
TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.1Slides by Wes J. Lloyd

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

HDDs, RAID, File Systems
Final Exam Review

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS
 This is a “cloud computing” course

 Previous year’s course:
http://faculty.washington.edu/wlloyd/courses/tcss562

 Course introduces major cloud computing delivery models:
Infrastructure-as-a-Service (IaaS), Platform (PaaS), Functions
(FaaS), Container (CaaS), Software (SaaS)

 Course features a software development project where we
build and evaluate software entirely for the cloud

 Fall 2019 focus: developing serverless software: e.g. data
processing pipelines

 Fall 2020 focus: serverless/cloud-native software,
containerization, cloud services

FALL 2020 - TCSS 562
SOFTWARE ENG. FOR CLOUD COMPUTING

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.2

 Class does not have prerequisites

 TCSS 422 provides good foundation – we use Linux

 If interested in enrolling, contact by email

 Can take 1 x 500-level class, counts as 400-level elective

 SAVINGS: able to take graduate course and only pay
undergraduate tuition

 DOUBLE-DIP !!

 Class taken in last quarter of undergrad can be used twice
 Once as a undergraduate elective towards graduation

 Once as a graduate elective towards the Masters in
Computer Science & Systems (MSCSS) degree

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.3

TCSS 562 – CLOUD COMPUTING - 2

 Independent study in “cloud computing”

 Work to collaboratively draft a proposal
and submit to Dr. Chinn, CSS Chair for Approval

 Focus on variety of topics related to cloud/distributed systems

 Variable credits from 1 to 5

 Involves participation in weekly research group meeting

 Spring 2020: currently Wednesday at 12:30p

 Usually 1 or 2 one-on-one or small group meeting during week

 Contact by email if interested

 Identify preferred quarter(s)

 Number of credits

 Can take up to 10 credits TCSS 498/499 - CSS elective credits

NEXT YEAR - TCSS 498/499 (ANY QUARTER)
UNDERGRADUATE READIN/RESEARCH IN CSS

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.4

 Please complete the course evaluation survey at:
 TCSS 422 B - Computer Operating Systems:

 https://uwt.iasystem.org/survey/106940

 New this quarter:
 Assignment 2– available in Java or C
 Tutorial 2– parallel prime number generation
 Assignment 3– Kernel Module programming- tutorial format
 Course entirely online & recorded
 Paperless daily feedback surveys
 Quizzes with multiple attempts
 Problem solutions w/ document cam
 Open book, note, and internet midterm and final exam
 Slide revisions & refactoring for 100% online delivery

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.5

COURSE EVALUATION: TCSS 422 B
SPRING 2020

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice
problems – to be posted

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant ar ray of inexpensive disks) - very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.6

OBJECTIVES – 6/4

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.2Slides by Wes J. Lloyd

 Please classify your perspective on material covered in
today’s class (35 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.44 (from 7.3)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.56 (from 5.83)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.7

MATERIAL / PACE

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.8

FEEDBACK FROM 6/2

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice
problems – to be posted

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant ar ray of inexpensive disks)- very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.9

OBJECTIVES – 6/4

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice
problems – to be posted

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant ar ray of inexpensive disks) - very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.10

OBJECTIVES – 6/4

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice
problems – to be posted

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant ar ray of inexpensive disks)- very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.11

OBJECTIVES – 6/4

CH. 37:
HARD DISK DRIVES

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L19.12

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.3Slides by Wes J. Lloyd

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice
problems – to be posted

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant ar ray of inexpensive disks)- very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.13

