TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Paging: Smaller Tables,
Beyond Physical Memory

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

fuiavj26 12020 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 5/26

[=Questions from 5/21]

= Tutorial 2 (pthreads, locks, conditions) - due Thurs June 4

® Quiz 3 posted - Active Reading Ch. 19 - due Tues June

2

= Assighment 2 (based on Ch. 30) - due Thurs May 28

= Assighment 3 - on Linux kernel programming -
to be offered in “tutorial” format - posting by ~May 28

= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Hybrid Tables, Multi-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms

= Swapping Policies

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 26, 2020

L16.2

Lioyd

5/27/2020

L16.1

TCSS 422 B - Spring 2020

5/27/2020
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in
today’s class (46 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly nhew
= Average - 6.29 ({ from 6.53)

® Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.70 (T from 5.66)

TCSS422: Operating Systems [Spring 2020]
IMayj2632020 School of Engineering and Technology, University of Washington - Tacoma L16:3

FEEDBACK FROM 5/21

= From email: On assignment 2, | am confused about examining
load with "top -d .1"

(from A2) On a multicore machine, when monitoring load with

“top -d .17, the max percent CPU utilization demonstrates the

highest degree of parallelism achieved. On an 8-hyperthead

computer, 800% is possible. On a 4-hyperthread computer,
400% is possible.

= The top command displays load average. Is that the value we
are interested in?

® We are interested in process CPU utilization

® Top shows the %CPU utilization for each Linux process for the
last update interval (-d .1 is an update interval of 0.1 secs)

® 100% CPU indicates 1 core is 100% busy for last interval

TCSS422: Operating Systems [Spring 2020]
Mayizeqzn2u School of Engineering and Technology, University of Washington - Tacoma L164

Slides by Wes J. Lloyd L16.2

TCSS 422 B — Spring 2020 5/27/2020
School of Engineering and Technology

FEEDBACK - 2

® |f the computer has 4 virtual cores, then:
100% CPU = 1 thread at full CPU utilization
200% CPU = 2 thread at full CPU utilization
300% CPU = 3 thread at full CPU utilization
400% CPU = 4 thread at full CPU utilization

® CPU utilization of any process will not exceed 400% on 4-core
system at any update interval.

® (See Tutorial #2 for a good example of this.)

= But, what is load average?

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16:5

May 26, 2020

FEEDBACK - 3

= What is load average?

® Load average is the average number of blocked processes
waiting for the CPU over the last 1, 5, and 15 minutes

® High load average and high CPU utilization should correlate,
but they are measuring different things

® When a process (e.g. PC Matrix) occupies all CPU cores, then
every other Linux process will block and wait

® Other processes (e.g. Google Chrome, etc.) will struggle to get
CPU time

TCSS422: Operating Systems [Spring 2020] 116.6
School of Engineering and Technology, University of Washington - Tacoma :

May 26, 2020

Slides by Wes J. Lloyd L16.3

TCSS 422 B — Spring 2020
School of Engineering and Technology

routine.

FEEDBACK - 4

® Should put() return a status, address, or matrix?

® For the get() and put() routines in assighment 2, | noticed that
the put() routine in prodcons.h is defined as returning an int

® | am confused what we are intended to return with the put()

® For "int put()", the "int" could be used to return a status code,
but feel free to redefine this however you'd like as there is
no specific requirement

May 26, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.7

ASSIGNMENT 2 - EXTRA CREDIT

*. EXTRA CREDIT- COMMENTS ARE REQUIRED:
Comments must be included at the top of the mash.c file to indicate which extra credit features
(EC1, EC2, EC3, and EC4) have been implemented fo receive credit. If there is no indication
that extra credit features are implemented, no extra credit will be awarded.
Example of required comment:
// EXTRA CREDIT FEATURES: EC2, EC3 implemented

® Helps graders identify if they should evaluate extra credit

® |[f comments are missing from assignment #1, please go to

assignment #1, click:

“Submission Details” link on the RIGHT

m Add a comment in the “Add a comment” box
® Indicate which extra credit (EC1, EC2, EC3, EC4) needs graded

® Please remember to add comments to pcMatrix.c to indicate if
extra credit should be graded for Assignment #2:

May 26, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.8

Slides by Wes J. Lloyd

5/27/2020

L16.4

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

OBJECTIVES - 5/26

® Questions from 5/21
| = Tutorial 2 (pthreads, locks, conditions) - due Thurs June 4 |
" Quiz 3 posted - Active Reading Ch. 19 - due Tues June 2
= Assignment 2 (based on Ch. 30) - due Thurs May 28
= Assignment 3 - on Linux kernel programming -
to be offered in “tutorial” format - posting by ~May 28

= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Hybrid Tables, Multi-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms

= Swapping Policies

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16:9

May 26, 2020

OBJECTIVES - 5/26

® Questions from 5/21

= Tutorial 2 (pthreads, locks, conditions) - due Thurs June 4
" Quiz 3 posted - Active Reading Ch. 19 - due Tues June 2 |

