
TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.1Slides by Wes J. Lloyd

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

Paging: Smaller Tables,
Beyond Physical Memory

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 5/21

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 2 (based on Ch. 30) – due …… Thurs May 28

 Assignment 3 – on Linux kernel programming –
to be of fered in “tutorial” format - posting by ~May 28

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Hybrid Tables, Multi-level Page Tables

 Chapter 21/22: Beyond Physical Memory
 Swapping Mechanisms

 Swapping Policies

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.2

OBJECTIVES – 5/26

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.2Slides by Wes J. Lloyd

 Please classify your perspective on material covered in
today’s class (46 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.29 (from 6 .53)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.70 (from 5.66)

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.3

MATERIAL / PACE

 From email: On assignment 2, I am confused about examining
load with "top -d .1"

(from A2) On a multicore machine, when monitoring load with
“top -d .1”, the max percent CPU utilization demonstrates the
highest degree of parallelism achieved. On an 8-hyperthead
computer, 800% is possible. On a 4-hyperthread computer,
400% is possible.

 The top command displays load average. Is that the value we
are interested in?

 We are interested in process CPU utilization

 Top shows the %CPU utilization for each Linux process for the
last update interval (-d .1 is an update interval of 0.1 secs)

 100% CPU indicates 1 core is 100% busy for last interval

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.4

FEEDBACK FROM 5/21

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.3Slides by Wes J. Lloyd

 If the computer has 4 vir tual cores, then:

100% CPU = 1 thread at full CPU util ization

200% CPU = 2 thread at full CPU util ization

300% CPU = 3 thread at full CPU util ization

400% CPU = 4 thread at full CPU util ization

 CPU util ization of any process will not exceed 400% on 4-core
system at any update interval.

 (See Tutorial #2 for a good example of this.)

 But, what is load average?

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.5

FEEDBACK - 2

 What is load average?

 Load average is the average number of blocked processes
waiting for the CPU over the last 1 , 5, and 15 minutes

 High load average and high CPU util ization should correlate,
but they are measuring dif ferent things

 When a process (e.g. PC Matrix) occupies all CPU cores, then
every other Linux process will block and wait

 Other processes (e.g. Google Chrome, etc.) wil l struggle to get
CPU time

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.6

FEEDBACK - 3

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.4Slides by Wes J. Lloyd

 For the get() and put() routines in assignment 2, I noticed that
the put() routine in prodcons.h is defined as returning an int

 I am confused what we are intended to return with the put()
routine.

 Should put() return a status, address, or matrix?

 For "int put()", the "int" could be used to return a status code,
but feel free to redefine this however you'd like as there is
no specific requirement

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.7

FEEDBACK - 4

 Please remember to add comments to pcMatrix.c to indicate if
extra credit should be graded for Assignment #2:

 Helps graders identify if they should evaluate extra credit

 If comments are missing from assignment #1 , please go to
assignment #1, click:
“Submission Details” link on the RIGHT

 Add a comment in the “Add a comment” box

 Indicate which extra credit (EC1, EC2, EC3, EC4) needs graded
May 26, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L16.8

ASSIGNMENT 2 – EXTRA CREDIT

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.5Slides by Wes J. Lloyd

 Questions from 5/21

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 2 (based on Ch. 30) – due …… Thurs May 28

 Assignment 3 – on Linux kernel programming –
to be of fered in “tutorial” format - posting by ~May 28

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Hybrid Tables, Multi-level Page Tables

 Chapter 21/22: Beyond Physical Memory
 Swapping Mechanisms

 Swapping Policies

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.9

OBJECTIVES – 5/26

 Questions from 5/21

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 2 (based on Ch. 30) – due …… Thurs May 28

 Assignment 3 – on Linux kernel programming –
to be of fered in “tutorial” format - posting by ~May 28

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Hybrid Tables, Multi-level Page Tables

 Chapter 21/22: Beyond Physical Memory
 Swapping Mechanisms

 Swapping Policies

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.10

OBJECTIVES – 5/26

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.6Slides by Wes J. Lloyd

 Questions from 5/21

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 2 (based on Ch. 30) – due …… Thurs May 28

 Assignment 3 – on Linux kernel programming –
to be of fered in “tutorial” format - posting by ~May 28

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Hybrid Tables, Multi-level Page Tables

 Chapter 21/22: Beyond Physical Memory
 Swapping Mechanisms

 Swapping Policies

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.11

OBJECTIVES – 5/26

 Questions from 5/21

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 2 (based on Ch. 30) – due …… Thurs May 28