OBJECTIVES – 6/4

 Chapter 37

 HDD Internals

 Seek time

 Rotational latency

 Transfer speed

 Capacity

 Scheduling algorithms

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.14

OBJECTIVES

 Single track disk

 Head: one per surface of drive

 Arm: moves heads across surface of platters

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.15

EXAMPLE: SIMPLE DISK DRIVE

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.16

HARD DISK STRUCTURE

 Rotational latency (Trotation): time to rotate to desired sector

 Average Trotation is ~ about half the time of a full rotation

 How to calculate Trotation from rpm

1. Calculate time for 1 rotation based on rpm
> Convert rpm to rps

2. Divide by two (average rotational latency)

 7200rpm = 8.33ms per rotation /2= ~4.166ms

 10000rpm = 6ms per rotation /2= ~3ms

 15000rpm = 4ms per rotation /2= ~2ms

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.17

SINGLE-TRACK LATENCY:
THE ROTATIONAL DELAY

 Seek time (Tseek): time to move disk arm to proper track

 Most time consuming HDD operation

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.18

SEEK TIME

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.4Slides by Wes J. Lloyd

 Acceleration coasting deceleration settling

 Acceleration: the arm gets moving

 Coasting: arm moving at full speed

 Deceleration: arm slow down

 Settl ing: Head is carefully positioned over track

 Settling time is often high, from .5 to 2ms

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.19

FOUR PHASES OF SEEK

Data transfer

Final phase of I/O: time to read or write to disk
surface

Complete I/O cycle:

1. Seek (accelerate, coast, decelerate, settle)

2. Wait on rotational latency (until track aligns)

3. Data transfer

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.20

HDD I/O

 Sectors are offset across tracks to allow time for head to
reposition for sequential reads

 Without track skew, when head is repositioned sector
would have already been passed

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.21

TRACK SKEW

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.22

TRACK SKEW - 2

 Buffer to support caching reads and writes

 Improves drive response time

 Up to 256 MB, slowly have been growing

 Two styles
Writeback cache

 Report write complete immediately when data is
transferred to HDD cache

 Dangerous if power is lost

Writethrough cache

 Reports write complete only when write is physically
completed on disk

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.23

HDD CACHE

 Can calculate I/O transfer speed with:

 I/O Time:

 Ttransfer = DATAsize x RateI/O

 Rate of I/O:

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.24

TRANSFER SPEED

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.5Slides by Wes J. Lloyd

 Compare two disks:

1. Random workload: 4KB (random read on HDD)

2. Sequential workload: 100MB (contiguous sectors)
> Calculate Trotation from rpm (rpmrps, time for 1 rotation / 2)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.25

EXAMPLE: I/O SPEED

1. Random workload: 4KB (random read on HDD)

2. Sequential workload: 100MB (contiguous sectors)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.26

EXAMPLE: I/O SPEED

There is a huge gap in drive throughput
between random and sequential workloads

Ttransfer = Datasize x RateI/O

4 KB

100 MB

 See sample HDD configurations here:
 Up to 20 TB

 https://www.westerndigital.com/products/data-center-
drives#hard-disk-hdd

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.27

MODERN HDD SPECS

 Disk scheduler: determine how to order I/O requests

 Multiple levels of scheduling: OS and HW

 OS: provides ordering

 HW: further optimizes using intricate details of physical
HDD implementation and state

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.28

DISK SCHEDULING

 Disk scheduling: which I/O request to schedule next

 Shortest Seek Time First (SSTF)

 Order queue of I/O requests by nearest track

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.29

DISK SCHEDULING ALGORITHMS - 1

 Problem 1: HDD abstraction

 Drive geometry not available to OS. Nearest-block-first is
a comparable alternate algorithm.

 Problem 2: Starvation

 Steady stream of requests for local tracks may prevent
arm from traversing to other side of platter
 Keeps head local to a few tracks

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.30

SSTF ISSUES

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.6Slides by Wes J. Lloyd

 SCAN (SWEEP)
 Perform single repeated passes back and forth across disk
 Issue: if request arrives for a recently visited track it will not

be revisited until a full cycle completes

 F-SCAN
 Freeze incoming requests by adding to queue during scan
 Cache arriving requests until later
 Delays help avoid starvation by postponing servicing nearby

newly arriving requests vs. requests at edge of sweep
 Provides better fairness

 Elevator (C-SCAN) – circular scan
 Sweep only one direction (e.g. outer to inner) and repeat
 SCAN favors middle tracks vs. outer tracks with 2-way sweep

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.31

DISK SCHEDULING ALGORITHMS - 2

Shortest Positioning Time First

 Select next sector to read based
on which sector can be reached first
 Use when :

 Next read depends on current position
 which track?

which sector?

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.32

DISK SCHEDULING ALGORITHMS - 3

On modern drives, both seek and rotation are roughly equivalent:
Thus, SPTF (Shortest Positioning Time First) is useful.

