology

CONCURRENCY

® Linux: 654 tasks
® Windows: 37 processes

® The OS appears to run many programs at once, juggling
them

® Modern multi-threaded programs feature concurrent
threads and processes

® What is a key difference between a process and a thread?

TCSS422: Operating Systems [Spring 2020]

April2,2020 School of Engineering and Technology, University of Washington - Tacoma

L2.31

31

CONCURRENCY - 2

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include "common.h"

4

5 1nt counter = 0;

6

7

8 Wwork voq arg

9 Q
10 Not the same as Java volatile:
11

12

13

14 }

15 .

thread.c listing continues ...

Good article on Java volatile keyword:
(hint-not enough to ensure correctness w/ concurrent threads in JAVA)
http://tutorials.jenkov.com/java-concurrency/volatile.html

TCSS422: Operating Systems [Spring 2020]

April 2, 2020 School of Engineering and Technology, University of Washington - Tacoma

L2.32

32

Slides by Wes J. Lloyd

4/2/2020

L2.16

TCSS 422 A — Spring 2020
School of Engineering and Technology

CONCURRENCY -3

16 int

17 main(int argc, char *argv([])

18 {

19 if (argc !'= 2) {

20 fprintf (stderr, "usage: threads <value>\n");
21 exit(1l);

22 }

23 loops = atoi(argv[1l]);

24 pthread_t pl, p2;

25 printf ("Initial value : %d\n", counter);
26

27 Pthread create(&pl, NULL, worker, NULL);
28 Pthread create(&p2, NULL, worker, NULL);
29 Pthread join(pl, NULL);

30 Pthread join(p2, NULL);

31 printf ("Final value : %d\n", counter);
32 return 0;

33 }

= Program creates two threads
® Check documentation: “man pthread_create”
= worker() method counts from O to argv[1] (loop)

April 2, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L233

33

Linux
“man”

page

example

April 2, 2020

PTHREAD_CREATE(3)

NAME

Linux Programmer's Manual PTHREAD_CREATE(3)

top

pthread_create - create a new thread

SYNOPSIS top

#include <pthread.h>

int pthread_create(pthread_t *thread, const pthread_attr_t *artr,
void *(*start_routine) (void *), void *arg);

Compile and link with -pthread.

DESCRIPTION top

The pthread_create() function starts a new thread in the calling
process. The new thread starts execution by invoking
start_routine(); arg is passed as the sole argument of
start_routine().

The new thread terminates in one of the following ways:
* It calls pthread_exit(3), specifying an exit status value that is
available to another thread in the same process that calls

pthread_join(3).

* It returns from start_routine(). This is equivalent to calling
pthread_exit(3) with the value supplied in the return statement.

* It is canceled (see pthread_cancel(3)).

*

Any of the threads in the process calls exit(3), or the main thread
performs a return from main(). This causes the termination of all
threads in the process.

The attr argument points to a pthread_attr_t structure whose contents
are used at thread creation time to determine attributes for the new
thread; this structure is initialized using pthread_attr_init(3) and
related functions. If attr is NULL, then the thread is created with
default attributes.

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L2.34

34

Slides by Wes J. Lloyd

4/2/2020

L2.17

TCSS 422 A — Spring 2020
School of Engineering and Technology

® Command line

Loops: 1000

CONCURRENCY - 4

parameter argv[1] provides loop length

® Defines number of times the shared counter is incremented

prompt> gcc

prompt> ./thread 1000
Initial value : 0
Final value :

-o thread thread.c -Wall -pthread

2000

= Loops 100000

Initial valu

prompt> ./th
Initial valu

prompt> ./thread 100000

Final value :

Final value :

e : 0

143012 // huh??
read 100000

e : 0

137298 // what the??

April 2, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L235

35

2. Increment it
3. Store the reg

® Some of the in

CONCURRENCY -5

® When loop value is large why do we not achieve 200000 ?

® C code is translated to (3) assembly code operations
1. Load counter variable into register

ister value back in memory

® These instructions happen concurrently and VERY FAST

®m (P11 || P2) write incremented register values back to memory,
While (P1 || P2) read same memory

® Memory access here is unsynchronized (non-atomic)

crements are lost

April 2, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L2:36

36

Slides by Wes J. Lloyd

4/2/2020

L2.18

TCSS 422 A — Spring 2020
School of Engineering and Technology

W To perform parallel work, a single process may:

Launch Launch Both Aand B None of the
multiple multiple above
threads to processes to
execute code execute code
in parallel in parallel

while sharing without sharing
globaldatain global datain
memory memory

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app ..

