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OBJECTIVES - 5/28

" Questions from 5/26 ]
= Tutorial 2 (pthreads, locks, conditions) - due Thurs June 4
® Quiz 3 posted - Active Reading Ch. 19 - due Tues June 2
= Assighment 2 (based on Ch. 30) - due Sun May 31

= Assighment 3 - on Linux kernel programming -
offered in “tutorial” format - to be posted ~May 28

= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Hybrid Tables, Multi-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms

= Swapping Policies
= Chapter 36/37:1/0 Devices, Hard Disk Drives
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® Please classify your perspective on material covered in

MATERIAL / PACE

today’s class (38 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly nhew

= Average - 6.62 (T from 6.29)

® Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.84 (T from 5.70)
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iMayj2s72020 School of Engineering and Technology, University of Washington - Tacoma
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problems upgrading

"

Have you upgraded to the new Zoom 5.0 client?

(required starting May 30)

Yes

Am planning to
upgrade soon

What? There's an
upgrade?

| tried, but had

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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FEEDBACK FROM 5/26

TCSS422: Operating Systems [Spring 2020]
IMayj2532020 School of Engineering and Technology, University of Washington - Tacoma L17.5

ASSIGNMENT 2 - EXTRA CREDIT

Please remember to add comments to pcMatrix.c to indicate if
extra credit should be graded for Assignment #2:

*. EXTRA CREDIT- COMMENTS ARE REQUIRED:
Comments must be included at the top of the mash.c file to indicate which extra credit features
(EC1, EC2, EC3, and EC4) have been implemented to receive credit. If there is no indication
that extra credit features are implemented, no extra credit will be awarded.
Example of required comment:
// EXTRA CREDIT FEATURES: EC2, EC3 implemented

Helps graders identify if they should evaluate extra credit

If comments are missing from assignment #1, please go to
assignment #1, click:

“Submission Details” link on the RIGHT
Add a comment in the “Add a comment” box

® Indicate which extra credit (EC1, EC2, EC3, EC4) needs graded
TCSS422: Operating Systems [Spring 2020]
Mayjze gzt School of Engineering and Technology, University of Washington - Tacoma L17.6
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OBJECTIVES - 5/28

® Questions from 5/26
| = Tutorial 2 (pthreads, locks, conditions) - due Thurs June 4 |
® Quiz 3 posted - Active Reading Ch. 19 - due Tues June 2
= Assighment 2 (based on Ch. 30) - due Sun May 31
= Assignment 3 - on Linux kernel programming -
to be offered in “tutorial” format - to be posted ~May 28
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Hybrid Tables, Multi-level Page Tables
= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms
= Swapping Policies
® Chapter 36/37:1/0 Devices, Hard Disk Drives
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OBJECTIVES - 5/28

® Questions from 5/26
= Tutorial 2 (pthreads, locks, conditions) - due Thurs June 4
" Quiz 3 posted - Active Reading Ch. 19 - due Tues June 2
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CHAPTER 20:
PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Spring 2020]

Mayjasizn20 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 5/28

® Questions from 5/26

= Tutorial 2 (pthreads, locks, conditions) - due Thurs June 4
® Quiz 3 posted - Active Reading Ch. 19 - due Tues June 2
= Assighment 2 (based on Ch. 30) - due ...... Sun May 31

= Assighment 3 - on Linux kernel programming -
to be offered in “tutorial” format - to be posted ~May 28

= Chapter 20: I-’aging: Smaller Tables

= Smaller Tables, Hybrid Tables, Multi-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms

= Swapping Policies
= Chapter 36/37:1/0 Devices, Hard Disk Drives
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MORE THAN TWO LEVELS

® Consider: Address space of 1 GB

® Page size is 2% = 512 bytes

® Page size 512 bytes / Page entry size 4 bytes
= VPN is 21 bits

3029282726252423222120191817161514131211109 8 76 54 3 21 0

IRNRNRNRNNNNNNNNNNNRNNANENENEN

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 28, 2020

L17.13
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MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
= SPLIT 21 bit VPN: 7 bits - for page table index (PTI)

302928272625242322212019181§1615141312111098 76 54 3 21 0

[1] NN/ INNNNNRN/INRRARRDY

i< Page Directory Index i
VPN offset
Flag Detail
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset g bit
Page entry per page 128 PTEs ——1—> log,128 =7

TCSS422: Operating Systems [Spring 2020]

Mayjze gzt School of Engineering and Technology, University of Washington - Tacoma

L17.14

Lloyd

5/28/2020

L17.7



TCSS 422 B - Spring 2020 5/28/2020
School of Engineering and Technology

MORE THAN TWO LEVELS - 3

® To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required

® When using 27 (128 entry) page tables...

® Page size = 128 entries x 4 bytes per addr = 512 bytes

30292827262524232221201918141615141312111098 76 54 3 21 0

MENARRNANRNAN[NARRNAN [ARRRAN

Page Directory Index

oy 3!

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——1—> log,128 =7

TCSS422: Operating Systems [Spring 2020]

iMayj2s72020 School of Engineering and Technology, University of Washington - Tacoma

L17.15

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...
" Pagosi i et

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only fit (dereference)
128 addresses = (512 bytes / 4 bytes)

30 bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs ——1—> log, 128 =7

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 28, 2020

L17.16
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MORE THAN TWO LEVELS - 3

® To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required

® When using 27 (128 entry) page tables...

= Pagasaias Seanisiasuadaiasnanads
| Need three level page table:
Page directory 0 (PD Index 0- 7bit)
Page directory 1 (PD Index 1- 7bit)

- Small Page Table (Page Table Index- 7bit)

bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——1—> log,128 =7

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L17.17

May 28, 2020

MORE THAN TWO LEVELS - 4

® We can now address 1GB with “fine grained” 512 byte pages
® Using multiple levels of indirection

302928 2726252423222120191817161514131211109 87654 3 21 0

NERRNRNNNNNNNNNENNRRAREE

o

’ Page Table Index

Y. ¥

L

VPN = >
® Consider the implications for address translation!
® How much space is required for a virtual address space with
only 4 entries on a 512-byte page? (e.g. 4 x 32-bit integers)
= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes
® Memory Usage= 1,536 (3-1evel) / 8,388,608 (1-1evel) = .0183% !!!