 Assignment 3 – on Linux kernel programming –
to be of fered in “tutorial” format - posting by ~May 28

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Hybrid Tables, Multi-level Page Tables

 Chapter 21/22: Beyond Physical Memory
 Swapping Mechanisms

 Swapping Policies

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.12

OBJECTIVES – 5/26

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.7Slides by Wes J. Lloyd

CHAPTER 20:
PAGING:

SMALLER TABLES

May 26, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L16.13

 Questions from 5/21

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 2 (based on Ch. 30) – due …… Thurs May 28

 Assignment 3 – on Linux kernel programming –
to be of fered in “tutorial” format - posting by ~May 28

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Hybrid Tables, Multi-level Page Tables

 Chapter 21/22: Beyond Physical Memory
 Swapping Mechanisms

 Swapping Policies

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.14

OBJECTIVES – 5/26

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.8Slides by Wes J. Lloyd

Consider single-level (array-based) page tables:
 Each process has its own page table

 Consider a 32-bit process address space (up to 4GB)

 Indexed using 4 KB (212) pages

 Total # of pages = 232 / 212

 Total # of pages = 220

 Virtual Address has: 20 bits for VPN

 Virtual Address has: 12 bits for the page offset

 Each Virtual Address requires 32 bits (4 bytes)

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.15

LINEAR PAGE TABLES

 Page tables stored in RAM

 Support potential storage of 220 translations
= maps 1,048,576 pages per process @ 4 bytes/entry

 Page table size 4MB / process

 Consider OS with 100 processes:
 Requires ~400 MB of RAM to store page tables

for virtual to physical address translation

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.16

LINEAR PAGE TABLES - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.9Slides by Wes J. Lloyd

 Page tables stored in RAM

 Support potential storage of 220 translations
= maps 1,048,576 pages per process @ 4 bytes/entry

 Page table size 4MB / process

 Consider OS with 100 processes:
 Requires ~400 MB of RAM to store page tables

for virtual to physical address translation

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.17

LINEAR PAGE TABLES - 2

Page tables are TOO BIG and
consume TOO MUCH memory.

Need Solutions … !!

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a
few variables

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.18

PAGING: USE LARGER PAGES

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.10Slides by Wes J. Lloyd

 Consider a small computer

 26KB Computer
 Computer has only 26 physical page frames

 16KB Virtual Address Space for Programs
 System uses 1 KB pages

 Programs consist of: code, heap, stack segments

 Consider a simple program with:
1 code page, 1 heap page, 2 stack pages

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.19

PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.20

PAGE TABLES: WASTED SPACE

Page Table 26KB
Computer

Page table is mostly empty…

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.11Slides by Wes J. Lloyd

 Process: 16KB Address Space w/ 1KB pages

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.21

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

26KB
Computer

Page table is mostly empty…

 Consider a single-level page table:

 Virtual address space: 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page
table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.22

MULTI-LEVEL PAGE TABLES

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.12Slides by Wes J. Lloyd

 Add level of indirection, the “page directory”(PD)

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.23

MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”(PD)

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.24

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.13Slides by Wes J. Lloyd

 Advantages

 Only allocates page table space in proportion to the
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.25

MULTI-LEVEL PAGE TABLES - 3

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.26

EXAMPLE

of page table entries

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.14Slides by Wes J. Lloyd

 256 total pages (64 bytes each)

 Assume page table entries are 4 bytes each
includes extra space for status bits

 Single-level page table:
(256 x 4) = 1,024 bytes page table size

 Single-level page table stored using 64-byte pages would
span:
= (1024/64) = 16 pages

 Key idea: the page table is stored using pages too!

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.27

EXAMPLE - 2

 Now, let’s split the page table into two page tables:

 1-level page table: 8 bit VPN maps 256 pages

 SPLIT VPN in HALF:

 PD – 1st level table

 First half: 4 bits used for the page directory index

 Indexes the page directory (16 ptrs to small page tables)

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.28

TWO-LEVEL PAGE TABLE:
PAGE DIRECTORY INDEX (PDI)

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.15Slides by Wes J. Lloyd

 THE OTHER HALF:
 PT – 2nd level table
 Second half: lower 4 bits used for the page table index
 Indexes a small page table
 Provides lower 4 bits to form 8-bit VPN w/PDI

 Offset bits: 6 bits index any byte on a 64-byte page
 To dereference one 64-byte memory page:
 We use one page directory entry (PDE)
 And one page table entry (PTE) – to address a max of 16 pages

