
TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.1Slides by Wes J. Lloyd

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

HDDs, RAID, File Systems
Final Exam Review

Wes J. Lloyd
School of Engineering and Technology
University of Washington  - Tacoma

TCSS 422: OPERATING SYSTEMS

 This is a “cloud computing” course

 Previous year’s course: 
http://faculty.washington.edu/wlloyd/courses/tcss562

 Course introduces major cloud computing delivery models:
Infrastructure-as-a-Service (IaaS), Platform (PaaS), Functions 
(FaaS), Container (CaaS), Software (SaaS)

 Course features a software development project where we 
build and evaluate software entirely for the cloud

 Fall  2019 focus: developing serverless software: e.g. data 
processing pipelines

 Fall  2020 focus: serverless/cloud-native software, 
containerization, cloud services

FALL 2020 - TCSS 562
SOFTWARE ENG. FOR CLOUD COMPUTING

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.2



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.2Slides by Wes J. Lloyd

 Class does not have prerequisites

 TCSS 422 provides good foundation – we use Linux

 If interested in enrolling, contact by email

 Can take 1 x 500-level class, counts as 400-level elective

 SAVINGS: able to take graduate course and only pay 
undergraduate tuition

 DOUBLE-DIP !!

 Class taken in last quarter of undergrad can be used twice
 Once as a undergraduate elective towards graduation

 Once as a graduate elective towards the Masters in
Computer Science & Systems (MSCSS) degree

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.3

TCSS 562 – CLOUD COMPUTING - 2

 Independent study in “cloud computing”

 Work to collaboratively draft a proposal
and submit to Dr. Chinn, CSS Chair for Approval

 Focus on variety of topics related to cloud/distributed systems

 Variable credits from 1 to 5

 Involves participation in weekly research group meeting

 Spring 2020: currently Wednesday at 12:30p

 Usually 1 or 2 one-on-one or small group meeting during week 

 Contact by email if interested

 Identify preferred quarter(s)

 Number of credits

 Can take up to 10 credits TCSS 498/499 - CSS elective credits

NEXT YEAR - TCSS 498/499 (ANY QUARTER)
UNDERGRADUATE READIN/RESEARCH IN CSS

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.4



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.3Slides by Wes J. Lloyd

 Please complete the course evaluation survey at:
 TCSS 422 B - Computer Operating Systems:

 https://uwt.iasystem.org/survey/106940

 New this quarter:
 Assignment 2– available in Java or C
 Tutorial 2– parallel prime number generation 
 Assignment 3– Kernel Module programming- tutorial format
 Course entirely online & recorded
 Paperless daily feedback surveys 
 Quizzes with multiple attempts
 Problem solutions w/ document cam
 Open book, note, and internet midterm and final exam
 Slide revisions & refactoring for 100% online delivery

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.5

COURSE EVALUATION: TCSS 422 B
SPRING 2020

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice 
problems – to be posted 

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant array of  inexpensive disks)- very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today  – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.6

OBJECTIVES – 6/4



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.4Slides by Wes J. Lloyd

 Please classify your perspective on material covered in 
today’s class (35 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.44 ( from 7.3)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.56 ( from 5.83)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.7

MATERIAL / PACE



June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.8

FEEDBACK FROM 6/2



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.5Slides by Wes J. Lloyd

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice 
problems – to be posted 

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant array of  inexpensive disks)- very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today  – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.9

OBJECTIVES – 6/4

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice 
problems – to be posted 

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant array of  inexpensive disks)- very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today  – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.10

OBJECTIVES – 6/4



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.6Slides by Wes J. Lloyd

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice 
problems – to be posted 

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant array of  inexpensive disks)- very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today  – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.11

OBJECTIVES – 6/4

CH. 37:
HARD DISK DRIVES

June 4, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma L19.12



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.7Slides by Wes J. Lloyd

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice 
problems – to be posted 