= Assighment 2 (based on Ch. 30) - due Thurs May 28

= Assighment 3 - on Linux kernel programming -
to be offered in “tutorial” format - posting by ~May 28

= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Hybrid Tables, Multi-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms

= Swapping Policies

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1610

May 26, 2020

Lloyd

5/27/2020

L16.5

TCSS 422 B — Spring 2020 5/27/2020
School of Engineering and Technology

OBJECTIVES - 5/26

® Questions from 5/21
= Tutorial 2 (pthreads, locks, conditions) - due Thurs June 4
" Quiz 3 posted - Active Reading Ch. 19 - due Tues June 2
=" Assignment 2 (based on Ch. 30) - due Thurs May 28 |
= Assignment 3 - on Linux kernel programming -
to be offered in “tutorial” format - posting by ~May 28

= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Hybrid Tables, Multi-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms

= Swapping Policies

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.11

May 26, 2020

OBJECTIVES - 5/26

® Questions from 5/21

= Tutorial 2 (pthreads, locks, conditions) - due Thurs June 4
® Quiz 3 posted - Active Reading Ch. 19 - due Tues June 2
= Assighment 2 (based on Ch. 30) - due Thurs May 28

= Assighment 3 - on Linux kernel programming -
to be offered in “tutorial” format - posting by ~May 28

= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Hybrid Tables, Multi-level Page Tables
= Chapter 21/22: Beyond Physical Memory

= Swapping Mechanisms

= Swapping Policies

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1612

May 26, 2020

Slides by Wes J. Lloyd L16.6

TCSS 422 B — Spring 2020

School of Engineering and Technology

Slides by Wes J.

May 26, 2020

CHAPTER 20:
PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 5/26

® Questions from 5/21
= Tutorial 2 (pthreads, locks, conditions) - due Thurs June 4
® Quiz 3 posted - Active Reading Ch. 19 - due Tues June 2
= Assighment 2 (based on Ch. 30) - due Thurs May 28

= Assighment 3 - on Linux kernel programming -
to be offered in “tutorial” format - posting by ~May 28

= Chapter 20: I-’aging: Smaller Tables
= Smaller Tables, Hybrid Tables, Multi-level Page Tables

= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms
= Swapping Policies

May 26, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.14

Lioyd

5/27/2020

L16.7

TCSS 422 B - Spring 2020

School of Engineering and Technology

LINEAR PAGE TABLES

= Consider single-level (array-based) page tables:

= Each process has its own page table

= Consider a 32-bit process address space (up to 4GB)

* Indexed using 4 KB (212) pages
= Total # of pages = 232 / 212
= Total # of pages = 220

= Virtual Address has: 20 bits for VPN
= Virtual Address has: 12 bits for the page offset

= Each Virtual Address requires 32 bits (4 bytes)

May 26, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.15

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

m Support potential storage of 22° translations
= maps 1,048,576 pages per process @ 4 bytes/entry

= Page table size 4MB / process

32
Page table size = % * 4Byte = 4MByte

® Consider OS with 100 processes:

= Requires ~400 MB of RAM to store page tables
for virtual to physical address translation

May 26, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.16

Slides by Wes J. Lloyd

5/27/2020

L16.8

TCSS 422 B - Spring 2020 5/27/2020
School of Engineering and Technology

LINEAR PAGE TABLES - 2

® Page tables stored in RAM
[] Supp :

Page tables are TOO BIG and
consume TOO MUCH memory.

Need Solutions ... !’

= Con
= Requires ~400 MB of RAM to store page tables
for virtual to physical address translation

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.17

May 26, 2020

PAGING: USE LARGER PAGES

= Larger pages = 16KB = 214
m 32-bit address space: 232
m 218 = 262,144 pages

¥4
ET* +4 = 1MB per page table

B Memory requirement cut to ¥4
® However pages are huge
® [nternal fragmentation results

® 16KB page(s) allocated for small programs with only a
few variables

TCSS422: Operating Systems [Spring 2020]

A N . " . 116.18
School of Engineering and Technology, University of Washington - Tacoma

May 26, 2020

Slides by Wes J. Lloyd L16.9

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

PAGING: USE LARGER PAGES

® Consider a small computer

m 26KB Computer
® Computer has only 26 physical page frames

® 16KB Virtual Address Space for Programs

®m System uses 1 KB pages

® Programs consist of: code, heap, stack segments

® Consider a simple program with:

1 code page, 1 heap page, 2 stack pages

May 26, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L16.19

® Process: 16 KB Address Space w/ 1KB pages

PAGE TABLES: WASTED SPACE

Page Table Physical Memory
Virtual Address 26KB
Space Computer
code | 0. | .
T Alocate | Page table is mostly empty...
B2
: N/ PFN valid prot present dirty
heap N l_;"\ 10 1 r-x 1 0
5 / 0
: \3"“\ 0
8 % 0 B B
9 / 15 1 - 1 "
w
1 /
12/ 0
stack 13/ [3 1 o " :
o 23 1 rw- 1 1

A 16KB Address Space with 1KB Pages

A Page Table For 16KB Address Space

May 26, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L16.20

Lloyd

5/27/2020

L16.10

TCSS 422 B - Spring 2020 5/27/2020
School of Engineering and Technology

PAGE TABLES: WASTED SPACE

® Process: 16KB Address Space w/ 1KB pages

Page Table Physical Memory 26KB
Virtual Address
Space , Computer

code

LN 1
1 \Allucate “.‘"

Page table is mostly empty...

