
TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.1Slides by Wes J. Lloyd

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

Beyond Physical Memory,
I/O Devices, HDDs

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

Andrew Oberhardt
Senior Software Engineer,

Axon Company
Alumni Virginia Tech
Previously:

Software Engineer at
Microsoft (10+ years),
Code.org, and Amazon

Axon Company
https://www.axon.com/company

Open positions, hiring

GUEST
SPEAKER,
Q&A

June 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L18.2

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.2Slides by Wes J. Lloyd

 Questions from 5/28

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables

 Practice Final Exam Questions – Thursday – 2nd hour

 Chapter 22: Cache Replacement Policies: Workload Examples

 Chapter 36: I/O Devices
 Polling vs. Interrupts, Programmed I/O, Direct Memory Access

 Chatper 37: Hard Disk Drives

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.3

OBJECTIVES – 6/2

 Please classify your perspective on material covered in
today’s class (38 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 7.3 ( from 6 .62)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.83 ( from 5.84)

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.4

MATERIAL / PACE

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.3Slides by Wes J. Lloyd



June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.5

FEEDBACK FROM 5/28

 Questions from 5/28

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables

 Practice Final Exam Questions – Thursday – 2nd hour

 Chapter 22: Cache Replacement Policies: Workload Examples

 Chapter 36: I/O Devices
 Polling vs. Interrupts, Programmed I/O, Direct Memory Access

 Chatper 37: Hard Disk Drives

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.6

OBJECTIVES – 6/2

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.4Slides by Wes J. Lloyd

 Questions from 5/28

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables

 Practice Final Exam Questions – Thursday – 2nd hour

 Chapter 22: Cache Replacement Policies: Workload Examples

 Chapter 36: I/O Devices
 Polling vs. Interrupts, Programmed I/O, Direct Memory Access

 Chatper 37: Hard Disk Drives

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.7

OBJECTIVES – 6/2

 Questions from 5/28

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables

 Practice Final Exam Questions – Thursday – 2nd hour

 Chapter 22: Cache Replacement Policies: Workload Examples

 Chapter 36: I/O Devices
 Polling vs. Interrupts, Programmed I/O, Direct Memory Access

 Chatper 37: Hard Disk Drives

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.8

OBJECTIVES – 6/2

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.5Slides by Wes J. Lloyd

 Questions from 5/28

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables

 Practice Final Exam Questions – Thursday – 2nd hour

 Chapter 22: Cache Replacement Policies: Workload Examples

 Chapter 36: I/O Devices
 Polling vs. Interrupts, Programmed I/O, Direct Memory Access

 Chatper 37: Hard Disk Drives

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.9

OBJECTIVES – 6/2

 Questions from 5/28

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables

 Practice Final Exam Questions – Thursday – 2nd hour

 Chapter 22: Cache Replacement Policies: Workload Examples

 Chapter 36: I/O Devices
 Polling vs. Interrupts, Programmed I/O, Direct Memory Access

 Chatper 37: Hard Disk Drives

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.10

OBJECTIVES – 6/2

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.6Slides by Wes J. Lloyd

CHAPTER 21/22:
BEYOND PHYSICAL

MEMORY

June 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L18.11

 Questions from 5/28

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables

 Practice Final Exam Questions – Thursday – 2nd hour

 Chapter 22: Cache Replacement Policies: Workload Examples

 Chapter 36: I/O Devices
 Polling vs. Interrupts, Programmed I/O, Direct Memory Access

 Chatper 37: Hard Disk Drives

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.12

OBJECTIVES – 6/2

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.7Slides by Wes J. Lloyd

REPLACEMENT
POLICIES

June 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L18.13

 What if:
 We could predict the future (… with a magical oracle)

 All future page accesses are known

 Always replace the page in the cache used farthest in the future

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page
accesses:

0 1 2 0 1 3 0 3 1 2 1

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.14

OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?

6 hits

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.8Slides by Wes J. Lloyd

 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following
page accesses:

0 1 2 0 1 3 0 3 1 2 1

 What is the hit/miss ratio?

 How is FIFO different than LRU?