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant array of  inexpensive disks)- very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today  – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.13

OBJECTIVES – 6/4

 Chapter 37

 HDD Internals

 Seek time

 Rotational latency

 Transfer speed

 Capacity

 Scheduling algorithms

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.14

OBJECTIVES



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.8Slides by Wes J. Lloyd

 Single track disk

 Head: one per sur face of drive

 Arm: moves heads across surface of platters

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.15

EXAMPLE: SIMPLE DISK DRIVE

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.16

HARD DISK STRUCTURE



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.9Slides by Wes J. Lloyd

 Rotational latency (Trotation): time to rotate to desired sector

 Average Trotation is ~ about half the time of a full  rotation

 How to calculate Trotation from rpm 

1. Calculate time for 1 rotation based on rpm
> Convert rpm to rps

2. Divide by two (average rotational latency)

 7200rpm = 8.33ms per rotation /2= ~4.166ms

 10000rpm = 6ms per rotation /2= ~3ms

 15000rpm = 4ms per rotation /2= ~2ms

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.17

SINGLE-TRACK LATENCY:
THE ROTATIONAL DELAY

 Seek time (Tseek): time to move disk arm to proper track

 Most time consuming HDD operation

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.18

SEEK TIME



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.10Slides by Wes J. Lloyd

 Acceleration  coasting  deceleration settling

 Acceleration: the arm gets moving

 Coasting: arm moving at full speed

 Deceleration: arm slow down

 Settling: Head is carefully positioned over track

 Settling time is often high, from .5 to 2ms

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.19

FOUR PHASES OF SEEK

Data transfer

Final phase of I/O: time to read or write to disk 
surface

Complete I/O cycle:

1. Seek (accelerate, coast, decelerate, settle)

2. Wait on rotational latency (until track aligns)

3. Data transfer

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.20

HDD I/O



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.11Slides by Wes J. Lloyd

 Sectors are offset across tracks to allow time for head to 
reposition for sequential reads

 Without track skew, when head is repositioned sector 
would have already been passed

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.21

TRACK SKEW

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.22

TRACK SKEW - 2



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.12Slides by Wes J. Lloyd

 Buffer to support caching reads and writes

 Improves drive response time

 Up to 256 MB, slowly have been growing

 Two styles
Writeback cache

 Report write complete immediately when data is 
transferred to HDD cache

 Dangerous if power is lost

Writethrough cache

 Reports write complete only when write is physically 
completed on disk

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.23

HDD CACHE

 Can calculate I/O transfer speed with:

 I/O Time:

 Ttransfer = DATAsize x RateI/O

 Rate of I/O:

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.24

TRANSFER SPEED



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.13Slides by Wes J. Lloyd

 Compare two disks:

1. Random workload: 4KB (random read on HDD)

2. Sequential workload: 100MB (contiguous sectors)
> Calculate Trotation from rpm  (rpmrps, time for 1 rotation / 2)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.25

EXAMPLE: I/O SPEED

1. Random workload: 4KB (random read on HDD)

2. Sequential workload: 100MB (contiguous sectors)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.26

EXAMPLE: I/O SPEED

There is a huge gap in drive throughput
between random and sequential workloads

Ttransfer = Datasize x RateI/O

4 KB

100 MB



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.14Slides by Wes J. Lloyd

 See sample HDD configurations here:
 Up to 20 TB

 https://www.westerndigital.com/products/data-center-
drives#hard-disk-hdd

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.27

MODERN HDD SPECS

 Disk scheduler: determine how to order I/O requests

 Multiple levels of scheduling: OS and HW

 OS: provides ordering

 HW: further optimizes using intricate details of physical 
HDD implementation and state

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.28

DISK SCHEDULING



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.15Slides by Wes J. Lloyd

 Disk scheduling: which I/O request to schedule next

 Shortest Seek Time First (SSTF)

 Order queue of I/O requests by nearest track

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.29

DISK SCHEDULING ALGORITHMS - 1

 Problem 1: HDD abstraction

 Drive geometry not available to OS.  Nearest-block-first is 
a comparable alternate algorithm.