37

PARALLEL PROGRAMMING

= To perform parallel work, a single process may:

® A. Launch multiple threads to execute code in parallel while
sharing global data in memory

® B. Launch multiple processes to execute code in parallel
without sharing global data in memory

= C. Both A and B

® D. None of the above

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L2:38

April 2, 2020

38

Slides by Wes J. Lloyd

4/2/2020

L2.19

TCSS 422 A — Spring 2020 4/2/2020
School of Engineering and Technology

PERSISTENCE

= DRAM: Dynamic Random Access Memory: DIMMs/SIMMs
= Stores data while power is present
= When power is lost, data is lost (volatile)

® Operating System helps “persist” data more permanently
=|/0 device(s): hard disk drive (HDD), solid state drive (SSD)
= File system(s): “catalog” data for storage and retrieval

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L2.39

April 2, 2020

39

PERSISTENCE - 2

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <assert.h>

4 #include <fcntl.h>

5 #include <sys/types.h>

6

7 int

8 main(int argc, char *argv[])

9 {

10 int fd = open("/tmp/file"™, O WRONLY | O CREAT
| O TRUNC, S IRWXU);

11 assert (fd > -1);

12 int rc = write(fd, "hello world\n", 13);

13 assert (rc == 13);

14 close (fd) ;

15 return 0;

16 }

® open(), write(), close(): OS system calls for device I/0

= Note: man page for open(), write() require page number:
“man 2 open”, ”“man 2 write”, “man close”

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L2.40

April 2, 2020

40

Slides by Wes J. Lloyd L2.20

TCSS 422 A — Spring 2020
School of Engineering and Technology

PERSISTENCE - 3

® To write to disk, OS must:
= Determine where on disk data should reside

= Perform sys calls to perform 1/0:
Read/write to file system (inode record)
Read/write data to file

® Provide fault tolerance for system crashes
= Journaling: Record disk operations in a journal for replay
= Copy-on-write - replicating shared data - see ZFS
= Carefully order writes on disk

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L2.41

April 2, 2020

41

SUMMARY:

OPERATING SYSTEM DESIGN GOALS

= ABSTRACTING THE HARDWARE
= Makes programming code easier to write
= Automate sharing resources - save programmer burden

= PROVIDE HIGH PERFORMANCE

= Minimize overhead from OS abstraction
(Virtualization of CPU, RAM, 1/0)

= Share resources fairly

= Attempt to tradeoff performance vs. fairness = consider
priority

" PROVIDE ISOLATION

= User programs can’t interfere with each other’s virtual
machines, the underlying OS, or the sharing of resources

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L2.42

April 2, 2020

42

Slides by Wes J. Lloyd

4/2/2020

L2.21

TCSS 422 A — Spring 2020 4/2/2020
School of Engineering and Technology

SUMMARY:

OPERATING SYSTEM DESIGN GOALS - 2

= RELIABILITY
= OS must not crash, 24/7 Up-time
= Poor user programs must not bring down the system:

Blue Screen

® Other Issues:
= Energy-efficiency

= Security (of data) a3 e e s e o e,
q a it 1a] 1eTng Sisk For Srash s ..
= Cloud: Virtual Machines T L T e

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L2.43

April 2, 2020

43

Process State

ﬁmltted interrupt

scheduler dispatch
lle}
or
event completion

event wait

/proc

CHAPTER 4:
PROCESSES

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington -

January 9, 2019

44

Slides by Wes J. Lloyd L2.22

TCSS 422 A — Spring 2020
School of Engineering and Technology

VIRTUALIZING THE CPU

® How should the CPU be shared?