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.15

FIFO REPLACEMENT

4 hits

LRU incorporates history

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0 1 2 0 1 3 0 3 1 2 1

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.16

RANDOM REPLACEMENT

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.9Slides by Wes J. Lloyd

 LRU: Least recently used
 Always replace page with oldest access time (front)
 Always move end of cache when element is read again
 LRU requires constant reorganization of the cache
 Considers temporal locality (when pg was last accessed)

0 1 2 0 1 3 0 3 1 2 1

 LFU: Least frequently used
 Always replace page with the fewest # of accesses (front)
 Incorporates frequency of use - must track pg accesses
 Consider frequency of page accesses

0 1 2 0 1 3 0 3 1 2 1

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.17

HISTORY-BASED POLICIES

What is the hit/miss ratio?

6 hits

Hit/miss ratio is=6 hits

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.10Slides by Wes J. Lloyd

 No-Locality (Random Access) Workload
 Perform 10,000 random page accesses

 Across set of 100 memory pages

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.20

WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
large enough to fit

the entire workload,
it doesn’t matter

which policy you use.

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.11Slides by Wes J. Lloyd

 80/20 Workload
 Perform 10,000 page accesses, against set of 100 pages

 80% of accesses are to 20% of pages (hot pages)

 20% of accesses are to 80% of pages (cold pages)

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.21

WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

 Looping sequential workload
 Refer to 50 pages in sequence: 0, 1, …, 49

 Repeat loop

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.22

WORKLOAD EXAMPLES: SEQUENTIAL

Random performs
better than FIFO and

LRU for
cache sizes < 50

Algorithms should provide
“scan resistance”

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.12Slides by Wes J. Lloyd

June 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.2
3

 Implementing last recently used (LRU) requires tracking
access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),
with 4KB pages (212)

 This requires 220 comparisons !!!

 Simplification is needed

 Consider how to approximate the oldest page access

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.24

IMPLEMENTING LRU

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.13Slides by Wes J. Lloyd

Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

Refer to pages in a circular list

Clock hand points to current page

Loops around
 IF USE_BIT=1 set to USE_BIT = 0

 IF USE_BIT=0 replace page

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L18.25

IMPLEMENTING LRU - 2

 Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L18.26

CLOCK ALGORITHM

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.14Slides by Wes J. Lloyd

Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

Cache eviction requires updating memory

Contents have changed

Clock algorithm should favor no cost eviction

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.27

CLOCK ALGORITHM - 2

 On demand  demand paging

 Prefetching
 Preload pages based on anticipated demand

 Prediction based on locality
 Access page P, suggest page P+1 may be used

 What other techniques might help anticipate required
memory pages?
 Prediction models, historical analysis
 In general: accuracy vs. effort tradeoff
 High analysis techniques struggle to respond in real time

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.28

WHEN TO LOAD PAGES

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.15Slides by Wes J. Lloyd

Page swaps / writes

Group/cluster pages together

Collect pending writes, perform as batch

Grouping disk writes helps amortize latency costs

 Thrashing

Occurs when system runs many memory intensive
processes and is low in memory

Everything is constantly swapped to-and-from disk

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.29

OTHER SWAPPING POLICIES

Working sets

Groups of related processes

When thrashing: prevent one or more working
set(s) from running

Temporarily reduces memory burden

Allows some processes to run, reduces thrashing

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.30

OTHER SWAPPING POLICIES - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.16Slides by Wes J. Lloyd

CHAPTER 36:
I/O DEVICES

June 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L18.31

 Questions from 5/28

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables

 Practice Final Exam Questions – Thursday – 2nd hour

 Chapter 22: Cache Replacement Policies: Workload Examples

 Chapter 36: I/O Devices
 Polling vs. Interrupts, Programmed I/O, Direct Memory Access

 Chatper 37: Hard Disk Drives

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.32

OBJECTIVES – 6/2

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.17Slides by Wes J. Lloyd

Chapter 36

 I/O: Polling vs Interrupts

Programmed I/O (PIO)
 Port-mapped I/O (PMIO)

Memory-mapped I/O (MMIO)

Direct memory Access (DMA)

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.33

OBJECTIVES

 Modern computer systems interact with a variety of devices

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L18.34

I/O DEVICES

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.18Slides by Wes J. Lloyd

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.35

COMPUTER SYSTEM ARCHITECTURE

VERY FAST: CPU is attached to main memory via a Memory bus.