 Problem 2: Starvation

 Steady stream of requests for local tracks may prevent 
arm from traversing to other side of platter
 Keeps head local to a few tracks

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.30

SSTF ISSUES



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.16Slides by Wes J. Lloyd

 SCAN (SWEEP)
 Perform single repeated passes back and for th across disk
 Issue: if request arrives for a recently visited track it  will  not 

be revisited unti l a full cycle completes

 F -SCAN
 Freeze incoming requests by adding to queue during scan
 Cache arriving requests unti l  later
 Delays help avoid starvation by postponing servicing nearby 

newly arriving requests vs. requests at edge of sweep 
 Provides better fairness

 Elevator (C-SCAN) – circular scan
 Sweep only one direction (e.g. outer to inner) and repeat
 SCAN favors middle tracks vs. outer tracks with 2-way sweep

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.31

DISK SCHEDULING ALGORITHMS - 2

Shortest Positioning Time First

 Select next sector to read based 
on which sector can be reached first
 Use when :

 Next read depends on current position
 which track?

which sector?

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.32

DISK SCHEDULING ALGORITHMS - 3

On modern drives, both seek and rotation are roughly equivalent:
Thus, SPTF (Shortest Positioning Time First) is useful.



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.17Slides by Wes J. Lloyd

Group temporary adjacent requests 

Reduce overhead

Read (memory blocks): 33 8 34

How long we should wait for I/O ?

When do we know we have waited too long?

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.33

OPTIMIZATION: I/O MERGING

CH. 38: RAID

June 4, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma L19.34



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.18Slides by Wes J. Lloyd

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice 
problems – to be posted 

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant array of  inexpensive disks)- very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today  – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.35

OBJECTIVES – 6/4

 Redundant array of inexpensive disks (RAID)

 Grouping together of multiple disks

 Provides the il lusion of one GIANT disk

 For performance improvements:
 STRIPING: create big disk by spreading data across several
 Data reads/writes are automatically distributed to physically 

different device
 MIRRORING: duplicate disks: read transactions are distributed 

across disks and can run in parallel 
 2 disks: each handles 50% of the reads – doubles throughput

 For redundancy / fault tolerance:
 Mirroring: duplicates data in case of drive failure

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.36

RAID



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.19Slides by Wes J. Lloyd

 Good system administrators will always say:

RAID is not a backup!

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.37

RAID - 2

 RAID Level 0: Simplest form

 Stripe blocks of data across disks in a round-robin 
fashion

 Excellent performance and capacity

 Capacity
 Capacity is equal to the sum of all disks

 Performance
 R/W are distributed in round-robin fashion across all disks

 Reliability
 No redundancy

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.38

RAID LEVEL 0 - STRIPING



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.20Slides by Wes J. Lloyd

 RAID 1 tolerates HDD failure
 Two copies of each block across disks
 RAID 1 Example with 4 disks, each data block saved twice:

 Can suffer the loss of two disks
 Just not two even or odd numbered disks !!

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.39

RAID LEVEL 1 - MIRRORING

 Capacity: RAID 1 is expensive

 The useful capacity is n/2

 Reliability: RAID-1 does well

 Can tolerate the loss of disk(s)

 Up to n/2 disk failures tolerated depending on which disk 
fails

 Performance: RAID-1 is slow at writing

Must wait for writes to complete to all disk(s)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.40

RAID 1 - EVALUATION



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.21Slides by Wes J. Lloyd

 Raid 5 – trades off space requirement for redundancy

 In a 5-disk array, you can only recover from the loss of 1 HDD

 5 disk RAID 5: Capacity is 80% of 5 disks

 Writes rotate across disks, distr ibuting a parity data 

 To rebuild data blocks you only need data from 4 disks

 Any drive can fail, as long 
just one drive fails

 To recover need:
3 blocks + 1 parity block

-or-
4 blocks

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.41

RAID 5 – PARITY DISK

 Capacity: Useful capacity is (n-1) disks

 A HDD must be dedicated as a parity disk

 Performance

 Writes are very slow: roughly = n/4

 Reads are equivalent to a single disk

 Reliability

 In RAID 5, a disk may fail, and the RAID keeps running

 Rebuilds are slow !!!