Group temporary adjacent requests

Reduce overhead

Read (memory blocks): 33 8 34

How long we should wait for I/O ?

When do we know we have waited too long?

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.33

OPTIMIZATION: I/O MERGING

CH. 38: RAID

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L19.34

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice
problems – to be posted

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant ar ray of inexpensive disks)- very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.35

OBJECTIVES – 6/4

 Redundant array of inexpensive disks (RAID)

 Grouping together of multiple disks

 Provides the illusion of one GIANT disk

 For performance improvements:
 STRIPING: create big disk by spreading data across several
 Data reads/writes are automatically distributed to physically

different device
 MIRRORING: duplicate disks: read transactions are distributed

across disks and can run in parallel
 2 disks: each handles 50% of the reads – doubles throughput

 For redundancy / fault tolerance:
 Mirroring: duplicates data in case of drive failure

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.36

RAID

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.7Slides by Wes J. Lloyd

 Good system administrators will always say:

RAID is not a backup!

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.37

RAID - 2

 RAID Level 0: Simplest form

 Stripe blocks of data across disks in a round-robin
fashion

 Excellent performance and capacity

 Capacity
 Capacity is equal to the sum of all disks

 Performance
 R/W are distributed in round-robin fashion across all disks

 Reliability
 No redundancy

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.38

RAID LEVEL 0 - STRIPING

 RAID 1 tolerates HDD failure
 Two copies of each block across disks
 RAID 1 Example with 4 disks, each data block saved twice:

 Can suffer the loss of two disks
 Just not two even or odd numbered disks !!

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.39

RAID LEVEL 1 - MIRRORING

 Capacity: RAID 1 is expensive

 The useful capacity is n/2

 Reliability: RAID-1 does well

 Can tolerate the loss of disk(s)

 Up to n/2 disk failures tolerated depending on which disk
fails

 Performance: RAID-1 is slow at writing

Must wait for writes to complete to all disk(s)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.40

RAID 1 - EVALUATION

 Raid 5 – trades off space requirement for redundancy

 In a 5-disk array, you can only recover from the loss of 1 HDD

 5 disk RAID 5: Capacity is 80% of 5 disks

 Writes rotate across disks, distributing a parity data

 To rebuild data blocks you only need data from 4 disks

 Any drive can fail, as long
just one drive fails

 To recover need:
3 blocks + 1 parity block

-or-
4 blocks

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.41

RAID 5 – PARITY DISK

 Capacity: Useful capacity is (n-1) disks

 A HDD must be dedicated as a parity disk

 Performance

 Writes are very slow: roughly = n/4

 Reads are equivalent to a single disk

 Reliability

 In RAID 5, a disk may fail, and the RAID keeps running

 Rebuilds are slow !!!

 Depending on disk size 8-24 hours is not unheard of

 RAID 6: Adds a second parity disk for increased resilience

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.42

RAID 5 – EVALUATION

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.8Slides by Wes J. Lloyd

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.43

RAID COMPARISON

CH. 39: FILESYSTEMS

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L19.44

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice
problems – to be posted

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant ar ray of inexpensive disks)- very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.45

OBJECTIVES – 6/4

 Implemented by the OS as pure software

 Provide:

 Data structures: to describe disk content

 Arrays of blocks, index-nodes, trees

 Access methods: provides mapping for OS calls open(),
read(), write(), etc.

Which structures are read? written? For each call?

 How efficiently does the structure support file operations?

 Many available file systems (A-Z)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.46

FILE SYSTEMS

 Numerous file systems abound (A -Z)

 ADFA, AdvFS, AFS, AFS, AosFS, AthFS, BFS, BFS, Btrfs,
CFS, CMDFS, CP/M, DDFS, DTFS, DOS 3.x, EAFS, EDS, ext,
etx2, etx3, ext4, ext3cow, FAT, VFAT, FATX, FFS, Fossil,
Files-11, Felx, HFS, HPFS, HTFS, IceFS, ISO 9660, JFS,
JXFS, Lisa FS, LFS, MFS, Minix FS, NILFS, NTFS, NetWare
FS, OneFS, OFS, OS-9, PFS, ProDOS, Qnx5fs, Qnx6fs,
ReFS, ReiserFS, Reiser4, Reliance, Reliance Nitro, RFS,
S51K, SkyFS, SFS, Soup (Apple), SpadFS, STL, TRFS, Tux3,
UDF, UFS, UFS2, VxFS, VLIR, WAFL, XFS, FS, ZFS