FAST: High speed devices (e.g. video) are connected via a General I/O bus.

SLOWER: Disks are connected via a Peripheral I/O bus.

 Buses

 Buses closer to the CPU are faster

 Can support fewer devices

 Further buses are slower, but support more devices

 Physics and costs dictate “levels”

Memory bus

 General I/O bus

 Peripheral I/O bus

 Tradeoff space: speed vs. locality

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.36

I/O BUSES

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.19Slides by Wes J. Lloyd

 Consider an arbitrary canonical “standard/generic” device

 Two primary components

 Interface (registers for communication)

 Internals: Local CPU, memory, specific chips, firmware
(embedded software)

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.37

CANONICAL DEVICE

 Status register

Maintains current device status

 Command register

Where commands for interaction are sent

 Data register

 Used to send and receive data to the device

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.38

CANONICAL DEVICE:
HARDWARE INTERFACE

General concept:
The OS interacts and controls device behavior
by reading and writing the device registers.

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.20Slides by Wes J. Lloyd

 Common example of device interaction

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.39

OS DEVICE INTERACTION

Poll- Is device available?

Poll – Is device done?

Command parameterization

Send command

 OS checks if device is READY by repeatedly checking the
STATUS register
 Simple approach

 CPU cycles are wasted without doing meaningful work

 Ok if only a few cycles, for rapid devices that are often READY

 BUT polling, as with “spin locks” we understand is inefficient

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.40

POLLING

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.21Slides by Wes J. Lloyd

 For longer waits, put process waiting on I/O to sleep

 Context switch (C/S) to another process

 When I/O completes, fire an interrupt to initiate C/S back
 Advantage: better multi-tasking and CPU utilization

 Avoids: unproductive CPU cycles (polling)

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.41

INTERRUPTS VS POLLING

 Interrupts are not always the best solution

 How long does the device I/O require?

What is the cost of context switching?

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.42

INTERRUPTS VS POLLING - 2

If device I/O is fast  polling is better.
When I/O time < 1 CPU time slice (e.g. 10 ms)

If device I/O is slow  interrupts are better.
When I/O time > 1 CPU time slice

What is the tradeoff space ?

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.22Slides by Wes J. Lloyd

 Alternative: two-phase hybrid approach

 Initially poll, then sleep and use interrupts

 Issue: l ivelock problem

 Common with network I/O

 Many arriving packets generate many many interrupts

 Overloads the CPU!

 No time to execute code, just interrupt handlers !

 Livelock optimization

 Coalesce multiple arriving packets (for different processes) into
fewer interrupts

 Must consider number of interrupts a device could generate

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.43

INTERRUPTS VS POLLING - 3

TCSS 422 WILL RETURN
AT ~2:45PM

June 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L15.44

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.23Slides by Wes J. Lloyd

 To interact with a device we must send/receive
DATA

 There are two general approaches:

Programmed I/O (PIO):
Port mapped I/O (PMIO)

Memory mapped I/O (MMIO)

Direct memory access (DMA)

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.45

DEVICE I/O

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

From https://en.wikipedia.org/wiki/Parallel_ATA

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.24Slides by Wes J. Lloyd

 I/O performed on the CPU

 CPU time is consumed performing I/O

 CPU supports data movement (input/output)

 PIO is slow: CPU is occupied with meaningless work

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.47

PROGRAMMED I/O (PIO)

PIO

 Legacy serial ports

 Legacy parallel ports

 PS/2 keyboard and mouse

 Legacy MIDI, joysticks

 Old network interfaces

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.48

PIO DEVICES

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.25Slides by Wes J. Lloyd

 Two primary PIO methods

Port mapped I/O (PMIO)

Memory mapped I/O (MMIO)