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L17.18

May 28, 2020
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ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup
//

// Inputs:

// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L17.19

May 28, 2020

ADDRESS TRANSLATION - 2

pgd_offset():
pgd = pgd_offset(mm, vpage); Takes a vpage address and the mm_struct
if (pgd_none (*pgd) || pgd_bad(*pgd))| forthe process, returns the PGD entry that
return O0; covers the requested address...

p4d = p4d offset(pgd, vpage);
- = 4d/pud/pmd_offset():

£ 44 *pdad 4d bad (*p4ad p4d/pud/pmd_offset():

* (P4d_none (*pdd) || pdd_bad(*pdd)) Takes a vpage address and the

pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

return O0;
pud = pud_offset (p4d, vpage)
if (pud_none(*pud) || pud_bad(*pud))

return O0;

pmd = pmd_offset (pud, vpage);

if (pmd_none (*pmd) || pmd_bad(*pmd))
return O0;

if (!'(pte = pte_offset_map(pmd, vpage)))

return O0; pte_unmap()
if (! (iage z_Pte_Page (*pte))) release temporary kernel mapping
return 0; for the page table entry

physical page_addr = page_to_phys (page)
pte_unmap (pte) ;
return physical_ page_addr; // param to send back

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L17.20

May 28, 2020

Slides by Wes J. Lloyd

5/28/2020

L17.10



TCSS 422 B — Spring 2020 5/28/2020
School of Engineering and Technology

INVERTED PAGE TABLES

®m Keep a single page table for each physical page of memory

® Consider 4GB physical memory
m Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page

= Which process virtual page (from process virtual address
space) maps to the physical page

m All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

® Finding process memory pages requires search of 22° pages
® Hash table: can index memory and speed lookups

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 28, 2020 117.21

.'(#1) Consider a 16 MB Address Space (224) which is'.
indexed using 4KB pages. For a single-level page
table, how many pages are required to index
memory?

278 pages
2710 pages
2712 pages
2714 pages
2716 pages
N R T S e R —— Lrmy

Slides by Wes J. Lloyd L17.11



TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

. (#2) For this 16 MB Address Space (2224) indexed .
using 4KB pages, how many bits are required for the

VPN?

8 bits

16 bits

10 bits

14 bits

12 bits
BT MY 28, 20000 mepresenaing s RSB TSI SRR PP ™
m u

“(#3) Assuming 4 KB pages, how many offset bits are
required to index any byte on the page?

6 bits
10 bits
8 bits
12 bits

14 bits

TCSSA_122: Operating Systems [Spring 2020] . L17.
.. May 28, 20801t the presentationpprsdive F R ERISFIGSA F s RSty repnaRstieect poltneeemiapp 4 ..

Lloyd
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» (#4) Assuming there are 20 status bits, how many o
bytes are required for each page table entry (PTE)?
1 byte
2 bytes
3 bytes
4 bytes
0 bytes
RN T R e el led Wl ol S o M
.l . . -
(#5) How many kilobytes (KB) are required for a
single level page table?
32 KB
16 KB
64 KB
8 KB
24 KB
R T St e R —— Mo m

Slides by Wes J. Lloyd L17.13
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'(#6) For HelloWorld.c with 4 memory pages: 1 code,'
stack, heap, data segment, assuming a 2-level page
table, how many bits are required for the Page
Directory Index (PDI) ?

6 bits
12 bits
10 bits

8 bits
14 bits

~ TC88422: Operating Systems [Spring 2020] L17.
.. May 28, 2080 the presentationge Fsdive FEYRI ERIFERATH TSy 2EsmgEnits Spraaninelect polesemiapp o ..

“(#7) For HelloWorld.c with 4 memory pages: 1 code,'
stack, heap, data segment, assuming a 2-level page
table, how many bits are required for the Page Table
Index (PTI)

14 bits
12 bits
10 bits

8 bits

) TCSSA_122: Operating Systems [Spring 2020] . L17.
.. May 28, 20801t the presentationpprsdive F R ERISFIGSA F s RSty repnaRstieect poltneeemiapp 8 ..

Lloyd
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| |
“ (#8) How much total memory is required to index .

HelloWorld.c using a two-level page table with just 4
total pages (1 code, stack, heap, data segment page).
Hint: need 1 PD and 1 PT

256 bytes
512 bytes
1024 bytes
2048 bytes
4096 bytes

~ TC88422: Operating Systems [Spring 2020] L17.
.. May 28, 2080 the presentationge Fsdie FEYRI ERIFEGRATH TSy 2EsmgEnits Spraaninelect polesemiapp 9 ..

| ||
“ (#9) For a 2-level page table, using a single Page

Directory Entry (PDE) pointing to a single Page Table
(PT), where all slots of the PT are used, how much
memory can be addressed?

16 entries x 4096
bytes = 64 KB

32 entries x 4096
bytes = 128 KB

64 entries x 4096
bytes =256 KB

256 entries x 4096
bytes = 1024 KB

4096 entries x 4096
bytes = 16384 KB

_ TC8S422: Operating Systems [Spring 2020] L17.
.. May 28, 20801t the presentationpprsdive F R ERISFIGSA F s RSty repnaRstieect poltneeemiapp 0 ..
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“n

(#10) For the previous example where one PDE

points to a fully used PT, what percentage of

y

memory does the 2-level page table consume vs. a 1-

level page table?
256/ 16384
512 /16384
1024 / 16384
4096 / 16384
100%
T MY 28, 2000 mepresenaing s RSB TSI SRR PP

L17...
1

MULTI-LEVEL PAGE TABLE EXAMPLE

® Consider a 16 MB computer which indexes memory using 4KB

pages

® (#1) For a single level page table, how many pages are
required to index memory?

= (#2) How ma

ny bits are required for the VPN?

® (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

® (#4) Assuming there are 20 status bits, how many bytes are
required for each page table entry?