 Depending on disk size 8-24 hours is not unheard of

 RAID 6: Adds a second parity disk for increased resil ience

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.42

RAID 5 – EVALUATION



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.22Slides by Wes J. Lloyd

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.43

RAID COMPARISON

CH. 39: FILESYSTEMS

June 4, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma L19.44



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.23Slides by Wes J. Lloyd

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice 
problems – to be posted 

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant array of  inexpensive disks)- very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today  – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.45

OBJECTIVES – 6/4

 Implemented by the OS as pure software

 Provide:

 Data structures: to describe disk content

 Arrays of blocks, index-nodes, trees

 Access methods: provides mapping for OS calls open(), 
read(), write(), etc.

Which structures are read? written? For each call?

 How efficiently does the structure support file operations?

 Many available fi le systems (A-Z)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.46

FILE SYSTEMS



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.24Slides by Wes J. Lloyd

 Numerous file systems abound (A-Z)

 ADFA, AdvFS, AFS, AFS, AosFS, AthFS, BFS, BFS, Btrfs, 
CFS, CMDFS, CP/M, DDFS, DTFS, DOS 3.x, EAFS, EDS, ext, 
etx2, etx3, ext4, ext3cow, FAT, VFAT, FATX, FFS, Fossil, 
Files-11, Felx, HFS, HPFS, HTFS, IceFS, ISO 9660, JFS, 
JXFS, Lisa FS, LFS, MFS, Minix FS, NILFS, NTFS, NetWare 
FS, OneFS, OFS, OS-9, PFS, ProDOS, Qnx5fs, Qnx6fs, 
ReFS, ReiserFS, Reiser4, Reliance, Reliance Nitro, RFS, 
S51K, SkyFS, SFS, Soup (Apple), SpadFS, STL, TRFS, Tux3, 
UDF, UFS, UFS2, VxFS, VLIR, WAFL, XFS, FS, ZFS

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.47

FILE SYSTEMS: A TO Z

 Disk is divided into blocks

 Block size supported by most HDDs is 512 bytes

 Typical FS block size is 4 KB

 An instance of a fi le system is typically called a partition

 A single physical disk can have multiple partitions (file 
systems)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.48

FILE SYSTEM ORGANIZATION



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.25Slides by Wes J. Lloyd

 File system is stored using blocks on the disk

 Location considered a “reserved” region of the disk

 Corruption of the reserved region can destroy the file 
tables causing data on the disk to by unaddressable

 File system keeps track of:

Which blocks comprise a file

Where the blocks reside (are they contiguous?)

 The size of files

 The owner of files

 File permissions (e.g. R/W/X)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.49

FILE SYSTEM STORAGE

 Consider a 64 block disk (w/ 4096B block size) 
a.k.a. a 256 KB disk

 Legacy low density 5-¼“ floppies had 
160KB single side, 360KB double sided 
capacity                                                

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.50

FILE SYSTEM EXAMPLE

64 x 4KB
blocks 

256 KB Storage Map



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.26Slides by Wes J. Lloyd

 Reserved region is at the front on a 64-block disk partition

 8 x 4KB blocks for the file system
 File sys contains: superblock, i-node bitmap, data bitmap, i-nodes

 Each file is tracked using an “index-node” (inode)

 56 x 4 KB blocks for data 

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.51

FILE SYSTEM LOCATION

File System goes here
Data goes here

 Consider 256kb disk, with 56 free data blocks

 i -node size 256 bytes each

 4KB block can contain 16 inodes

 Need to track up to 56 fi les (1 for each 4kb data block)

 Need minimum of 4 x 4KB blocks required for inodes (64)

 EXAMPLE here reserves 5 x 4KB blocks for fi les

 Provides some spare inodes

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.52

FILE SYSTEM EXAMPLE - 2



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.27Slides by Wes J. Lloyd

 First 4KB block of disk

 Contains information about the fi le system: “S” block below
 How many inodes?