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.49

PROGRAMMED I/O DEVICE (PIO)
INTERACTION

 Device specific CPU I/O Instructions

 Follows a CISC model:
specific CPU instructions used for device I/O

 x86-x86-64: in and out instructions

 outb, outw, outl

 1, 2, 4 byte copy from EAX  device’s I/O port

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.50

PORT MAPPED I/O (PMIO)

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.26Slides by Wes J. Lloyd

 Device’s memory is mapped to standard memory addresses

 MMIO is common with RISC CPUs:
Special CPU instructions for PIO eliminated

 Old days: 16-bit CPUs didn’t have a lot of spare memory space

 Today’s CPUs have LARGE address spaces:
32-bit (4GB addr space) & 64-bit (128 TB addr space)

 Device I/O uses regular CPU instructions usually used to
read/write memory to access device

 Device is mapped to unique memory address reserved for I/O
 Address must not be available for normal memory operations.

 Generally very high addresses (out of range of type addresses)

 Device monitors CPU address bus and respond to instructions
on their addresses

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.51

MEMORY MAPPED I/O (MMIO)

 Copy data in memory by off loading to “DMA controller”

 Many devices (including CPUs) integrate DMA controllers

 CPU gives DMA: memory address, size, and copy instruction
 DMA performs I/O independent of the CPU

 DMA controller generates CPU interrupt when I/O completes

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.52

DIRECT MEMORY ACCESS (DMA)

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.27Slides by Wes J. Lloyd

 Many devices use DMA

 HDD/SSD controllers (ISA/PCI)

 Graphics cards

 Network cards

 Sound cards

 Intra-chip memory transfer for multi-core processors

 DMA allows computation and data transfer time to
proceed in parallel

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.53

DIRECTORY MEMORY ACCESS – 2

 The OS must interact with a variety of devices

 Example: Consider a file system that works across a
variety of types of disks:
 SCSI, IDE, USB flash drive, DVD, etc.

 File system should be general purpose, where device
specific I/O implementation details are abstracted

 Device drivers use abstraction to provide general
interfaces for vendor specific hardware

 In Linux: block devices

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.54

DEVICE INTERACTION

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.28Slides by Wes J. Lloyd

 Layers of I/O abstraction in Linux

 C functions (open, read, write) issue block read and write
requests to the generic block layer

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.55

FILE SYSTEM ABSTRACTION

 Too much abstraction

 Many devices provide special capabilities

 Example: SCSI Error handling

 SCSI devices provide extra details which are lost to the OS

 Buggy device drivers

 70% of OS code is in device drivers

 Device drivers are required for every device plugged in

 Drivers are often 3rd party, which is not quality controlled at
the same level as the OS (Linux, Windows, MacOS, etc.)

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.56

FILE SYSTEM ABSTRACTION ISSUES

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.29Slides by Wes J. Lloyd

CH. 37:
HARD DISK DRIVES

June 2, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L18.57

 Questions from 5/28

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 3 – on Linux kernel programming –
offered in “tutorial” format – due Sat June 13

 Quiz 4 – Page Tables

 Practice Final Exam Questions – Thursday – 2nd hour

 Chapter 22: Cache Replacement Policies: Workload Examples

 Chapter 36: I/O Devices
 Polling vs. Interrupts, Programmed I/O, Direct Memory Access

 Chatper 37: Hard Disk Drives

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.58

OBJECTIVES – 6/2

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.30Slides by Wes J. Lloyd

 Chapter 37

 HDD Internals

 Seek time

 Rotational latency

 Transfer speed

 Capacity

 Scheduling algorithms

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.59

OBJECTIVES

 Primary means of data storage (persistence) for decades
 Remains inexpensive for high capacity storage

 2020: 16 TB HDD - $400, ~15.3 TB SSD - $4,380

 Consists of a large number of data sectors

 Sector size is 512-bytes

 An n sector HDD
can be is addressed as an array of 0..n-1 sectors

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.60

HARD DISK DRIVE (HDD)

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.31Slides by Wes J. Lloyd

 Writing disk sectors is atomic (512 bytes)