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.47

FILE SYSTEMS: A TO Z

 Disk is divided into blocks

 Block size supported by most HDDs is 512 bytes

 Typical FS block size is 4 KB

 An instance of a file system is typically called a partition

 A single physical disk can have multiple partitions (file
systems)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.48

FILE SYSTEM ORGANIZATION

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.9Slides by Wes J. Lloyd

 File system is stored using blocks on the disk

 Location considered a “reserved” region of the disk

 Corruption of the reserved region can destroy the file
tables causing data on the disk to by unaddressable

 File system keeps track of:

Which blocks comprise a file

Where the blocks reside (are they contiguous?)

 The size of files

 The owner of files

 File permissions (e.g. R/W/X)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.49

FILE SYSTEM STORAGE

 Consider a 64 block disk (w/ 4096B block size)
a.k.a. a 256 KB disk

 Legacy low density 5-¼“ floppies had
160KB single side, 360KB double sided
capacity

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.50

FILE SYSTEM EXAMPLE

64 x 4KB
blocks

256 KB Storage Map

 Reserved region is at the front on a 64-block disk partition

 8 x 4KB blocks for the file system
 File sys contains: superblock, i-node bitmap, data bitmap, i-nodes

 Each file is tracked using an “index-node” (inode)

 56 x 4 KB blocks for data

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.51

FILE SYSTEM LOCATION

File System goes here
Data goes here

 Consider 256kb disk, with 56 free data blocks

 i-node size 256 bytes each

 4KB block can contain 16 inodes

 Need to track up to 56 files (1 for each 4kb data block)

 Need minimum of 4 x 4KB blocks required for inodes (64)

 EXAMPLE here reserves 5 x 4KB blocks for files

 Provides some spare inodes

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.52

FILE SYSTEM EXAMPLE - 2

 First 4KB block of disk

 Contains information about the file system: “S” block below
 How many inodes?

 How many data blocks?

 Location of inode table

 File system identity code(s)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.53

SUPERBLOCK

 File system maintains list of free inodes and data blocks

 Example stores free list using bitmaps

 Bitmaps: array of bits that track if inode or data block
is in use (0/1)

 Inode bitmap (“i” block below): 80 bits for inode table

 Data bitmap (“d” block below): 56 bits for data blocks

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.54

FILE SYSTEM - FREE LIST

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.10Slides by Wes J. Lloyd

 Every inode has an inode number (index value)

 Based on inode number, disk location can be calculated

 Example: inode number=32

 Offset into inode region = 32

 Size of inode=256 bytes

 Inode number x inode size = 8192

 Inode location = inode start addr + (inode no. x inode size)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.55

INODE EXAMPLE

 Every inode has an inode number (index value)

 Based on inode number, disk location can be calculated

 Example: inode number=32

 Offset into inode region = 32

 Size of inode=256 bytes

 Inode number x inode size = 8192

 Inode location = inode start addr + (inode no. x inode size)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.56

INODE EXAMPLE

What is the inode location?

12KB + (32 x 256)

12KB + 8KB = 20 KB

 Inodes store all information about a file:

 File type (e.g. directory, file, other)

 Size, and the number of blocks allocated to a file on disk

 R/W/X permissions

 Time information

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.57

INODE EXAMPLE - 2

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.58

INODES – EXT2 LINUX FS

 Inodes use a multi-level index
 First level: includes 12-direct block pointers
 Second level: provides 1 indirect block pointer
 Points to a Block: contains 1,024 x 4 byte block pointers

 Indirect pointer:
 12 direct block pointers, 1 indirect block ptr to a block
 Maximum file size:
 (12 + 1,024 entries) * 4KB = (1,036 x 4KB) = 4,144 KB

 Need more space?
 Can have double and triple indirect block pointers

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.59

MULTI-LEVEL INDEXING

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.60

MULTI-LEVEL INDEX - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.11Slides by Wes J. Lloyd