 How many data blocks?

 Location of inode table

 File system identity code(s)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.53

SUPERBLOCK

 File system maintains list of free inodes and data blocks

 Example stores free list using bitmaps

 Bitmaps: array of bits that track if inode or data block 
is in use (0/1)

 Inode bitmap (“i” block below): 80 bits for inode table

 Data bitmap (“d” block below): 56 bits for data blocks

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.54

FILE SYSTEM - FREE LIST



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.28Slides by Wes J. Lloyd

 Every inode has an inode number (index value)

 Based on inode number, disk location can be calculated

 Example: inode number=32

 Offset into inode region = 32

 Size of inode=256 bytes

 Inode number x inode size = 8192

 Inode location = inode star t addr + (inode no. x inode size)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.55

INODE EXAMPLE

 Every inode has an inode number (index value)

 Based on inode number, disk location can be calculated

 Example: inode number=32

 Offset into inode region = 32

 Size of inode=256 bytes

 Inode number x inode size = 8192

 Inode location = inode star t addr + (inode no. x inode size)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.56

INODE EXAMPLE

What is the inode location?

12KB + (32 x 256)

12KB + 8KB = 20 KB



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.29Slides by Wes J. Lloyd

 Inodes store all  information about a fi le:

 File type (e.g. directory, file, other)

 Size, and the number of blocks allocated to a fi le on disk

 R/W/X permissions

 Time information

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.57

INODE EXAMPLE - 2

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.58

INODES – EXT2 LINUX FS



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.30Slides by Wes J. Lloyd

 Inodes use a multi -level index
 First level: includes 12-direct block pointers
 Second level: provides 1 indirect block pointer
 Points to a Block: contains 1,024 x 4 byte block pointers

 Indirect pointer:
 12 direct block pointers, 1 indirect block ptr to a block
 Maximum fi le size:
 (12 + 1,024 entries) * 4KB = (1,036 x 4KB) = 4,144 KB

 Need more space?
 Can have double and triple indirect block pointers

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.59

MULTI-LEVEL INDEXING

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.60

MULTI-LEVEL INDEX - 2



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.31Slides by Wes J. Lloyd

 Double indirect pointer
 First level: include 12-direct block pointers
 Second level: include 1 indirect block pointer
 Third level: include 1 indirect block pointer
 Maximum fi le size: (entries x 4KB block size)
 12 + 1,024 + (1,024 x 1,024) * 4KB
 1,049,612 x 4KB = 4,198,448 KB 
 ~ 4GB

 Tr iple indirect pointer
 Adds another level & indirect block pointer
 Maximum fi le size: (entries x 4KB block size)
 12 + 1,024 + (10242) + (10243) * 4KB = ~ 4TB

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.61

MULTI-LEVEL INDEX - 3

 Extents have a pointer with a stored length

 Each file has multiple extents

 A single extent would require contiguous fi le allocation

 In contrast to block pointers:

 Extents conserve space better than multi - level indexes, but are less 
agile at representing file allocations scattered across the disk

 Multi-level indexes excel for files w/ blocks scattered across the disk

 Don’t care if storage is contiguous because each block has a pointer

 File indexing presents a space vs. f lexibi l i ty tradeof f
 Extents (space efficient, rigid), multi-level indexes (better for tracking 

files w/ fragmented blocks)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.62

EXTENTS



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.32Slides by Wes J. Lloyd

 Multi-level indexing

 ext2, ext3  

 can you have a disk >4TB w/ ext3 ??