 Sector writes are completely successful, or fail

 Many file systems will read/write 4KB at a time

 Linux ext3/4 default filesystem blocksize – 4096

 Same as typical memory page size

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.61

HDD INTERFACE

 mkefs.ext4 -i <bytes-per-inode>

 Formats disk w/ ext4 fi lesys with specified byte-to-inode ratio

 Today’s disks are so large, some use cases with many small
fi les can run out of inodes before running out of disk space

 Each inode record tracks a file on the disk

 Larger bytes-per-inode ratio results in fewer inodes
 Default is around ~4096

 Value shouldn't be smaller than blocksize of filesystem

 Note: It is not possible to expand the number of inodes after
the filesystem is created, - be careful deciding the value

 Check inode stats: tune2fs –l /dev/sda1 ( disk dev name)

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.62

BLOCK SIZE IN LINUX EXT4

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.32Slides by Wes J. Lloyd

 Host ~2,000,000 small XML files totaling 9.5 GB on a
~20GB filesystem on a cloud-based Virtual Machine

 With default inode ratio (4096 block size),
only ~488,000 files will fit

 Drive less than half full, but files will not fit !

 HDDs support a minimum block size of 512 bytes

 OS filesystems such as ext3/ext4 can support “finer
grained” management at the expense of a larger catalog
size
 Small inode ratio- inodes will considerable % of disk space

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.63

EXAMPLE: USDA SOIL EROSION MODEL
WEB SERVICE (RUSLE2)

 Free space in bytes (df)

Device total size bytes-used bytes-free usage

/dev/vda2 13315844 9556412 3049188 76% /mnt

 Free inodes (df –i) @ 512 bytes / node

Device total inodes used free usage

/dev/vda2 3552528 1999823 1552705 57% /mnt

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.64

EXAMPLE: USDA SOIL EROSION MODEL
WEB SERVICE (RUSLE2) - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.33Slides by Wes J. Lloyd

 Torn write

When OS uses larger block size than HDD

 Block writes not atomic - they SPAN multiple HDD sectors

 Upon power failure only a portion of the OS block is
written – can lead to data corruption…

 HDD access

 Sequential reads of sectors is fastest

 Random sector reads are slow

 Disk head continuously must jump to
different tracks

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L18.65

HDD INTERFACE - 2

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.66

HDD PLATTER

 Made from aluminum coated with thin magnetic layer

 HDD records on both sides of each platter

 Data is stored by inducing magnetic changes

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.34Slides by Wes J. Lloyd

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.67

HDD SPINDLE

 Connected to motor which spins the disk

 Speed measures in RPM (rotations per minute)

 Typical: 7200-15000 rpm

 10000 rpm – 1 rotation in 6ms; 15k rpm 1 rotation in 4ms

 Concentric circle of sectors

 Single side of platter contains 290 K tracks (2008)

 Zones: groups of tracks with same # of sectors

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.68

HDD TRACK

Outer tracks have
More sectors

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.35Slides by Wes J. Lloyd

 Single track disk

 Head: one per sur face of drive

 Arm: moves heads across surface of platters

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.69

EXAMPLE: SIMPLE DISK DRIVE

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.70

HARD DISK STRUCTURE

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.36Slides by Wes J. Lloyd

 Rotational latency (Trotation): time to rotate to desired sector

 Average Trotation is ~ about half the time of a full rotation

 How to calculate Trotation from rpm

1. Calculate time for 1 rotation based on rpm
> Convert rpm to rps

2. Divide by two (average rotational latency)

 7200rpm = 8.33ms per rotation /2= ~4.166ms

 10000rpm = 6ms per rotation /2= ~3ms

 15000rpm = 4ms per rotation /2= ~2ms

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.71

SINGLE-TRACK LATENCY:
THE ROTATIONAL DELAY

 Seek time (Tseek): time to move disk arm to proper track

 Most time consuming HDD operation

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.72

SEEK TIME

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.37Slides by Wes J. Lloyd

 Acceleration  coasting  deceleration settling

 Acceleration: the arm gets moving

 Coasting: arm moving at full speed

 Deceleration: arm slow down

 Settling: Head is carefully positioned over track

 Settling time is often high, from .5 to 2ms

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.73

FOUR PHASES OF SEEK

Data transfer

Final phase of I/O: time to read or write to disk
surface

Complete I/O cycle:

1. Seek (accelerate, coast, decelerate, settle)

2. Wait on rotational latency (until track aligns)

3. Data transfer

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.74

HDD I/O

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.38Slides by Wes J. Lloyd

 Sectors are offset across tracks to allow time for head to
reposition for sequential reads

 Without track skew, when head is repositioned sector
would have already been passed

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.75

TRACK SKEW

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.76

TRACK SKEW - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.39Slides by Wes J. Lloyd

 Buffer to support caching reads and writes

 Improves drive response time

 Up to 256 MB, slowly have been growing

 Two styles
Writeback cache

 Report write complete immediately when data is
transferred to HDD cache

 Dangerous if power is lost

Writethrough cache

 Reports write complete only when write is physically
completed on disk

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.77

HDD CACHE

 Can calculate I/O transfer speed with:

 I/O Time:

 Ttransfer = DATAsize x RateI/O

 Rate of I/O:

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.78

TRANSFER SPEED

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.40Slides by Wes J. Lloyd

 Compare two disks:

1. Random workload: 4KB (random read on HDD)

2. Sequential workload: 100MB (contiguous sectors)
> Calculate Trotation from rpm (rpmrps, time for 1 rotation / 2)

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.79

EXAMPLE: I/O SPEED

1. Random workload: 4KB (random read on HDD)

2. Sequential workload: 100MB (contiguous sectors)

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.80

EXAMPLE: I/O SPEED

There is a huge gap in drive throughput
between random and sequential workloads

Ttransfer = Datasize x RateI/O

4 KB

100 MB

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.41Slides by Wes J. Lloyd

 See sample HDD configurations here:
 Up to 20 TB

 https://www.westerndigital.com/products/data-center-
drives#hard-disk-hdd

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.81

MODERN HDD SPECS

 Disk scheduler: determine how to order I/O requests

 Multiple levels - OS and HW

 OS: provides ordering

 HW: further optimizes using intricate details of physical
HDD implementation and state

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.82

DISK SCHEDULING

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.42Slides by Wes J. Lloyd

 Disk scheduling – which I/O request to schedule next

 Shortest Seek Time First (SSTF)

 Order queue of I/O requests by nearest track

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.83

SSTF – SHORTEST SEEK TIME FIRST

 Problem 1: HDD abstraction

 Drive geometry not available to OS. Nearest-block-first is
a comparable alternate algorithm.

 Problem 2: Starvation

 Steady stream of requests for local tracks may prevent
arm from traversing to other side of platter

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.84

SSTF ISSUES

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.43Slides by Wes J. Lloyd

 SCAN (SWEEP)
 Perform single repeated passes back and for th across disk
 Issue: if request arrives for a recently visited track it will not

be revisited unti l a full cycle completes

 F -SCAN
 Freeze incoming requests by adding to queue during scan
 Cache arriving requests unti l later
 Delays help avoid starvation by postponing servicing nearby

newly arriving requests vs. requests at edge of sweep
 Provides better fairness

 Elevator (C-SCAN) – circular scan
 Sweep only one direction (e.g. outer to inner) and repeat
 SCAN favors middle tracks vs. outer tracks with 2-way sweep

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.85

DISK SCHEDULING ALGORITHMS

Determine next
sector to read?
Where:

On which track?

On which sector?

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.86

SHORTEST TIME POSITIONING FIRST

On modern drives, both seek and rotation are roughly equivalent:
Thus, SPTF (Shortest Positioning Time First) is useful.

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.44Slides by Wes J. Lloyd

Group temporary adjacent requests

Reduce overhead

Read (memory blocks): 33 8 34

How long we should wait for I/O ?

When do we know we have waited too long?

June 2, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L18.87

OPTIMIZATION: I/O MERGING

QUESTIONS

TCSS 422 B – Spring 2020
School of Engineering and Technology

6/2/2020

L18.45Slides by Wes J. Lloyd

WILL RETURN IN A FEW
MINUTES

WJL1

Slide 89

WJL1 Wes J. Lloyd, 5/30/2020