 Double indirect pointer
 First level: include 12-direct block pointers
 Second level: include 1 indirect block pointer
 Third level: include 1 indirect block pointer
 Maximum file size: (entries x 4KB block size)
 12 + 1,024 + (1,024 x 1,024) * 4KB
 1,049,612 x 4KB = 4,198,448 KB
 ~ 4GB

 Triple indirect pointer
 Adds another level & indirect block pointer
 Maximum file size: (entries x 4KB block size)
 12 + 1,024 + (10242) + (10243) * 4KB = ~ 4TB

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.61

MULTI-LEVEL INDEX - 3

 Extents have a pointer with a stored length

 Each fi le has multiple extents

 A single extent would require contiguous fi le allocation

 In contrast to block pointers:

 Extents conserve space better than multi- level indexes, but are less
agile at representing fi le allocations scattered across the disk

 Multi-level indexes excel for files w/ blocks scattered across the disk

 Don’t care if storage is contiguous because each block has a pointer

 File indexing presents a space vs. flexibil ity tradeoff
 Extents (space ef ficient, rigid), multi-level indexes (better for tracking

files w/ fragmented blocks)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.62

EXTENTS

 Multi-level indexing

 ext2, ext3

 can you have a disk >4TB w/ ext3 ??

 Extents

 ext4 (default Ubuntu 16.04), XFS (default CentOS 7)

 NTFS, Btrfs (b-tree fs)

 Exhaustive file systems feature comparison
 https://en.wikipedia.org/wiki/Comparison_of_file_systems

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.63

FILE INDEXING

TCSS 422 WILL RETURN
AT ~2:35PM

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L15.64

 Questions from 6/2

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables – optional – provides practice
problems – to be posted

 Chapter 37: Hard Disk Drives

 Chapter 38: RAID (Redundant ar ray of inexpensive disks)- very brief

 Chapter 39/40: File Systems – very brief

 Practice Final Exam Questions – Today – 2nd hour

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.65

OBJECTIVES – 6/4

 A computer system uses a simple base/bounds register pair to
vir tualize address spaces. For each traces fill in the missing
values of vir tual addresses, physical addresses, base, and/or
bounds registers. In some cases, it is not possible to provide
an exact value. If so, specify a range (e.g. greater than 100),
or value that is not a single number.

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.66

QUESTION 1 – BASE AND BOUNDS

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.12Slides by Wes J. Lloyd

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.67

Q1 - 2

 Consider a computer with 4 GB (232) of physical memory,
where the page size is 4 KB (212). For simplicity assume than
1GB=1000MB, 1MB=1000KB, 1KB=1000 bytes

 (a) How many pages must be tracked by a single-level page if
the computer has 4GB (232) of physical memory and the page
table size is 4 KB (212)?

 (b) How many bits are required for the virtual page number
(VPN) to address any page within this 4GB (232) memory
space?

 (c) Assuming that the smallest addressable unit of memory
within a page is a byte (8-bits), how many bits are required for
the offset to refer to any byte in the 4 KB page?

 (d) Assuming each page table entry (PTE) requires 4 bytes of
memory, how much memory is required to store the page
table for one process (in MB)?

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.68

QUESTION 2 – SINGLE-LEVEL PAGE TABLE

 (e) Using this memory requirement, how many processes
would fill the memory with page table data on a 4GB
computer?

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.69

Q2 - 2

 Consider a computer with 1 GB (230) of physical memory,
where the page size is 1024 bytes (1KB) (210). We would like
to index memory pages using a two level page table consisting
of a page directory which refers to page tables which are
created on demand to index the entire memory space.

 For simplicity assume than 1GB=1000MB, 1MB=1000KB,
1KB=1000 bytes

 (a) For a two-level page table, divide the VPN in half. How
many bits are required for the page directory index (PDI) in a
two-level scheme?

 (b) How many bits are required for the page table index (PTI)?

 (c) How many bits are required for an offset to address any
byte in the 1 KB page?

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.70

QUESTION 3 - TWO-LEVEL PAGE TABLE

 (d) Assuming each page table entry (PTE) requires 4 bytes of
memory, how many extra bits are available for status bits?