: oA toodirty
L Most of the page table is unused
: 15 77 rw- 1 1
10 :;:""
o] 0
stack 1/ 3 1 rw- 1 1
= 23 1 rw- 1 1

A 16KB Address Space with 1KB Pages A Page Table For 16KB Address Space

TCSS422: Operating Systems [Spring 2020]

iMayj2632020 School of Engineering and Technology, University of Washington - Tacoma

L16.21

MULTI-LEVEL PAGE TABLES

® Consider a single-level page table:
® Virtual address space: 32-bit addressing, 4KB pages
m 220 page table entries

® Even if memory is sparsely populated the per process page
table requires:

32
Page table size = % * 4Byte = 4M Byte

m Often most of the 4MB per process page table is empty
= Page table must be placed in 4MB contiguous block of RAM

= MUST SAVE MEMORY!

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 26, 2020

L16.22

Slides by Wes J. Lloyd L16.11

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

MULTI-LEVEL PAGE TABLES - 2

® Add level of indirection, the “page directory”(PD)

Linear Page Table Multi-level Page Table

PBTR 201 PBTR 200
g PFN :
PEN

2 3))
S & = 5 8 PEN
3 -t
Ll L - 1 2010 |[——>[1] w 12
1 m 13 = =] . g
= 2|0 1 w 13 =
0| - - o iz 2
a T |o = o| - - z
1| rw 100 o a
= 1 203 1| rw 100
0 % The!Page Directory [Page 1 of PT:Not Allocated)]
0 e -
o
0
o on
0 - © 0
P = =
1 rw 86 o %
1] w 15 8 b L&
1 rw 15
Linear (Left) And Multi-Level (Right) Page Tables
TCSS422: Operating Systems [Spring 2020]
iMayj2632020 School of Engineering and Technology, University of Washington - Tacoma L16.23

MULTI-LEVEL PAGE TABLES - 2

® Add level of indirection, the “page directory”(PD)

Linear Page Table Multi-level Page Table
PBTR 201

b}

Two level page table:
220 pages addressed with

two level-indexing

(page directory index, page table index)

86

.
0 B S g -
1| w 26 & gl -
o
1] rw 15 | fw
1 mw

15

PFN204

Linear (Left) And Multi-Level (Right) Page Tables

TCSS422: Operating Systems [Spring 2020]

Mayizeqzn2u School of Engineering and Technology, University of Washington

- Tacoma

L16.24

Lioyd

5/27/2020

L16.12

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

MULTI-LEVEL PAGE TABLES - 3

® Advantages

= Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

®m Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (how 2-level) for space
= Complexity: multi-level schemes are more complex

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.25

May 26, 2020

EXAMPLE

= 16KB address space, 64byte pages
® How large would a one-level page table need to be?
m 214 (address space) / 2° (page size) = 28 = 256 (pages)

0000 000! s
0000 0001 code Flag Detail
(free) Address space 16 KB
(free) Page size 64 byte
heap Virtual address 14 bit
ey VPN 8 bit
firee) Offset 6 bit
(free)
s # of page table entries 28(256)
11111111 stack A 16-KB Address Space With 64-byte Pages

13/12[11f10[9]8|7]6[5[4a[3[2[a]0]

Offset

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.26

May 26, 2020

Lloyd

5/27/2020

L16.13

TCSS 422 B — Spring 2020 5/27/2020
School of Engineering and Technology

EXAMPLE - 2

m 256 total pages (64 bytes each)

® Assume page table entries are 4 bytes each
includes extra space for status bits

® Single-level page table:
(256 x 4) = 1,024 bytes page table size

® Single-level page table stored using 64-byte pages would
span:
= (1024/64) = 16 pages

m Key idea: the page table is stored using pages too!