®E Time Sharing:
Run one process, pause it, run another

®The act of swapping process A out of the CPU to run
process B is called a:

* CONTEXT SWITCH

efficiently?
= Goal is to

® How do we SWAP processes in and out of the CPU

minimize overhead of the swap

= OVERHEAD is time spent performing OS management
activities that don’t help accomplish real work

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.45

45

= Memory

= Registers

PROCESS

running program ‘

® Process comprises of:

Instructions (“the code”)
Data (heap)

PC: Program counter
Stack pointer

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.46

46

Slides by Wes J. Lloyd

4/2/2020

L2.23

TCSS 422 A — Spring 2020
School of Engineering and Technology

PROCESS API

Modern OSes provide a Process API for process support

= Create
= Create a new process

Destroy

= Terminate a process (ctrl-c)

= Wait

= Wait for a process to complete/stop

Miscellaneous Control
= Suspend process (ctrl-z)
= Resume process (fg, bg)

= Status
= Obtain process statistics: (top)

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 9, 2019

L2.47

47

PROCESS API: CREATE

1. Load program code (and static data) into memory
= Program executable code (binary): loaded from disk
= Static data: also loaded/created in address space

= Eager loading: Load entire program before running

= Lazy loading: Only load what is immediately needed
Modern OSes: Supports paging & swapping

2. Run-time stack creation

= Stack: local variables, function params, return address(es)

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 9, 2019

L2.48

48

Slides by Wes J. Lloyd

4/2/2020

L2.24

TCSS 422 A — Spring 2020
School of Engineering and Technology

PROCESS API: CREATE

3. Create program’s heap memory
= For dynamically allocated data

4. Other initialization
= |/0 Setup

Each process has three open file descriptors:
Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main ()
= OS transfers CPU control to the new process

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.49

L2.50

49
CPU Memory
""" code |
| static data
heap
stack
Process
| |
Loading:
iode Reads program from
static data . B
! disk into the address
""}’_ré_-q-r;;r;"" Space of process
TCSS422: Operating Systems [Winter 2019]
JanuavR2019 School of Engineering and Technology, University of Washington - Tacoma
50

Slides by Wes J. Lloyd

4/2/2020

L2.25

TCSS 422 A — Spring 2020

School of Engineering and Technology

PROCESS STATES

" RUNNING

= Currently executing instructions

= READY

= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= BLOCKED

= Process is not ready to run. It is waiting for another event

to complete:
Process has already been initialized and run for awhile
Is now waiting on 1/0 from disk(s) or other devices

TCSS422: Operating Systems [Winter 2019]

danuaryio204s School of Engineering and Technology, University of Washington - Tacoma

L2.51

51

PROCESS STATE TRANSITIONS

v
' Descheduled

Running Ready

Scheduled \
N L k

1/O: initiate //o: done

N\

Blocked)
AN ,

TCSS422: Operating Systems [Winter 2019]

LEGUELR)) AT School of Engineering and Technology, University of Washington - Tacoma

L2.52

52

Slides by Wes J. Lloyd

4/2/2020

L2.26

TCSS 422 A — Spring 2020
School of Engineering and Technology

OBSERVING PROCESS META-DATA

® Can inspect the number of CONTEXT SWITCHES made by a
process

® Let’s run mem.c (from chapter 2)

® cat /proc/{process-id}/status

Speculation_Store_Bypass: thread vulnerable
Cpus_allowed: T
iCpus_allowed_list: 0-7

_allowed: 00000000,00000001

r S e
voluntary ct switches: 1377

mluntgry_({xt_swit(hes: 13‘_,_;‘""

® proc “status” is a virtual file generated by Linux
® Provides a report with process related meta-data

= What appears to happen to the number of context switches
the longer a process runs? (mem.c)

TCSS422: Operating Systems [Spring 2020]

April2,2020 School of Engineering and Technology, University of Washington - Tacoma

L2.53

53

CONTEXT SWITCH

= How long does a context switch take?
= 10,000 to 50,000 ns (.01 to .05 ms)
®m 2.000 context switches is near 2100ms

Without CPU affinity

Cost of context switching on a dual Intel 5150

50000 T T T T v v - - . 240
45000 - 220
40000 200
35000 S
30000
160
25000

140
20000

Time to write a apge (ns)

120

Time 1o context switch (ns)

15000

10000 e Context swich 14 100
o Y Write a page

5000 ~J 80

0 10 20 30 40 50 60 70 80 90 100
Working set size (KB)

source: hit//bioa feunanet net'2040/1 1 doas - sake 4o ok 2 himd

TCSS422: Operating Systems [Spring 2020]

April 2, 2020 School of Engineering and Technology, University of Washington - Tacoma

L2.54

54

Slides by Wes J. Lloyd

4/2/2020

L2.27

TCSS 422 A — Spring 2020 4/2/2020
School of Engineering and Technology

When a process is in this state, it is

-w- advantageous for the Operating System to

perform a CONTEXT SWITCH to perform other
work

RUNNING READY BLOCKED All ofthe None of
above theabove

TCSS422: Operating Systems [Winter 2019]
.. January 9, 2019 tart the presgpisslte FE RiFEEHRSIARE TR OISR RISV ASPAHEXSAT FiBoma L2-5!.