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.29

TWO LEVEL PAGE TABLE:
PAGE TABLE INDEX (PTI)

 Each page directory (PD) holds up to 16 entries (PDEs)

 These 16 entries can point to a small page table

 Or they can be unused

 Hello.c: 1 entry is used, 15 unused

 Hello.c : 4 PTEs (stack, code, heap, data segments), 1 PDE

 Largest program: 16 entries (PDEs) point to 16 page tables

 Max memory indexed = 16 x 16 x 64 = 16,384 (16KB)

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 maximum PTEs – fully populated

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.30

EXAMPLE - 3

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.16Slides by Wes J. Lloyd

 For this example, how much space is required to store as a single-
level page table with any number of PTEs?

 16KB address space, 64 byte pages

 256 page frames, 4 byte page size

 1,024 bytes required (single level)

 Consider hel lo.c w/ 4 PTEs: (1 stack, code, data, heap pages)

 How much space is required for a two-level page table with only 4
page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)

 Page table = 4 used/12 empty entries x 4 bytes (1 x 64 byte page)

 128 bytes required (2 x 64 byte pages)
 Savings = using just 12.5% the space !!!

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.31

EXAMPLE - 4

 Consider: 32-bit address space, 4KB pages, 220 pages
 Only 4 mapped pages (hello.c)

 Single level: 4 MB (we’ve done this before)

 Two level: (old VPN was 20 bits, split in half)
 Page directory = 210 entries x 4 bytes = 1 x 4 KB page
 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
 8KB (8,192 bytes) required
 Savings = using just .78 % the space !!!

 How much memory is required to index 100 sparse processes?
 100 processes x 8KB now require < 1MB for page tables

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.32

32-BIT EXAMPLE

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.17Slides by Wes J. Lloyd

TCSS 422 WILL RETURN
AT ~2:50PM

May 21, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L15.33

 Consider: Address space of 1 GB

 Page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.34

MORE THAN TWO LEVELS

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.18Slides by Wes J. Lloyd

 Page table entries per page = 512 / 4 = 128

 SPLIT 21 bit VPN: 7 bits – for page table index (PTI)

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.35

MORE THAN TWO LEVELS - 2

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 128 entries x 4 bytes per addr = 512 bytes

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.36

MORE THAN TWO LEVELS - 3

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.19Slides by Wes J. Lloyd

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 128 entries x 4 bytes per addr = 512 bytes

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.37

MORE THAN TWO LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.
Pages only fit (dereference)

128 addresses = (512 bytes / 4 bytes)

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 128 entries x 4 bytes per addr = 512 bytes

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.38

MORE THAN TWO LEVELS - 3

Need three level page table:
Page directory 0 (PD Index 0- 7bit)
Page directory 1 (PD Index 1- 7bit)

Small Page Table (Page Table Index- 7bit)

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.20Slides by Wes J. Lloyd

 We can now address 1GB with “fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a vir tual address space with
only 4 entries on a 512-byte page? (e.g. 4 x 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Memory Usage= 1,536 (3- level) / 8,388,608 (1- level) = .0183% !!!

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.39

MORE THAN TWO LEVELS - 4

// 5-level Linux page table address lookup
//
// Inputs:
// mm_struct – process’s memory map struct
// vpage – virtual page address

// Define page struct pointers
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmt;
pte_t *pte;
struct page *page;

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.40

ADDRESS TRANSLATION CODE

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.21Slides by Wes J. Lloyd

pgd = pgd_offset(mm, vpage);
if (pgd_none(*pgd) || pgd_bad(*pgd))

return 0;
p4d = p4d_offset(pgd, vpage);
if (p4d_none(*p4d) || p4d_bad(*p4d))

return 0;
pud = pud_offset(p4d, vpage);
if (pud_none(*pud) || pud_bad(*pud))

return 0;
pmd = pmd_offset(pud, vpage);
if (pmd_none(*pmd) || pmd_bad(*pmd))

return 0;
if (!(pte = pte_offset_map(pmd, vpage)))

return 0;
if (!(page = pte_page(*pte)))

return 0;
physical_page_addr = page_to_phys(page);
pte_unmap(pte);
return physical_page_addr; // param to send back

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.41

ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct
for the process, returns the PGD entry that
covers the requested address…

p4d/pud/pmd_offset():
Takes a vpage address and the
pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

pte_unmap()
release temporary kernel mapping
for the page table entry

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores

 Which process uses each page

 Which process virtual page (from process virtual address
space) maps to the physical page