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.27

May 26, 2020

TWO-LEVEL PAGE TABLE:

PAGE DIRECTORY INDEX (PDl)

® Now, let’s split the page table into two page tables:
= 1-level page table: 8 bit VPN maps 256 pages

* SPLIT VPN in HALF:

= PD - 1st |evel table
= First half: 4 bits used for the page directory index
* Indexes the page directory (16 ptrs to small page tables)

Page Directory Index
<
13[12]11]wfo|8]7]6|5]4]3]2]1]0]
< >
VPN Offset :
14-bits Virtual address
TCSS422: Operating Systems [Spring 2020]
Mayizeqzn2u School of Engineering and Technology, University of Washington - Tacoma L16.28

Slides by Wes J. Lloyd L16.14

TCSS 422 B — Spring 2020 5/27/2020
School of Engineering and Technology

TWO LEVEL PAGE TABLE:

PAGE TABLE INDEX (PTI)

" THE OTHER HALF:
m PT - 2"d |evel table
®m Second half: lower 4 bits used for the page table index
® Indexes a small page table
= Provides lower 4 bits to form 8-bit VPN w/PDI

1Ji:’ageDiret:toryrlndexlll Page Table Index |
[13]12]12]20] o8] 7]6[[s]4]3]2]1]0]
< VPN; tont >

14-bits Virtual address

m Offset bits: 6 bits index any byte on a 64-byte page
® To dereference one 64-byte memory page:
= We use one page directory entry (PDE)
= And one page table entry (PTE) - to address a max of 16 pages

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.29

May 26, 2020

EXAMPLE - 3

®m Each page directory (PD) holds up to 16 entries (PDEs)

®m These 16 entries can point to a small page table

®m Or they can be unused

® Hello.c: 1 entry is used, 15 unused

m Hello.c: 4 PTEs (stack, code, heap, data segments), 1 PDE

= Largest program: 16 entries (PDEs) point to 16 page tables
B Max memory indexed = 16 x 16 x 64 = 16,384 (16KB)

®m 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 maximum PTEs - fully populated

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1630

May 26, 2020

Slides by Wes J. Lloyd L16.15

TCSS 422 B — Spring 2020 5/27/2020
School of Engineering and Technology

EXAMPLE - 4

= For this example, how much space is required to store as a single-
level page table with any number of PTEs?

= 16KB address space, 64 byte pages
m 256 page frames, 4 byte page size
= 1,024 bytes required (single level)

= Consider hello.c w/ 4 PTEs: (1 stack, code, data, heap pages)

= How much space is required for a two-level page table with only 4
page table entries (PTEs) ?

= Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 4 used/12 empty entries x 4 bytes (1 x 64 byte page)
m 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.31

May 26, 2020

32-BIT EXAMPLE

® Consider: 32-bit address space, 4KB pages, 220 pages
® Only 4 mapped pages (hello.c)

= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

® Savings = using just .78 % the space !!!

® How much memory is required to index 100 sparse processes?
= 100 processes x 8KB now require < 1MB for page tables

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1632

May 26, 2020

Slides by Wes J. Lloyd L16.16

TCSS 422 B - Spring 2020 5/27/2020
School of Engineering and Technology

TCSS 422 WILL RETURN
AT ~2:50PM

TCSS422: Operating Systems [Spring 2020]

Mayj2ii2n20 School of Engineering and Technology, University of Washington - Tacoma

MORE THAN TWO LEVELS

® Consider: Address space of 1 GB

= Page size is 2% = 512 bytes

= Page size 512 bytes / Page entry size 4 bytes
= VPN is 21 bits

302928 2726252423222120191817161514131211109 87654 3 21 0

ARNNNNNNNNANNNNNNNNRNCERENEEEE

5
>

< i
< <

VPN offset

S ETe] Detail

Virtual address 30 bit

Page size 512 byte
VPN 21 bit

Offset 9 bit

TCSS422: Operating Systems [Spring 2020]
Mayizeqzn2u School of Engineering and Technology, University of Washington - Tacoma L1634

Slides by Wes J. Lloyd L16.17

TCSS 422 B - Spring 2020

School of Engineering and Technology

MORE THAN TWO LEVELS - 2

® Page table entries per page =512 / 4 = 128
= SPLIT 21 bit VPN: 7 bits - for page table index (PTI)

30292827262524232221201918181615141312111098 76 54 3 21 0

HENNRRERANERIIRRNNRRRIINNNNENEy

< - > '

i Page Directory Index i Page Table Index | !

< >
VPN offset

Flag Detail

Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs

——t> log,128 =7

May 26, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L16.35

MORE THAN TWO LEVELS - 3

30292827262524232221201918141615141312111098 76 54 3

21

[[]

(1T

Page Directory Index

HEN|[NNNRNR

~

!
>

A

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs —

—> log,128 =7

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required
= When using 27 (128 entry) page tables...
® Page size = 128 entries x 4 bytes per addr = 512 bytes

May 26, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L16.36

Slides by Wes J. Lloyd

5/27/2020

L16.18

TCSS 422 B — Spring 2020
School of Engineering and Technology

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

" Pagosine Ll s

Can’t Store Page Dlrectory with 16K
pages, using 512 bytes pages.

Pages only fit (dereference)

128 addresses = (512 bytes / 4 bytes)

irtual address 0 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit

Page entry per page

128 PTEs

——1—> log,128 =7

May 26, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.37

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required
= When usmg 27 (128 entry) page tables...