 Extents

 ext4 (default Ubuntu 16.04), XFS (default CentOS 7)

 NTFS, Btrfs (b-tree fs)

 Exhaustive file systems feature comparison
 https://en.wikipedia.org/wiki/Comparison_of_file_systems

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.63

FILE INDEXING

TCSS 422 WILL RETURN 
AT ~2:35PM

June 4, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma L15.64



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.33Slides by Wes J. Lloyd

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice 
problems – to be posted 

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant array of  inexpensive disks)- very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today  – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.65

OBJECTIVES – 6/4

 A computer system uses a simple base/bounds register pair to 
vir tualize address spaces.  For each traces fi ll  in the missing 
values of vir tual addresses, physical addresses, base, and/or 
bounds registers.  In some cases, it is not possible to provide 
an exact value.  If so, specify a range (e.g. greater than 100), 
or value that is not a single number.

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.66

QUESTION 1 – BASE AND BOUNDS



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.34Slides by Wes J. Lloyd

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.67

Q1 - 2

 Consider a computer with 4 GB (232) of physical memory, 
where the page size is 4 KB (212).  For simplicity assume than 
1GB=1000MB, 1MB=1000KB, 1KB=1000 bytes

 (a) How many pages must be tracked by a single-level page if 
the computer has 4GB (232) of physical memory and the page 
table size is 4 KB (212)?

 (b) How many bits are required for the vir tual page number 
(VPN) to address any page within this 4GB (232) memory 
space?

 (c) Assuming that the smallest addressable unit of memory 
within a page is a byte (8-bits), how many bits are required for 
the of fset to refer to any byte in the 4 KB page?

 (d) Assuming each page table entry (PTE) requires 4 bytes of 
memory, how much memory is required to store the page 
table for one process (in MB)?

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.68

QUESTION 2 – SINGLE-LEVEL PAGE TABLE



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.35Slides by Wes J. Lloyd

 (e) Using this memory requirement, how many processes 
would fi ll  the memory with page table data on a 4GB 
computer?

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.69

Q2 - 2

 Consider a computer with 1 GB (230) of physical memory, 
where the page size is 1024 bytes (1KB) (210).  We would l ike 
to index memory pages using a two level page table consisting 
of a page directory which refers to page tables which are 
created on demand to index the entire memory space.

 For simplicity assume than 1GB=1000MB, 1MB=1000KB, 
1KB=1000 bytes

 (a) For a two-level page table, divide the VPN in half. How 
many bits are required for the page directory index (PDI) in a 
two-level scheme?

 (b) How many bits are required for the page table index (PTI)?

 (c) How many bits are required for an offset to address any 
byte in the 1 KB page?

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.70

QUESTION 3 - TWO-LEVEL PAGE TABLE



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.36Slides by Wes J. Lloyd

 (d) Assuming each page table entry (PTE) requires 4 bytes of 
memory, how many extra bits are available for status bits?

 (e) HelloWorld.c consists of 4 memory pages. One code page, 
one heap page, one data segment page, and one stack 
segment page. How large is the two-level page table in bytes 
with the structure described above that could index the all  4 
memory pages of HelloWorld.c?
Hint: There should be 2 tables,  a page directory, and a page table.

 (f) Assuming the same page table as for HelloWorld.c, using 
the exact same two-level page table, how large in bytes could 
the program grow to before needing to expand the page table?

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.71

Q3 - 2

 Consider a 3-element cache with the cache arrival sequences 
below.

 Determine the number of cache hits and cache misses using 
each of the following cache replacement policies:

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.72

QUESTION 4 – CACHE TRACING



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.37Slides by Wes J. Lloyd

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.73

Q4 - 2

 Free space management involves capturing a description of 
the computer’s free memory using a data structure, storing 
this data structure in memory, and OS support to rapidly use 
this structure to determine an appropriate location for new 
memory allocations.  An efficient implementation is very 
important when scaling up the number of operations the OS is 
required to per form.  