 All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 220 pages

 Hash table: can index memory and speed lookups

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.42

INVERTED PAGE TABLES

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.22Slides by Wes J. Lloyd

May 26, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.4
3

May 26, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.4
4

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.23Slides by Wes J. Lloyd

May 26, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.4
5

May 26, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.4
6

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.24Slides by Wes J. Lloyd

May 26, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.4
7

May 26, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.4
8

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.25Slides by Wes J. Lloyd

May 26, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.4
9

May 26, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.5
0

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.26Slides by Wes J. Lloyd

May 26, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.5
1

May 26, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.5
2

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.27Slides by Wes J. Lloyd

 Consider a 16 MB computer which indexes memory using 4KB
pages

 (#1) For a single level page table, how many pages are
required to index memory?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many of fset bits are required?

 (#4) Assuming there are 20 status bits, how many bytes are
required for each page table entry?

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.53

MULTI-LEVEL PAGE TABLE EXAMPLE

 (#5) How many bytes (or KB) are required for a single level
page table?

 Let’s assume a simple HelloWorld.c program.
 HelloWorld.c requires vir tual address translation for 4 pages:
 1 – code page 1 – stack page
 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index
(PTI)?

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.54

MULTI LEVEL PAGE TABLE EXAMPLE - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.28Slides by Wes J. Lloyd

 Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
 6 bits for the Page Directory Index (PDI)

 6 bits for the Page Table Index (PTI)

 12 offset bits

 20 status bits

 (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page
Table…

 HINT: how many entries are in the PD and PT

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.55

MULTI LEVEL PAGE TABLE EXAMPLE - 3

 (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if al l of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

 (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.56

MULTI LEVEL PAGE TABLE EXAMPLE - 4

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.29Slides by Wes J. Lloyd

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits

 #7 – 6 bits

 #8 – 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- 512/16384 = .03125 3.125%

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.57

ANSWERS

CHAPTER 21/22:
BEYOND PHYSICAL

MEMORY

May 26, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L16.58

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.30Slides by Wes J. Lloyd

 Questions from 5/21

 Tutorial 2 (pthreads, locks, conditions) – due Thurs June 4

 Quiz 3 posted – Active Reading Ch. 19 – due Tues June 2

 Assignment 2 (based on Ch. 30) – due …… Thurs May 28

 Assignment 3 – on Linux kernel programming –
to be of fered in “tutorial” format - posting by ~May 28

 Chapter 20: Paging: Smaller Tables
 Smaller Tables, Hybrid Tables, Multi-level Page Tables

 Chapter 21/22: Beyond Physical Memory
 Swapping Mechanisms

 Swapping Policies

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.59

OBJECTIVES – 5/26

 Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.60

MEMORY HIERARCHY

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.31Slides by Wes J. Lloyd

 Can provide illusion of an address space larger than
physical RAM

 For a single process

 Convenience

 Ease of use

 For multiple processes

 Large virtual memory space for many concurrent
processes

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.61

MOTIVATION FOR
EXPANDING THE ADDRESS SPACE

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.62

LATENCY TIMES

Design considerations
 SSDs 4x the time of DRAM
 HDDs 80x the time of DRAM

 Latency number s ever y p ro grammer sho uld know
 Fro m: h t t ps :/ /g is t .g i t hub.co m/jboner/2841 832#f i le - la tency - t x t

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.32Slides by Wes J. Lloyd

 Disk space for storing memory pages

 “Swap” them in and out of memory to disk as needed

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.63

SWAP SPACE

 Page table pages are:

 Stored in memory

 Swapped to disk

 Present bit

 In the page table entry (PTE) indicates if page is present

 Page fault

Memory page is accessed, but has been swapped to disk

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.64

PAGE LOCATION

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.33Slides by Wes J. Lloyd

 OS steps in to handle the page fault

 Loading page from disk requires a free memory page

 Page-Fault Algorithm

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.65

PAGE FAULT

 Page daemon

 Background threads which monitors swapped pages

 Low watermark (LW)

 Threshold for when to swap pages to disk

 Daemon checks: free pages < LW

 Begin swapping to disk until reaching the highwater mark

 High watermark (HW)

 Target threshold of free memory pages

 Daemon free until: free pages >= HW

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.66

PAGE REPLACEMENTS

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.34Slides by Wes J. Lloyd

REPLACEMENT
POLICIES

May 26, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L16.67

 Replacement policies apply to “any” cache

 Goal is to minimize the number of misses

 Average memory access t ime (AMAT) can be estimated:

 Consider TM = 100 ns, TD = 10ms

 Consider Phit = .9 (90%), Pmiss = .1

 Consider Phit = .999 (99.9%), Pmiss = .001

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.68

CACHE MANAGEMENT

𝐴𝑀𝐴𝑇 = 𝑃ு௧ ∗ 𝑇ெ + (𝑃ெ௦௦ ∗ 𝑇)

Argument Meaning

𝑇ெ The cost of accessing memory (time)

𝑇 The cost of accessing disk (time)

𝑃ு௧ The probability of finding the data item in the cache(a hit)

𝑃ெ௦௦ The probability of not finding the data in the cache(a miss)

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.35Slides by Wes J. Lloyd

 What if:
 We could predict the future (… with a magical oracle)

 All future page accesses are known

 Always replace the page in the cache used farthest in the future

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page
accesses:

0 1 2 0 1 3 0 3 1 2 1

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.69

OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?

6 hits

 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following
page accesses:

0 1 2 0 1 3 0 3 1 2 1

 What is the hit/miss ratio?

 How is FIFO different than LRU?

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.70

FIFO REPLACEMENT

4 hits

LRU incorporates history

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.36Slides by Wes J. Lloyd

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0 1 2 0 1 3 0 3 1 2 1

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.71

RANDOM REPLACEMENT

 LRU: Least recently used
 Always replace page with oldest access time (front)
 Always move end of cache when element is read again
 Considers temporal locality (when pg was last accessed)

0 1 2 0 1 3 0 3 1 2 1

 LFU: Least frequently used
 Always replace page with the fewest # of accesses (front)
 Consider frequency of page accesses

0 1 2 0 1 3 0 3 1 2 1

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.72

HISTORY-BASED POLICIES

What is the hit/miss ratio?

6 hits

Hit/miss ratio is=

6 hits

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.37Slides by Wes J. Lloyd

 No-Locality (Random Access) Workload
 Perform 10,000 random page accesses

 Across set of 100 memory pages

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.73

WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
large enough to fit

the entire workload,
it doesn’t matter

which policy you use.

 80/20 Workload
 Perform 10,000 page accesses, against set of 100 pages

 80% of accesses are to 20% of pages (hot pages)

 20% of accesses are to 80% of pages (cold pages)

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.74

WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.38Slides by Wes J. Lloyd

 Looping sequential workload
 Refer to 50 pages in sequence: 0, 1, …, 49

 Repeat loop

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.75

WORKLOAD EXAMPLES: SEQUENTIAL

Random performs
better than FIFO and

LRU for
cache sizes < 50

Algorithms should provide
“scan resistance”

 Implementing last recently used (LRU) requires tracking
access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),
with 4KB pages (212)

 This requires 220 comparisons !!!

 Simplification is needed

 Consider how to approximate the oldest page access

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.76

IMPLEMENTING LRU

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.39Slides by Wes J. Lloyd

Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

Refer to pages in a circular list

Clock hand points to current page

Loops around
 IF USE_BIT=1 set to USE_BIT = 0

 IF USE_BIT=0 replace page

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L16.77

IMPLEMENTING LRU - 2

 Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L16.78

CLOCK ALGORITHM

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.40Slides by Wes J. Lloyd

Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

Cache eviction requires updating memory

Contents have changed

Clock algorithm should favor no cost eviction

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.79

CLOCK ALGORITHM - 2

 On demand demand paging

 Prefetching
 Preload pages based on anticipated demand

 Prediction based on locality
 Access page P, suggest page P+1 may be used

 What other techniques might help anticipate required
memory pages?
 Prediction models, historical analysis
 In general: accuracy vs. effort tradeoff
 High analysis techniques struggle to respond in real time

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.80

WHEN TO LOAD PAGES

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.41Slides by Wes J. Lloyd

Page swaps / writes

Group/cluster pages together

Collect pending writes, perform as batch

Grouping disk writes helps amortize latency costs

 Thrashing

Occurs when system runs many memory intensive
processes and is low in memory

Everything is constantly swapped to-and-from disk

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.81

OTHER SWAPPING POLICIES

Working sets

Groups of related processes

When thrashing: prevent one or more working
set(s) from running

Temporarily reduces memory burden

Allows some processes to run, reduces thrashing

May 26, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.82

OTHER SWAPPING POLICIES - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/27/2020

L16.42Slides by Wes J. Lloyd

QUESTIONS

WILL RETURN IN A FEW
MINUTES