Need three level page table:

Virtual address

Page directory 0 (PD Index 0- 7bit)

Page directory 1 (PD Index 1- 7bit)
- Small Page Table (Page Table Index- 7bit) |

0 bit

Page size

512 byte

VPN

21 bit

Offset

9 bit

Page entry per page

128 PTEs

—> log,128 =7

May 26, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.38

Slides by Wes J. Lloyd

5/27/2020

L16.19

TCSS 422 B — Spring 2020 5/27/2020
School of Engineering and Technology

MORE THAN TWO LEVELS - 4

® We can now address 1GB with “fine grained” 512 byte pages
® Using multiple levels of indirection

302928 2726252423222120191817161514131211109 8 76 54 3 21 0

NARNARNARNARNARNARNARNARNARNN

| Page Table Index

Y. Y

< <
o~ [

VPN

® Consider the implications for address translation!

® How much space is required for a virtual address space with
only 4 entries on a 512-byte page? (e.g. 4 x 32-bit integers)

= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

® Memory Usage= 1,536 (3-1evel) / 8,388,608 (1-1evel) = .0183% !!!

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.39

May 26, 2020

ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup

//

// Inputs:

// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.40

May 26, 2020

Slides by Wes J. Lloyd L16.20

TCSS 422 B — Spring 2020 5/27/2020
School of Engineering and Technology

ADDRESS TRANSLATION - 2

pgd_offset():
pgd = pgd_offset(mm, vpage); Takes a vpage address and the mm_struct
if (pgd_none (*pgd) || pgd_bad(*pgd))| forthe process, returns the PGD entry that
return O0; covers the requested address...
p4d = p4d_offset(pgd, vpage) -
if (p4d_none (*p4d) || p4d_bad(*p4d)) p4d/pud/pmd_offset():

Takes a vpage address and the
pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

return O0;

pud = pud_offset (p4d, vpage);

if (pud_none(*pud) || pud_bad(*pud))
return O0;

pmd = pmd_offset (pud, vpage)

if (pmd_none(*pmd) || pmd_bad(*pmd))
return O0;

if (!'(pte = pte_offset map(pmd, vpage)))

return O0; te_unmap()
i 1 =]
S (8 (g0 =0 JPECO EVREaY)) release temporary kernel mapping

]_:eturn U for the page table entry
physical page_addr = page_to_phys (page)

pte_unmap (pte) ;
return physical page_addr; // param to send back

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1641

May 26, 2020

INVERTED PAGE TABLES

®m Keep a single page table for each physical page of memory

® Consider 4GB physical memory
® Using 4KB pages, page table requires 4MB to map all of RAM

® Page table stores
= Which process uses each page

= Which process virtual page (from process virtual address
space) maps to the physical page

m All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

® Finding process memory pages requires search of 220 pages
® Hash table: can index memory and speed lookups

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 26, 2020 L16.42

Slides by Wes J. Lloyd L16.21

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

| |
'(#1) Consider a 16 MB Address Space (2224) which is'
indexed using 4KB pages. For a single-level page
table, how many pages are required to index

memory?

278 pages

2710 pages

2712 pages

2714 pages

2716 pages
.l May 26, 2030, ne presemaﬁo%&%ﬁ%ié%%rggggg%:éem Sp%?p?@ﬁ%miwfwmwmwﬂmeww L136 ..
| ||

- (#2) For this 16 MB Address Space (2224) indexed -
using 4KB pages, how many bits are required for the
VPN?

8 bits
16 bits
10 bits
14 bits

12 bits

TCSSA_122: Operating Systems [Spring 2020] . L16.)
.. May 26, 20801t the presentationppsdive F R ERISFIGSAY F s RSty repnaRstieect poltneeemiapp 4 ..

Lloyd

5/27/2020

L16.22

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

| |
'(#3) Assuming 4 KB pages, how many offset bits are"

required to index any byte on the page?

6 bits
10 bits
8 bits
12 bits

14 bits

~ TC88422: Operating Systems [Spring 2020] L16.
.. May 26, 2080 the presentationge Fsdive FEYRI ERIFGRATH TSy 2EsmgEnits Spraaninelect polesemiapp - ..

| |
“ (#4) Assuming there are 20 status bits, how many -

bytes are required for each page table entry (PTE)?

1 byte
2 bytes
3 bytes
4 bytes

0 bytes

) TCSSA_122: Operating Systems [Spring 2020] . L16.)
.. May 26, 20801t the presentationppsdive F R ERISFIGSAY F s RSty repnaRstieect poltneeemiapp 6 ..

Lloyd

5/27/2020

L16.23

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

“ (#5) How many kilobytes (KB) are required for a
single level page table?

32 KB
16 KB
64 KB

8 KB

24 KB

~ TC88422: Operating Systems [Spring 2020] L16.
.. May 26, 2080 the presentationge Fsdive FEYRI ERIFGRATH TSy 2EsmgEnits Spraaninelect polesemiapp o ..