May 28, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L17.32
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MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

® Let’s assume a simple HelloWorld.c program.

= HelloWorld.c requires virtual address translation for 4 pages:
= 1 - code page 1 - stack page
= 1 - heap page 1 - data segment page

® (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

® (#7) How many bits are required for the Page Table Index
(PTI)?

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L17.33

May 28, 2020

MULTI LEVEL PAGE TABLE EXAMPLE - 3

® Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)
= 12 offset bits
= 20 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page
Table...

® HINT: how many entries are in the PD and PT

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L17.34

May 28, 2020
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MULTI LEVEL PAGE TABLE EXAMPLE - 4

® (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

® HINT: two-level memory use / one-level memory use

TCSS422: Operating Systems [Spring 2020]

iMayj2s72020 School of Engineering and Technology, University of Washington - Tacoma

L17.35

ANSWERS
®m #1 - 4096 pages
m#2 - 12 bits
m#3 - 12 bits
m #4 - 4 bytes
#5 - 4096 x 4 = 16,384 bytes (16KB)
m #6 - 6 bits
m#7 - 6 bits
m #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

® #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

" #10- 512/16384 = .03125 > 3.125%

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 28, 2020

L17.36
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CHAPTER 21/22:
BEYOND PHYSICAL
MEMORY

TCSS422: Operating Systems [Spring 2020]

Mavias 2020 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 5/28

® Questions from 5/26

= Assignment 2 (based on Ch. 30) - due Sun May 31
= Assighment 3 - on Linux kernel programming -

= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Hybrid Tables, Multi-level Page Tables

= Tutorial 2 (pthreads, locks, conditions) - due Thurs June 4
® Quiz 3 posted - Active Reading Ch. 19 - due Tues June 2

to be offered in “tutorial” format - to be posted ~May 28

= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms
= Swapping Policies

= Chapter 36/37:1/0 Devices, Hard Disk Drives

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 28, 2020
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MEMORY HIERARCHY

® Disks (HDD, SSD) provide another level of storage in the

memory hierarchy

Registers

Cache

Main Memory

Mass Storage( hard disk, tape, etc...)

Memory Hierarchy in modern system

TCSS422: Operating Systems [Spring 2020]

iMayj2s72020 School of Engineering and Technology, University of Washington - Tacoma

L17.39

MOTIVATION FOR

EXPANDING THE ADDRESS SPACE

® Provide the illusion of an address space larger than
physical RAM

® For a single process
= Convenience
= Ease of use

® For multiple processes

= Large virtual memory space supports running
many concurrent processes. . .

TCSS422: Operating Systems [Spring 2020]

Mayjze gzt School of Engineering and Technology, University of Washington - Tacoma

L17.40
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LATENCY TIMES

®mDesign considerations:
= SSDs 4x the time of DRAM
= HDDs 80x the time of DRAM

Action Latency (ns) {ps)
L1 cache reference 0.5ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1
Read 4K randomly from SSD* 150,000 ns 150 ps ~1GB/sec 55D
Read 1 MB sequentially from memory 250,000 ns 250 ps
Read 1 MB sequentially from 55D 1,000,000 ns 1,000 ps | 1 ms ~1GB/sec 55D, 4X memory
Read 1 MB sequentially from disk 20,000,000 ns 20,000 ps 20 ms 80x memory, 20X 55D

= [atency numbers every programmer should know

= From: https://gist.github.com/jboner/2841832#file-latency-txt

May 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L17.41
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SWAP SPACE

®m Disk space for storing memory pages
m “Swap” them in and out of memory to disk as needed

PFN O PFN 1 PFN 2 PFN 3

Physical Proc 0 Proc 1 Proc1 Proc 2

Memory VPN 0] VPN 2] [VPN 3] [VPN 0]
Block0  Block 1 Block 2 Black 3 Block4  Black 5 Block 6  Block 7
Swap Proc 0 Proc 0 G5 Proc 1 Proc1 Proc 3 Proc 2 Proc 3
Space | [VPN 1] [VPN 2] VPN 0] [VPN 1] [VPN 0] VPN 1] VPN 1]

Physical Memory and Swap Space
TCSS422: Operating Systems [Spring 2020]
Mayjze gzt School of Engineering and Technology, University of Washington - Tacoma L17.42
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SWAP SPACE - 2

® The size of the swap space can be seen using the Linux free
command: “free -h”

wlloyd@dione:~$ free -h
shared buff/cache available

1.3G 4.4G 176G

® With sufficient disk space, a common allocation is to create
Swap space greater than or equal to physical RAM

TCSS422: Operating Systems [Spring 2020]

L17.43
School of Engineering and Technology, University of Washington - Tacoma

May 28, 2020

SWAP SPACE - 3

®m Swap space lives on a separate logical volume in Ubuntu Linux
that is managed separately from the root file system

®m Check logical volumes with “sudo Ivdisplay” command:

- Logical volume ---
Path /dev/ubuntu-vg/swap_1
NELT swap_1
Name ubuntu-vg
V UUID G10vj6-4M33-2YXY-YETH-wf7V-93vF-QRQYtG
Write Access read/write
Creation host, time ubuntu, 2018-09-30 15:44:16 -0700
Status available
# open 4
LV Size 976.00 MiB

Current LE 244
Segments 1
Allocation inherit
Read ahead sectors auto

- currently set to 256
Block device 253:1

®m See also “lvm lvs” command

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L17.44

May 28, 2020
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PAGE LOCATION

= Memory pages are:
= Stored in memory
= Swapped to disk

® Present bit
= |In the page table entry (PTE) indicates if page is present

= Page fault
= Memory page is accessed, but has been swapped to disk

TCSS422: Operating Systems [Spring 2020] 117.45

iMayj2s72020 School of Engineering and Technology, University of Washington - Tacoma

PAGE FAULT

m OS steps in to handle the page fault
® Loading page from disk requires a free memory page

= Page-Fault Algorithm

PEN = FindFreePhysicalPage ()
if (PFN == -1) // no free page found
PFN = EvictPage ()
DiskRead (PTE.DiskAddr, pfn)
PTE.present = True