55

QUESTION: WHEN TO CONTEXT SWITCH

® When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

® (a) RUNNING

" (b) READY

® (c) BLOCKED

m (d) All of the above

® (e) None of the above

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

January 9, 2019

L2.56

56

Slides by Wes J. Lloyd L2.28

TCSS 422 A — Spring 2020
School of Engineering and Technology

process

= Process list
Process Data

PROCESS DATA STRUCTURES

State of process: Ready, Blocked, Running

= Register context

® PCB (Process Control Block)
= A C-structure that contains information about each

m OS provides data structures to track process information

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.57

57

XV6 KERNEL DATA STRUCTURES

m xv6: pedagogical implementation of Linux
®m Simplified structures

// to st

int
int
int
int
int
int
int
int

}i

// the registers xv6 will save and restore

op and subsequently restart a process

eip;
esp;
ebx;
ecx;
edx;
esi;
edi;
ebp;

struct context ({

// Index pointer register

// Stack pointer register

// Called the base register

// Called the counter register
// Called the data register

// Source index register

// Destination index register
// Stack base pointer register

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.58

58

Slides by Wes J. Lloyd

4/2/2020

L2.29

TCSS 422 A — Spring 2020

School of Engineering and Technology

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack
// for this process
enum proc_state state; // Process state
int pid; // Process 1D
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process

struct trapframe *tf; // Trap frame for the
// current interrupt

TCSS422: Operating Systems [Winter 2019]

danuaryio204s School of Engineering and Technology, University of Washington - Tacoma

L2.59

59

LINUX: STRUCTURES

B struct task struct, equivalent to struct proc

= Provides process description
= Large: 10,000+ bytes
= /usr/src/linux-headers-{kernel version}/include/linux/sched.h

~ LOC 1391 - 1852 (4.4.0-170)
earlier was LOC 1227 - 1587

® struct thread info, provides “context”

= thread_info.h is at:

/usr/src/linux-headers-{kernel version} /arch/x86/include/asm/

TCSS422: Operating Systems [Winter 2019]

LEGUELR)) AT School of Engineering and Technology, University of Washington - Tacoma

L2.60

60

Slides by Wes J. Lloyd

4/2/2020

L2.30

TCSS 422 A — Spring 2020

School of Engineering and Technology

LINUX: THREAD_INFO

};

#endif

struct thread_info {

struct task_struct
struct exec_domain
u32
u32
u32
t

51

mm_segment_t
struct restart_block
void user

#ifdef CONFIG_X86_32

unsigned long

__u8

int

task; /
exec_domain; /
flags; /*
status; /*

cpu; /*
preempt_count; /*

addr_limit;
restart_block;
*sysenter_ return;

previous_esp; /*

*/

main task structure */
execution domain */

low level flags */

thread synchronous flags */
current CPU */

0 => preemptable,

<0 => BUG */

ESP of the previous stack in
case of nested (IRQ) stacks

supervisor_stack[0];

uaccess_err;

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.61

61

LINUX STRUCTURES - 2

® List of Linux data structures:

http://www.tldp.org/LDP/tlk/ds/ds.html

® Description of process data structures:
https://learning.oreilly.com/library/view/linux-kernel-

development/9780768696974/cover.html

3rd edition is online (dated from 2010):
See chapter 3 on Process Management

Safari online - accessible using UW ID SSO login
Linux Kernel Development, 3" edition

Robert Love
Addison-Wesley

January 9, 2019

TCSS422: Operating Systems [Winter 2019]
School of Engineering and Technology, University of Washington - Tacoma

L2.62

62

Slides by Wes J. Lloyd

4/2/2020

L2.31

TCSS 422 A — Spring 2020 4/2/2020
School of Engineering and Technology

QUESTIONS

TCSS422: Operating Systems [Spring 2020]

L il 2 School of Engineering and Technology, University of Washington -

64

Slides by Wes J. Lloyd L2.32