 Consider the use of a l inked l ist for a free space list where 
each node is represented by placing the following structure in 
the header of the memory chunk:
typedef struct __node_t
{

int size;
struct __node_t *next;

} node_t;

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.74

QUESTION 5 – FREE SPACE MANAGEMENT



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.38Slides by Wes J. Lloyd

 Consider the following free space l ist:

 (a) Consider the next fit allocation strategy.  For this free list 
above, how many comparison operations must be performed 
to identify a free chunk of 30-bytes ?

 (b) After the last free space identification, the chunk is split 
and the remaining free space is returned to the free space 
l ist.  Now, consider the next fi t allocation strategy.  After 
finding a free space for the previous request, how many 
comparisons are required to identify a free chunk of 10-bytes? 

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.75

Q5 - 2

 Now, after the last free space identification the chunk is split 
and the remaining free space is returned to the free space 
l ist.  Now consider each of the following free space allocation 
strategies.  How many comparisons are required on the 
updated free space l ist to find a free chunk of 2 bytes using:

 (c) best fit?

 (d) worst fit?

 (e) first fit?

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L19.76

Q5 - 3



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.39Slides by Wes J. Lloyd

QUESTIONS

EXTRA SLIDES

June 4, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma L19.78



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.40Slides by Wes J. Lloyd

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.79

COMMON FILE CHARACTERISTICS

 Directory contains fi le name and i number (index)

 Extra fi les for the parent d ir and pwd

 Can store dirs as linear l ist, often stored in inodes

 XFS uses B-trees to eliminate sequential search of fi lenames 
for duplicates when creating a new file

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.80

DIRECTORIES



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.41Slides by Wes J. Lloyd

 Consider reading a fi le called “/foo/bar”

 Traverse star ting at root “/” (inumber = 2) to find fi le

 Read each inode to dereference fi le block location on disk

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.81

FILE I/O - READ

 3 block fi le: 11 reads, 3 writes (last access t ime)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.82

FILE I/O – READ OPERATIONS



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.42Slides by Wes J. Lloyd

 At least Five I/Os to update an existing file

 one to read the data bitmap

 one to write the bitmap (to reflect its new state to disk)

 two more to read and then write the inode

 one to write the actual block itself.

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.83

FILE I/O - WRITE

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.84

FILE I/O – WRITE - 2



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.43Slides by Wes J. Lloyd

 Free Lists

 Linked list of free blocks

 Head node tracks first free block, each subsequent block 
is linked with a pointer

 Bitmaps
 Bit-wise arrays of free blocks

 B-trees (XFS)
 Represents free list in a more compact form, with better search 

performance

 Free list design impacts efficiency of finding free blocks

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.85

FREE SPACE MANAGEMENT

 Two approaches to cache allocation

 Static partitioning

 Allocate a fixed size cache at system boot time

 For example: dedicate 10% of memory for disk R/W cache

 Dynamic partitioning 

 Linux has a unified page cache
 Pages are cached to a unified page cache for multiple purposes 

 Memory virtualization pages

 Inodes, disk pages

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.86

CACHING READS AND WRITES



TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.44Slides by Wes J. Lloyd

 Subsequent fi le opens to a cache file can eliminate reads

 Benefits of write caching
 Batch updates together to reduce HDD requests
 Writes can be scheduled intelligently in the future
 Some writes can be avoided altogether
 For example: short lived tmp files

 Typical write buffering is from 5 to 30 seconds

 Risk of data loss
 Fsync(): force synchronization to disk
 Some apps such as database use to ensure immediate writes

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.87

FILE CACHING

WILL RETURN IN A FEW 
MINUTES

WJL1



Slide 88

WJL1 Wes J. Lloyd, 5/30/2020