PTE.PFN = PFN

L M € B O R S N

RetryInstruction()

TCSS422: Operating Systems [Spring 2020] L17.46

Mayjze gzt School of Engineering and Technology, University of Washington - Tacoma
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PAGE REPLACEMENTS

= Page daemon
= Background threads which monitors swapped pages

= Low watermark (LW)
= Threshold for when to swap pages to disk
= Daemon checks: free pages < LW
= Begin swapping to disk until reaching the highwater mark

= High watermark (HW)
= Target threshold of free memory pages
= Daemon free until: free pages >= HW

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1747

May 28, 2020

TCSS 422 WILL RETURN

AT ~2:40PM
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REPLACEMENT
POLICIES

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

Argument Meaning

CACHE MANAGEMENT

= Replacement policies apply to “any” cache
® Goal is to minimize the number of misses
= Average memory access time (AMAT) can be estimated:

AMAT = (Pt * Tay) + (Puiss * Tp)

Tu The cost of accessing memory (time)

Tp The cost of accessing disk (time)

Puit The probability of finding the data item in the cache(a hit)
Puiss The probability of not finding the data in the cache(a miss)

= Consider Ty, = 100 ns, T, = 10ms
= Consider P,;; =
= Consider P, =

.9 (90%), Pee = .1
.999 (99.9%), P, ... = .001

May 28, 2020
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OPTIMAL REPLACEMENT POLICY

= What if:
= We could predict the future (... with a magical oracle)
= All future page accesses are known
= Always replace the page in the cache used farthest in the future

® Used for a comparison
® Provides a “best case” replacement policy

® Consider a 3-element empty cache with the following page

accesses:
What is the hit/miss ratio?
TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

01201303121

May 28, 2020 117.51

FIFO REPLACEMENT

® Queue based

= Always replace the oldest element at the back of cache
B Simple to implement

® Doesn’t consider importance... just arrival ordering

®m Consider a 3-element empty cache with the following
page accesses:

01201303121

= What is the hit/miss ratio? m

® How is FIFO different than LRU? LRU incorporates history

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 28, 2020 L17.52
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RANDOM REPLACEMENT

® Pick a page at random to replace
® Simple and fast implementation
= Performance depends on luck of random choices

01201303121

50

40

w
o

Frequency
)
=]

-
o

o

1 2 3 4 5 6
Number of Hits

Random Performance over 10,000 Trials

TCSS422: Operating Systems [Spring 2020]
IMayj2532020 School of Engineering and Technology, University of Washington - Tacoma L17.53

HISTORY-BASED POLICIES

B LRU: Least recently used

= Always replace page with oldest access time (front)

= Always move end of cache when element is read again

® LRU requires constant reorganization of the cache

®m Considers temporal locality (when pg was last accessed)

01201303121 What is the hit/miss ratio?

m LFU: Least frequently used m

= Always replace page with the fewest # of accesses (front)
® [ncorporates frequency of use - must track pg accesses

®m Consider frequency of page accesses

01201303121 Hit/miss ratio is=6 hits

TCSS422: Operating Systems [Spring 2020]
Mayjze gzt School of Engineering and Technology, University of Washington - Tacoma L17.54
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Consider a 3-element cache. With a FIFO
replacement policy, how many hits occur with the
following page access sequence:
12013120213

2 hits
3 hits
4 hits
5 hits

6 hits
~ TC88422: Operating Systems [Spring 2020] L17.
.. May 28, 208 the presentatiorgiprsdive F e ERSFIgRTH TSy 2EsmgEnits Spraaninelect polesemiapp 5 ..

Consider a 3-element cache. With an LRU
replacement policy, how many hits occur with the
following page access sequence:
12013120213

2 hits
3 hits
4 hits
5 hits
6 hits

) TCSSA_122: Operating Systems [Spring 2020] . L17.
.. May 28, 20801t the presentationpprsdive F R ERISFIGSA F s RSty repnaRstieect poltneeemiapp 6 ..
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WORKLOAD EXAMPLES: NO-LOCALITY

® No-Locality (Random Access) Workload
= Perform 10,000 random page accesses
= Across set of 100 memory pages

The No-Locality Workload

h
100%— / /
80%—| /’ ,/
. of yd When the cache is
2 sow— //’ i large enough to fit
= S = the entire workload,
40%— // — AN it doesn’t matter
4 which policy you use.
0% [
/ "
2'0 4'0 slo alr:» 11‘30
Cache Size (Blocks)
TCSS422: Operating Systems [Spring 2020]
iMayj2s72020 School of Engineering and Technology, University of Washington - Tacoma L17.57

WORKLOAD EXAMPLES: 80/20

= 80/20 Workload
= Perform 10,000 page accesses, against set of 100 pages
= 80% of accesses are to 20% of pages (hot pages)
= 20% of accesses are to 80% of pages (cold pages)

The 80-20 Workload

A
100%—| /-’;???
s0%—| LRU is more likely
" to hold onto
2 %l — opT hot pages
kS — [RU
— V4 - FFO .
— RAND (recalls history)
20%—//
| \ \ | I >
20 40 60 80 100
Cache Size (Blocks)
TCSS422: Operating Systems [Spring 2020] 117.58
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WORKLOAD EXAMPLES: SEQUENTIAL

® Looping sequential workload
= Refer to 50 pages in sequence: 0, 1, ..., 49
= Repeat loop

The Looping-Sequential Workload

A
100%—| /'7
/ Random performs
80%—) better than FIFO and
2 LRU for
= B — OFT cache sizes < 50
T / = |RU
. FIFO
=5 / — RAND
/
20%—| & Algorithms should provide
- “scan resistance”
2|0 4|0 6|0 Slﬂ 1[%0

Cache Size (Blocks)

TCSS422: Operating Systems [Spring 2020] 117.59

iMayj2s72020 School of Engineering and Technology, University of Washington - Tacoma

With small cache sizes, for the looping sequential
workload, why do FIFO and LRU fail to provide cache
hits?