 (e) HelloWorld.c consists of 4 memory pages. One code page,
one heap page, one data segment page, and one stack
segment page. How large is the two-level page table in bytes
with the structure described above that could index the all 4
memory pages of HelloWorld.c?
Hint: There should be 2 tables, a page directory, and a page table.

 (f) Assuming the same page table as for HelloWorld.c, using
the exact same two-level page table, how large in bytes could
the program grow to before needing to expand the page table?

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.71

Q3 - 2

 Consider a 3-element cache with the cache arrival sequences
below.

 Determine the number of cache hits and cache misses using
each of the following cache replacement policies:

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.72

QUESTION 4 – CACHE TRACING

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.13Slides by Wes J. Lloyd

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.73

Q4 - 2

 Free space management involves capturing a description of
the computer’s free memory using a data structure, storing
this data structure in memory, and OS support to rapidly use
this structure to determine an appropriate location for new
memory allocations. An efficient implementation is very
important when scaling up the number of operations the OS is
required to perform.

 Consider the use of a linked list for a free space list where
each node is represented by placing the following structure in
the header of the memory chunk:
typedef struct __node_t
{

int size;
struct __node_t *next;

} node_t;

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.74

QUESTION 5 – FREE SPACE MANAGEMENT

 Consider the following free space list:

 (a) Consider the next f i t allocation strategy. For this free list
above, how many comparison operations must be performed
to identify a free chunk of 30-bytes ?

 (b) After the last free space identification, the chunk is split
and the remaining free space is returned to the free space
list. Now, consider the next f i t allocation strategy. After
finding a free space for the previous request, how many
comparisons are required to identify a free chunk of 10-bytes?

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.75

Q5 - 2

 Now, after the last free space identification the chunk is split
and the remaining free space is returned to the free space
list. Now consider each of the following free space allocation
strategies. How many comparisons are required on the
updated free space list to find a free chunk of 2 bytes using:

 (c) best fit?

 (d) worst fit?

 (e) first fit?

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L19.76

Q5 - 3

QUESTIONS

EXTRA SLIDES

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L19.78

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.14Slides by Wes J. Lloyd

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.79

COMMON FILE CHARACTERISTICS

 Directory contains file name and i number (index)

 Extra files for the parent dir and pwd

 Can store dirs as linear list, often stored in inodes

 XFS uses B-trees to eliminate sequential search of filenames
for duplicates when creating a new file

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.80

DIRECTORIES

 Consider reading a file called “/foo/bar”

 Traverse starting at root “/” (inumber = 2) to find file

 Read each inode to dereference file block location on disk

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.81

FILE I/O - READ

 3 block file: 11 reads, 3 writes (last access time)

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.82

FILE I/O – READ OPERATIONS

 At least Five I/Os to update an existing file

 one to read the data bitmap

 one to write the bitmap (to reflect its new state to disk)

 two more to read and then write the inode

 one to write the actual block itself.

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.83

FILE I/O - WRITE

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.84

FILE I/O – WRITE - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/4/2020

L19.15Slides by Wes J. Lloyd

 Free Lists

 Linked list of free blocks

 Head node tracks first free block, each subsequent block
is linked with a pointer

 Bitmaps
 Bit-wise arrays of free blocks

 B-trees (XFS)
 Represents free list in a more compact form, with better search

performance

 Free list design impacts efficiency of finding free blocks

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.85

FREE SPACE MANAGEMENT

 Two approaches to cache allocation

 Static partitioning

 Allocate a fixed size cache at system boot time

 For example: dedicate 10% of memory for disk R/W cache

 Dynamic partitioning

 Linux has a unified page cache
 Pages are cached to a unified page cache for multiple purposes

 Memory virtualization pages

 Inodes, disk pages

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.86

CACHING READS AND WRITES

 Subsequent file opens to a cache file can eliminate reads

 Benefits of write caching
 Batch updates together to reduce HDD requests
 Writes can be scheduled intelligently in the future
 Some writes can be avoided altogether
 For example: short lived tmp files

 Typical write buffering is from 5 to 30 seconds

 Risk of data loss
 Fsync(): force synchronization to disk
 Some apps such as database use to ensure immediate writes

June 4, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L20.87

FILE CACHING

WILL RETURN IN A FEW
MINUTES

WJL1

Slide 88

WJL1 Wes J. Lloyd, 5/30/2020