Cache hits in this scenario require consideration of
how frequently accessed memory is for cache
replacement

Memory accesses are unpredictable and too
random. Unpredictable accesses require a random
cache replacement policy for cache hits

Memory accesses to elements that are accessed
repeatedly are too spread apart temporally to
benefit from caching

Unlike Random cache replacement, both FIFO

and LRU fail to speculate memory accesses in
advance to improve caching

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..
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® Consider:

IMPLEMENTING LRU

®E Times can be tracked with a list
®m For cache eviction, we must scan an entire list

4GB memory system (232),
with 4KB pages (212)

® This requires 22° comparisons !!!

® Simplification is needed
= Consider how to approximate the oldest page access

B Implementing last recently used (LRU) requires tracking
access time for all system memory pages

May 28, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L17.61

®Clock algorithm (approximate LRU)
=Refer to pages in a circular list
=Clock hand points to current page

IMPLEMENTING LRU - 2

® Harness the Page Table Entry (PTE) Use Bit
= HW sets to 1 when page is used
m0S setsto O

=Loops around
IF USE_BIT=1 set to USE_BIT =0
IF USE_BIT=0 replace page

May 28, 2020
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CLOCK ALGORITHM

® Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

The 80-20 Workload

A pas
100%—| &
.’/ i =
7 y
@ 4 ’
o
= / / = OPT
T / = | RU
Clock
= FIFO
= RAND
| T \ I >
40 60 80 100
Cache Size (Blocks)
TCSS422: Operating Systems [Spring 2020]
idayj2832020 School of Engineering and Technology, University of Washington - Tacoma 11763

CLOCK ALGORITHM - 2

®m Consider dirty pages in cache
= |f DIRTY (modified) bit is FALSE
*No cost to evict page from cache

= |f DIRTY (modified) bit is TRUE
=Cache eviction requires updating memory

=Contents have changed

®mClock algorithm should favor no cost eviction

TCSS422: Operating Systems [Spring 2020]
Mayjze gzt School of Engineering and Technology, University of Washington - Tacoma

L17.64
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WHEN TO LOAD PAGES

® On demand - demand paging

= Prefetching
= Preload pages based on anticipated demand

= Prediction based on locality
= Access page P, suggest page P+1 may be used

= What other techniques might help anticipate required
memory pages?
Prediction models, historical analysis
In general: accuracy vs. effort tradeoff
High analysis techniques struggle to respond in real time

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L17.65

May 28, 2020

OTHER SWAPPING POLICIES

= Page swaps / writes
=Group/cluster pages together
=Collect pending writes, perform as batch
=Grouping disk writes helps amortize latency costs

®Thrashing

=Occurs when system runs many memory intensive
processes and is low in memotry

=Everything is constantly swapped to-and-from disk

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L17.66
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OTHER SWAPPING POLICIES - 2

= Working sets

=Groups of related processes

=When thrashing: prevent one or more working

set(s) from running
=Temporarily reduces memory burden
=Allows some processes to run, reduces thrashing

May 28, 2020
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OBJECTIVES - 5/28

® Questions from 5/26
= Tutorial 2 (pthreads, locks, conditions) - due Thurs June 4
® Quiz 3 posted - Active Reading Ch. 19 - due Tues June 2
= Assignment 2 (based on Ch. 30) - due Sun May 31
= Assignment 3 - on Linux kernel programming -

to be offered in “tutorial” format - to be posted ~May 28
= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Hybrid Tables, Multi-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms

= Swapping Policies
= Chapter 36)/37:[1/0 Devices, Hard Disk Drives

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L17.69

May 28, 2020

OBJECTIVES

= Chapter 36

=Polling vs Interrupts

*Programmed |/0 (P10)
Port-mapped I/0 (PMIO)
Memory-mapped /0 (MMIO)

=*Direct memory Access (DMA)

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L17.70
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I/0 DEVICES

B Modern computer systems interact with a variety of devices

input ut

Head set

out

Head phones

Keyboard

Optical pen Laser printer

Joystick

Screen —_
-_—_n. - Plotter

Inkjet I

printer ':é“‘

g 1

Y

Speakers

TCSS422: Operating Systems [Spring 2020]

iayj2672020 School of Engineering and Technology, University of Washington - Tacoma
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COMPUTER SYSTEM ARCHITECTURE

> Memory Bus

(proprietary)
* General I/O Bus
(e.g., PCD)

Peripheral /O Bus

" (eg. SCSL SATA, USE)

Prototypical System Architecture

Memory bus

General 1/0 bus

Peripheral 1/0 bus

TCSS422: Operating Systems [Spring 2020]

Mayizeqzn2u School of Engineering and Technology, University of Washington - Tacoma

L17.72
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/0 BUSES

® Buses
= Buses closer to the CPU are faster
= Can support fewer devices

= Further buses are slower, but support more devices

® Physics and costs dictate “levels”
= Memory bus
= General I/0 bus
= Peripheral 1/0 bus

® Tradeoff space: speed vs. locality

TCSS422: Operating Systems [Spring 2020]

May 26, 2020

School of Engineering and Technology, University of Washington - Tacoma

L17.73

CANONICAL DEVICE

® Consider an arbitrary canonical “standard/generic” device

Registers: ‘ Status ‘ ‘Command‘ ‘ Data ‘

Micro-controller(CPU)
Memeory (DRAM or SRAM or both)
Other Hardware-specific Chips

Canonical Device

B Two primary components
= I[nterface (registers for communication)

interface

internals

= [nternals: Local CPU, memory, specific chips, firmware

(embedded software)

May 26, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L17.74
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CANONICAL DEVICE:

HARDWARE INTERFACE

® Status register
= Maintains current device status

® Command register
= Where commands for interaction are sent

® Data register
= Used to send and receive data to the device

General concept:

controls device behavior
device registers.

TCSS422: Operating Systems [Spring 2020]
IMayj2632020 School of Engineering and Technology, University of Washington - Tacoma L17.75

OS DEVICE INTERACTION

B Common example of device interaction

while ( status == zusy) <@ Poll- Is device available?

; //wait until device is not busy
write data to data register - Command parameterization
write command to command register - Send command

Doing so starts the device and executes the command

while ( STATUS == BUSY) <@l Poll - Is device done?

; //wait until device is done with your request
TCSS422: Operating Systems [Spring 2020]
Mayizeqzn2u School of Engineering and Technology, University of Washington - Tacoma L
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POLLING

® OS checks if device is READY by repeatedly checking the
STATUS register
= Simple approach
= CPU cycles are wasted without doing meaningful work
= Ok if only a few cycles, for rapid devices that are often READY
= BUT polling, as with “spin locks” we understand is inefficient

“waiting 10"

D task 1 EI : pelling

e [1fs]1fs]a[plefplp]pla[s]a]a]1]
Disk HEERERER
CPU utilization by polling
TCSS422: Operating Systems [Spring 2020]
iMayj2632020 School of Engineering and Technology, University of Washington - Tacoma L1777

INTERRUPTS VS POLLING

® For longer waits, put process waiting on 1/0 to sleep

® Context switch (C/S) to another process

® When I/0 completes, fire an interrupt to initiate C/S back
= Advantage: better multi-tasking and CPU utilization

= Avoids:

unproductive CPU cycles (polling)

CPU

Disk

s task 1 : task 2

EENENENENEY ENENENEY

AENFNENEY

[1]afafa]a]

Diagram of CPU utilization by

interrupt

May 26, 2020
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INTERRUPTS VS POLLING - 2

What is the tradeoff space ?

® [nterrupts are not always the best solution

= How long does the device I/0 require?

= What is the cost of context switching?

polling
interrupts

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L17.79
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INTERRUPTS VS POLLING - 3

® One solution is a two-phase hybrid approach

= |nitially poll, then sleep and use interrupts

® Livelock problem

= Common with network 1/0

= Many arriving packets generate many many interrupts
= Overloads the CPU!

= No time to execute code, just interrupt handlers !

® Livelock optimization

= Coalesce multiple arriving packets (for different processes) into
fewer interrupts

= Must consider number of interrupts a device could generate

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L17.80
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DEVICE 1I/0

= To interact with a device we must send/receive

DATA
®"There are two general approaches:
*Programmed 1/0 (P10)

=Direct memory access (DMA)

iMayj2632020 gglfzilzif g’:geiLae'tler:’ignzy:;edm‘lf‘eg?wg?oggi,oﬁ?'n]iversity of Washington - Tacoma L17.81
Tr&nsfl_ar Modes
Mode = # = Maximu:nu':?:]sfer e = cycle time =

) . 33 600 ns
1 52 383 ns
PIO 2 8.3 240 ns
3 11.1 180 ns
4 167 120 ns
o] 21 960 ns
Single-word DMA . 1 4.2 480 ns
2 8.3 240 ns
0 4.2 480 ns
1 13.3 150 ns
Multi-word DMA . 2 16.7 120 ns
' 31341 ' 20 100 ns
21341 [ 25 80 ns

0 ' 16.7 240 ns + 2

1 ' 25.0 160 ns = 2

2 (Ultra ATA33) | 33.3 120ns = 2

- ' 3 ] 44.4 90 ns + 2

4 (Ultra ATASEEB) 66.T7 60 ns + 2

5 (Ultra ATAS100) - 100 40 ns = 2

& (Ultra ATAM33) - 133 30ns + 2

| 7 (Ultra ATA/167)121 | 167 24ns+2

From https://en.wikipedia.org/wiki/Parallel ATA
Lloyd
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PROGRAMMED 1/0 (PIO)

® Spend CPU time to perform I/0
® CPU is involved with the data movement (input/output)
® P|O is slow -CPU is occupied with meaningless work

PIO

“over-burdened” s task 1 : task 2

—_—

i : copy data from memory

v [1]a]a]s

JEE AR

Disk

[2fafafa]e]

Diagram of CPU utilization

May 26, 2020
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P10 DEVICES

m L egacy serial ports

m L egacy parallel ports

® PS/2 keyboard and mouse

m Legacy MIDI, joysticks

® Old network interfaces

May 26, 2020
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PROGRAMMED I/0 DEVICE (PIO)

INTERACTION

= Two primary PIO methods

= Port mapped I/0 (PMIO)

= Memory mapped I/0 (MMIO)

TCSS422: Operating Systems [Spring 2020]

iMayj2632020 School of Engineering and Technology, University of Washington - Tacoma

L17.85

PORT MAPPED I/0 (PMIO)

® Device specific CPU I/0 Instructions
E Follows a CISC model: extra instructions
B x86-x86-64: in and out instructions

" outb, outw, outl
m1 2, 4 byte copy from EAX = device’s I/0 port

TCSS422: Operating Systems [Spring 2020]

Mayizeqzn2u School of Engineering and Technology, University of Washington - Tacoma

L17.86
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MEMORY MAPPED I/0 (MMIO)

® Device’s memory is mapped to CPU memory

® Tenet of RISC CPUs: instructions are eliminated, CPU is
simpler

® Old days: 16-bit CPUs didn’t have a lot of spare memory space
® Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr

space)

®m Regular CPU instructions used to access device: mapped to
memory

® Devices monitor CPU address bus and respond to their
addresses

® |/0 device address areas of memory are reserved for I/0
= Must not be available for normal memory operations.

TCSS422: Operating Systems [Spring 2020]

iMayj2632020 School of Engineering and Technology, University of Washington - Tacoma

L17.87

DIRECT MEMORY ACCESS (DMA)

® Copy data in memory by offloading to “DMA controller”

® Many devices (including CPUs) integrate DMA controllers

®m CPU gives DMA: memory address, size, and copy instruction
= DMA performs I/0 independent of the CPU

= DMA controller generates CPU interrupt when I/0 completes

:taskl :task2
: copy data from memory
v {11 [ 1 | 1 |1 |
DMA

Disk [1]1]1]2]1]

Diagram of CPU utilization by DMA

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma
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DIRECTORY MEMORY ACCESS - 2

® Many devices use DMA
= HDD/SSD controllers (ISA/PCl)
= Graphics cards
= Network cards
= Sound cards
= [ntra-chip memory transfer for multi-core processors

® DMA allows computation and data transfer time to
proceed in parallel

May 26, 2020
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DEVICE INTERACTION

B The OS must interact with a variety of devices

m Example: for DISK I/0 consider the variety of disks:

= SCSI, IDE, USB flash drive, DVD, etc.

® Device drivers use abstraction to provide general
interfaces for vendor specific hardware

®E |n Linux: block devices

May 26, 2020
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FILE SYSTEM ABSTRACTION

® | ayers of I/0 abstraction in Linux

® C functions (open, read, write) issue block read and write
requests to the generic block layer

‘ Application ‘ user
—————————— POSIX API [open, read, write, close, etc] F i e e [T
kernel
Generic Block Interface [block read/write]

Generic Block Layer ‘

|

Specific Block Interface [protocol-specific read/write]

The File System Stack
TCSS422: Operating Systems [Spring 2020] 17.91

May 26, 2020
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FILE SYSTEM ABSTRACTION ISSUES

® Too much abstraction

® Many devices provide special capabilities
® Example: SCSI Error handling
®m SCSI devices provide extra detail which are lost to the 0OS

= Buggy device drivers

® 70% of OS code is in device drivers
® Device drivers are required for every device plugged in

m Drivers are often 3' party, which is not quality controlled at
the same level as the OS (Linux, Windows, MacOS, etc.)

TCSS422: Operating Systems [Spring 2020] 117.92

Mayizeqzn2u School of Engineering and Technology, University of Washington - Tacoma
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CH. 37:
HARD DISK DRIVES

TCSS422: Operating Systems [Spring 2020]

Mayjasa2n20 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 5/28

= Questions from 5/26
= Tutorial 2 (pthreads, locks, conditions) - due Thurs June 4
® Quiz 3 posted - Active Reading Ch. 19 - due Tues June 2
= Assignment 2 (based on Ch. 30) - due Sun May 31
= Assighment 3 - on Linux kernel programming -

to be offered in “tutorial” format - to be posted ~May 28
= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Hybrid Tables, Multi-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms

= Swapping Policies
= Chapter 36437} 1/0 Devices, Hard Disk Drives)|

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L17.94

May 28, 2020
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OBJECTIVES

®m Chapter 37
= HDD Internals
= Seek time
= Rotational latency
= Transfer speed
= Capacity

= Scheduling algorithms

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L17.95

May 26, 2020

HARD DISK DRIVE (HDD)

B Primary means of data storage (persistence) for decades

® Consists of a large number of data sectors
m Sector size is b12-bytes

® An n sector HDD
can be is addressed as an array of 0..n-1 sectors

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L17.96
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HDD INTERFACE

® Writing disk sectors is atomic (512 bytes)
® Sector writes are completely successful, or fail

®= Many file systems will read/write 4KB at a time
= Linux ext3/4 default filesystem blocksize - 4096

= Same as typical memory page size K<

TCSS422: Operating Systems [Spring 2020] 117.97

iMayj2632020 School of Engineering and Technology, University of Washington - Tacoma

BLOCK SIZE IN LINUX EXT4

=" mkefs.ext4 -i bytes-per-inode

Specify the bytes/inode ratio. mke2fs creates an inode for
every bytes-per-inode bytes of space on the disk. The
larger the bytes-per-inode ratio, the fewer inodes will be
created. This value generally shouldn't be smaller than
the blocksize of the filesystem, since in that case more
inodes would be made than can ever be used. Be warned
that it is not possible to expand the number of inodes on
a filesystem after it is created, so be careful deciding the
correct value for this parameter.

TCSS422: Operating Systems [Spring 2020] 117.98

Mayizeqzn2u School of Engineering and Technology, University of Washington - Tacoma
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EXAMPLE: USDA SOIL EROSION MODEL

WEB SERVICE (RUSLE2)

® Host ~2,000,000 files totaling 9.5 GB on a ~20GB
filesystem on a cloud-based Virtual Machine

® With default inode ratio (4096 block size),
only ~488,000 files will fit

® Drive less than half full, but files will not fit !
® HDDs support a minimum block size of 512 bytes

m OS filesystems such as ext3/ext4 can support “finer
grained” management at the expense of a larger catalog
size

TCSS422: Operating Systems [Spring 2020] 117.99
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EXAMPLE: USDA SOIL EROSION MODEL

WEB SERVICE (RUSLE2) - 2

= Free space in bytes (df)

Device total size bytes-used bytes-free usage
/dev/vda2 13315844 9556412 3049188 76% /mnt

= Free inodes (df -i) @ 512 bytes / node

Device total inodes used free usage
/dev/vda2 3552528 1999823 1552705 57% /mnt
TCSS422: Operating Systems [Spring 2020]
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HDD INTERFACE - 2

= Torn write
= When OS uses larger block size than HDD
= Block writes not atomic - they SPAN multiple HDD sectores

= Upon power failure only a portion of the OS block is
written

® HDD access
= Sequential reads of sectors is fastest
= Random sector reads are slow

= Disk head continuously must jump to
different tracks

TCSS422: Operating Systems [Spring 2020]

iayj2672020 School of Engineering and Technology, University of Washington - Tacoma
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HDD PLATTER

B Made from aluminum coated with thin magnetic layer
®m HDD records on both sides of each platter
®m Data is stored by inducing magnetic changes

Magnetized
data on disk

Tracks ST Disk \ '\.

hi, Mation 6t Suspénsion

TCSS422: Operating Systems [Spring 2020]
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HDD SPINDLE

® Connected to motor which spins the disk

®m Speed measures in RPM (rotations per minute)

® Typical: 7200-15000 rpm

® 10000 rpm - 1 rotation in 6ms; 15k rpm 1 rotation in 4ms

Magnetized
data an disk

Tracks ie Disk \ W

9) w/ B

hi, Mation 6f Stispénsion
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HDD TRACK

= Concentric circle of sectors
®mSingle side of platter contains 290 K tracks (2008)
®m Zones: groups of tracks with same # of sectors

1 sector = 512 byles a track
—

Outer tracks have
More sectors

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 26, 2020

L17.104

Lloyd

5/28/2020

L17.52



TCSS 422 B - Spring 2020

School of Engineering and Technology

EXAMPLE: SIMPLE DISK DRIVE

® Single track disk
® Head: one per surface of drive
® Arm: moves heads across surface of platters

Rotates this way
%

A Single Track Plus A Head

TCSS422: Operating Systems [Spring 2020]
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HARD DISK STRUCTURE

l<— spindle

<1— arm assembly

sector s

cylinder ¢ read-write
head

platter

rotation
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SINGLE-TRACK LATENCY:

THE ROTATIONAL DELAY

® Rotational latency (T ): time to rotate to desired sector

rotation

® Average T is ~ half the time of a full rotation

rotation
® Calculate time for 1 rotation based on rpm

Rotates this way
m 7200rpm = 8.33ms per rotation = ~4.166ms - —

® 10000rpm = 6ms per rotation = ~3ms
® 15000rpm = 4ms per rotation = ~2ms

A Single Track Plus A Head

TCSS422: Operating Systems [Spring 2020]
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SEEK TIME

Rotates this way Rotates this way
«—— «———

Three Tracks Plus A Head (Right: With Seek)
(e.g., read to sector 11)

m Seek time (T,..,): time to move disk arm to proper track
® Most time consuming HDD operation

TCSS422: Operating Systems [Spring 2020]
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FOUR PHASES OF SEEK

® Acceleration - coasting > deceleration > settling

= Acceleration: the arm gets moving

® Coasting: arm moving at full speed

m Deceleration: arm slow down

m Settling: Head is carefully positioned over track
= Settling time is often high, from .5 to 2ms

TCSS422: Operating Systems [Spring 2020]
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HDD 1/0

® Data transfer

=*Final phase of 1/0: time to read or write to disk
surface

=Complete I/0 cycle:
1. Seek (accelerate, coast, decelerate, settle)
2. Wait on rotational latency
3. Data transfer

TCSS422: Operating Systems [Spring 2020]

Mayizeqzn2u School of Engineering and Technology, University of Washington - Tacoma

L17.110

Slides by Wes J. Lloyd

5/28/2020

L17.55



TCSS 422 B — Spring 2020
School of Engineering and Technology

TRACK SKEW

reposition for sequential reads

® Without track skew, when head is repositioned sector
would have already been passed

Rotates this way
-—

Three Tracks: Track Skew Of 2

m Sectors are offset across tracks to allow time for head to

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma
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TRACK SKEW - 2
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HDD CACHE

m Buffer to support caching reads and writes
® Improves drive response time
= Up to 128 MB, slowly have been growing

® Two styles
= Writeback cache

Report write complete immediately when data is
transferred to HDD cache

Dangerous

= Writethrough cache

Reports write complete only when write is physically
completed on disk

TCSS422: Operating Systems [Spring 2020]
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TRANSFER SPEED

u I/O Time T.’/O = Tseer + Trotation + Ttrcmsfe'r

= The rate of I/0 Ryo =%
/0

Cheetah 15K.5 Barracuda

Capacity 300 GB 178

RPM 15,000 7,200

Average Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

Platters 4 4

Cache 16 MB 16/32 MB

Connects Via SCSI SATA

Disk Drive Specs: SCSI Versus SATA

TCSS422: Operating Systems [Spring 2020]
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/0 SPEED

® Random workload: 4KB random read on HDD
®m Sequential workload: read 100MB contiguous sectors

Cheetah 15K.5 Barracuda
y - 4 ms 9 ms
Trotation 2 ms 42 ms
Tiransyer 30 microsecs 38 microsecs
Random Tij0 6 ms 13.2 ms
Ryo | 0.66 MB/s 031 MB/s |
Tiransyer 800 ms 950 ms
Sequential Tij0 806 ms 963.2 ms
Ryo | 125 MB/s 105 MB/s |

Disk Drive Performance: SCSI Versus SATA

There is a huge gap in drive throughput

between random and sequential workloads

TCSS422: Operating Systems [Spring 2020]
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MODERN HDD SPECS

m See sample HDD configurations here:

E https://www.hgst.com/products/hard-drives
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DISK SCHEDULING

® Disk scheduler: determine how to order I/0 requests

® Multiple levels - OS and HW

® OS: provides ordering

® HW: further optimizes using intricate details of physical
HDD implementation and state

TCSS422: Operating Systems [Spring 2020]
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SSTF - SHORTEST SEEK TIME FIRST

®m Disk scheduling - which I/0 request to schedule next
B Shortest Seek Time First (SSTF)

®m Order queue of I/0 requests by nearest track
Rotates this way
—

SSTF: Scheduling Request 21 and 2

Issue the request to 21 2 issue the request to 2

TCSS422: Operating Systems [Spring 2020]
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SSTF ISSUES

® Problem 1: HDD abstraction

= Drive geometry not available to OS. Nearest-block-first is
a comparable alternate algorithm.

® Problem 2: Starvation

® Steady stream of requests for local tracks may prevent
arm from traversing to other side of platter

TCSS422: Operating Systems [Spring 2020]
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DISK SCHEDULING ALGORITHMS

= SWEEP
® Single repeated passes across disk

® |ssue: if request arrives for a recently visited track it will not
be revisited until a full cycle completes

= F-SCAN
® Freeze request queue during sweep
® Cache arriving requests until later

= Elevator (C-SCAN) - circular scan

m Sweep from outer to inner track and reverse,
inner to outer track, etc.

TCSS422: Operating Systems [Spring 2020]
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®EDetermine next
sector to read?

®On which track?

®On which sector?

SHORTEST TIME POSITIONING FIRST

Rotates this way
*

SSTF: Sometimes Not Good Enough

On modern drives, both seek and rotation are roughly equivalent:
Thus, SPTF (Shortest Positioning Time First) is useful.

May 26, 2020
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I/0 MERGING

= Group temporary adjacent requests
® Reduce overhead
= Read (memory blocks): 33 8 34

" How long we should wait for I/0 ?

=" When do we know we have waited too long?

May 26, 2020
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QUESTIONS

WILL RETURN IN A FEW
MINUTES
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