“(#6) For HelloWorld.c with 4 memory pages: 1 code,'
stack, heap, data segment, assuming a 2-level page
table, how many bits are required for the Page
Directory Index (PDI) ?

6 bits
12 bits
10 bits

8 bits
14 bits

) TCSSA_122: Operating Systems [Spring 2020] . L16.)
.. May 26, 20801t the presentationppsdive F R ERISFIGSAY F s RSty repnaRstieect poltneeemiapp 8 ..

Lloyd

5/27/2020

L16.24

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

'(#7) For HelloWorld.c with 4 memory pages: 1 code,'
stack, heap, data segment, assuming a 2-level page
table, how many bits are required for the Page Table

Index (PTI)

14 bits
12 bits
10 bits
8 bits
6 bits

.l May 26, 2030+ ne presentaﬁorgg%%%ié%%rgggggﬁéﬁéems Sp%@?@ﬁﬁ@mmm&mwmvnumempn Us ..

| ||

“ (#8) How much total memory is required to index "

HelloWorld.c using a two-level page table with just 4

total pages (1 code, stack, heap, data segment page).
Hint: need 1 PD and 1 PT

256 bytes
512 bytes
1024 bytes
2048 bytes
4096 bytes

) TCSSA_122: Operating Systems [Spring 2020] . L16.
.. May 26, 20801t the presentationppsdive F R ERISFIGSAY F s RSty repnaRstieect poltneeemiapp 0 ..

Lloyd

5/27/2020

L16.25

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

“ (#9) For a 2-level page table, using a single Page
Directory Entry (PDE) pointing to a single Page Table
(PT), where all slots of the PT are used, how much
memory can be addressed?

16 entries x 4096
bytes = 64 KB

32 entries x 4096
bytes = 128 KB

64 entries x 4096
bytes =256 KB

256 entries x 4096
bytes = 1024 KB

4096 entries x 4096
bytes = 16384 KB

~ TC88422: Operating Systems [Spring 2020] L16.
.. May 26, 2080 the presentationge Fsdive FEYRI ERIFGRATH TSy 2EsmgEnits Spraaninelect polesemiapp : ..

| ||
- (#10) For the previous example where one PDE

points to a fully used PT, what percentage of
memory does the 2-level page table consume vs. a 1-
level page table?

256 /16384
512 /16384
1024 /16384
4096 / 16384
100%

) TCSSA_122: Operating Systems [Spring 2020] . L16.
.. May 26, 20801t the presentationppsdive F R ERISFIGSAY F s RSty repnaRstieect poltneeemiapp 2 ..

Lloyd

5/27/2020

L16.26

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

MULTI-LEVEL PAGE TABLE EXAMPLE

® Consider a 16 MB computer which indexes memory using 4KB
pages

® (#1) For a single level page table, how many pages are
required to index memory?

= (#2) How many bits are required for the VPN?

® (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

m (#4) Assuming there are 20 status bits, how many bytes are
required for each page table entry?

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.53

May 26, 2020

MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

m Let’'s assume a simple HelloWorld.c program.

® HelloWorld.c requires virtual address translation for 4 pages:
= 1 - code page 1 - stack page
= 1 - heap page 1 - data segment page

= (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

= (#7) How many bits are required for the Page Table Index
(PTI)?

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.54

May 26, 2020

Lloyd

5/27/2020

L16.27

TCSS 422 B — Spring 2020 5/27/2020
School of Engineering and Technology

MULTI LEVEL PAGE TABLE EXAMPLE - 3

= Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:

= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)

= 12 offset bits

= 20 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page
Table...

® HINT: how many entries are in the PD and PT

TCSS422: Operating Systems [Spring 2020]
iMayj2632020 School of Engineering and Technology, University of Washington - Tacoma

L16.55

MULTI LEVEL PAGE TABLE EXAMPLE - 4

® (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

®m HINT: two-level memory use / one-level memory use

TCSS422: Operating Systems [Spring 2020]
Mayizeqzn2u School of Engineering and Technology, University of Washington - Tacoma

L16.56

Slides by Wes J. Lloyd L16.28

TCSS 422 B — Spring 2020

School of Engineering and Technology

ANSWERS

m#1 - 4096 pages

= #2 - 12 bits

= #3 - 12 bits

m#4 - 4 bytes

= #5 - 4096 x 4 = 16,384 bytes (16KB)

= #6 - 6 bits

= #7 - 6 bits

m #8 - 256 bytes for Page Directory (PD)
256 bytes for Page Table (PT)

(64 entries x 4 bytes)
TOTAL = 512 bytes

= #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

= #10- 512/16384 = .03125 - 3.125%

May 26, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.57

May 26, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

CHAPTER 21/22:

BEYOND PHYSICAL
MEMORY

Slides by Wes J. Lloyd

5/27/2020

L16.29

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

OBJECTIVES - 5/26

® Questions from 5/21

= Tutorial 2 (pthreads, locks, conditions) - due Thurs June 4
® Quiz 3 posted - Active Reading Ch. 19 - due Tues June 2
= Assignment 2 (based on Ch. 30) - due Thurs May 28

= Assighnment 3 - on Linux kernel programming -
to be offered in “tutorial” format - posting by ~May 28

= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Hybrid Tables, Multi-level Page Tables

= Chapter 21/22: Beyond Physical Memory
= Swapping Mechanisms
= Swapping Policies

TCSS422: Operating Systems [Spring 2020]

iMayj2632020 School of Engineering and Technology, University of Washington - Tacoma

L16.59

MEMORY HIERARCHY

®m Disks (HDD, SSD) provide another level of storage in the

memory hierarchy

Registers

Cache

Main Memory

Mass Storage(hard disk, tape, etc...)

Memory Hierarchy in modern system

TCSS422: Operating Systems [Spring 2020]

Mayizeqzn2u School of Engineering and Technology, University of Washington - Tacoma

L16.60

Lloyd

5/27/2020

L16.30

TCSS 422 B — Spring 2020
School of Engineering and Technology

physical RAM

= Ease of use

processes

MOTIVATION FOR

EXPANDING THE ADDRESS SPACE

= Can provide illusion of an address space larger than

® For a single process
= Convenience

® For multiple processes
= Large virtual memory space for many concurrent

May 26, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.61

LATENCY TIMES

= Desigh considerations
= SSDs 4x the time of DRAM
= HDDs 80x the time of DRAM

Action Latency (ns) (ps)
L1 cache reference 0.5ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1
Read 4K randomly from SSD* 150,000 ns 150 ps ~1GB/sec 55D
Read 1 MB sequentially from memaory 250,000 ns 250 ps
Read 1 MB sequentially from S5D* 1,000,000 ns 1,000 ps | 1 ms ~1GB/sec 55D, 4% memory
Read 1 MB sequentially from disk 20,000,000 ns 20,000 ps 20 ms 80x memory, 20X 55D

= Latency numbers every programmer should know
" From: https://gist.github.com/jboner/2841832#file-latency-txt

May 26, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.62

Slides by Wes J. Lloyd

5/27/2020

L16.31

TCSS 422 B - Spring 2020 5/27/2020

School of Engineering and Technology

SWAP SPACE

® Disk space for storing memory pages
® “‘Swap” them in and out of memory to disk as needed

PFN O PFN 1 PFN 2 PFN 3
Physical Proc 0 Proc 1 Proc1 Proc 2
Memory [VPN 0] VPN 2] [VPN 3] [VPN 0]

Block0 Block 1 Block 2 Block 3 Block4 Block 5 Block 6 Block 7

Swap Proc0 Proc 0] Procl Proc1 Proc 3 Proc 2 Proc 3
Space | VPN 1] | [VPN 2] VPN O] | [WVPN1] | VPN O] | [vPN1] | (VPN 1]

Physical Memory and Swap Space

TCSS422: Operating Systems [Spring 2020]
IMayj2632020 School of Engineering and Technology, University of Washington - Tacoma L1663

PAGE LOCATION

® Page table pages are:
= Stored in memory
= Swapped to disk

= Present bit
= |[n the page table entry (PTE) indicates if page is present

= Page fault
= Memory page is accessed, but has been swapped to disk

TCSS422: Operating Systems [Spring 2020]
Mayizeqzn2u School of Engineering and Technology, University of Washington - Tacoma L1664

Slides by Wes J. Lloyd L16.32

TCSS 422 B — Spring 2020 5/27/2020
School of Engineering and Technology

PAGE FAULT

® OS steps in to handle the page fault
® Loading page from disk requires a free memory page

= Page-Fault Algorithm

1% PFN = FindFreePhysicalPage ()

2 if (PFN == -1) // no free page found

3: PFN = EvictPage () // run replacement algorithm
a: DiskRead (PTE.Diskaddr, pfn) // sleep (waiting for I/O)
o PTE.present = True // set PTE bit to present

6 PTE.PFN = PFN // reference new loaded page
i RetryInstruction() // retry instruction

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.65

May 26, 2020

PAGE REPLACEMENTS

= Page daemon
= Background threads which monitors swapped pages

= Low watermark (LW)
= Threshold for when to swap pages to disk
= Daemon checks: free pages < LW
= Begin swapping to disk until reaching the highwater mark

® High watermark (HW)
= Target threshold of free memory pages
= Daemon free until: free pages >= HW

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.66

May 26, 2020

Slides by Wes J. Lloyd L16.33

TCSS 422 B — Spring 2020

School of Engineering and Technology

May 26, 2020

REPLACEMENT
POLICIES

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

Argument Meaning

CACHE MANAGEMENT

= Replacement policies apply to “any” cache
® Goal is to minimize the number of misses
= Average memory access time (AMAT) can be estimated:

AMAT = (Pt * Tay) + (Puiss * Tp)

Tu The cost of accessing memory (time)

Tp The cost of accessing disk (time)

Puit The probability of finding the data item in the cache(a hit)
Puiss The probability of not finding the data in the cache(a miss)

= Consider Ty, = 100 ns, T, = 10ms
= Consider P,;; =
= Consider P, =

.9 (90%), Pee = .1
.999 (99.9%), P, ... = .001

May 26, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.68

Slides by Wes J. Lloyd

5/27/2020

L16.34

TCSS 422 B — Spring 2020 5/27/2020
School of Engineering and Technology

OPTIMAL REPLACEMENT POLICY

= What if:
= We could predict the future (... with a magical oracle)
= All future page accesses are known
= Always replace the page in the cache used farthest in the future

® Used for a comparison
® Provides a “best case” replacement policy

® Consider a 3-element empty cache with the following page

accesses:
What is the hit/miss ratio?
TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

01201303121

May 26, 2020 116.69

FIFO REPLACEMENT

® Queue based

= Always replace the oldest element at the back of cache
B Simple to implement

® Doesn’t consider importance... just arrival ordering

®m Consider a 3-element empty cache with the following
page accesses:

01201303121

= What is the hit/miss ratio? m

® How is FIFO different than LRU? LRU incorporates history

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 26, 2020 L16.70

Slides by Wes J. Lloyd L16.35

TCSS 422 B - Spring 2020 5/27/2020

School of Engineering and Technology

RANDOM REPLACEMENT

® Pick a page at random to replace
® Simple and fast implementation
= Performance depends on luck of random choices

01201303121

50

40

w
o

Frequency
)
=]

-
o

o

1 2 3 4 5 6
Number of Hits

Random Performance over 10,000 Trials

TCSS422: Operating Systems [Spring 2020]
IMayj2632020 School of Engineering and Technology, University of Washington - Tacoma L1671

HISTORY-BASED POLICIES

®m LRU: Least recently used

= Always replace page with oldest access time (front)

= Always move end of cache when element is read again

®m Considers temporal locality (when pg was last accessed)

01201303121 What is the hit/miss ratio?

m LFU: Least frequently used
= Always replace page with the fewest # of accesses (front)
®m Consider frequency of page accesses

Hit/miss ratio is=

TCSS422: Operating Systems [Spring 2020]
Mayizeqzn2u School of Engineering and Technology, University of Washington - Tacoma L1672

01201303121

Slides by Wes J. Lloyd L16.36

TCSS 422 B - Spring 2020 5/27/2020
School of Engineering and Technology

WORKLOAD EXAMPLES: NO-LOCALITY

® No-Locality (Random Access) Workload
= Perform 10,000 random page accesses
= Across set of 100 memory pages

The No-Locality Workload

h
100%— / /
80%—| /’ ,/
. of yd When the cache is
2 sow— //’ i large enough to fit
= S = the entire workload,
0% / — RAND it doesn’t matter
S
4 which policy you use.
20%—| é/
/ "
2'0 4'0 slo sln 11‘30
Cache Size (Blocks)
TCSS422: Operating Systems [Spring 2020]
iMayj2632020 School of Engineering and Technology, University of Washington - Tacoma L16.73

WORKLOAD EXAMPLES: 80/20

= 80/20 Workload
= Perform 10,000 page accesses, against set of 100 pages
= 80% of accesses are to 20% of pages (hot pages)
= 20% of accesses are to 80% of pages (cold pages)

The 80-20 Workload

A
100%—| /-’;???
s0%—| LRU is more likely
" to hold onto
2 %l — opT hot pages
kS — [RU
— V4 - FFO .
— RAND (recalls history)
20%—//
| \ \ | I >
20 40 60 80 100
Cache Size (Blocks)
TCSS422: Operating Systems [Spring 2020] 116.74

Mayizeqzn2u School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L16.37

TCSS 422 B — Spring 2020
School of Engineering and Technology

WORKLOAD EXAMPLES: SEQUENTIAL

® Looping sequential workload
= Refer to 50 pages in sequence: 0, 1, ..., 49
= Repeat loop

The Looping-Sequential Workload

100%— /'7
/] Random performs
50%—] /| better than FIFO and
. / / LRU for
£ 0% / — OPT cache sizes < 50
= / —LRU
FIFO

40%— / i AR

Cache Size (Blocks)

st | Algorithms should provide
P m . ”
R scan resistance
T

TCSS422: Operating Systems [Spring 2020]

iMayj2632020 School of Engineering and Technology, University of Washington - Tacoma

L16.75

IMPLEMENTING LRU

B [mplementing last recently used (LRU) requires tracking

access time for all system memory pages
B Times can be tracked with a list
® For cache eviction, we must scan an entire list

m Consider: 4GB memory system (232),
with 4KB pages (212)

® This requires 22° comparisons !!!

®m Simplification is needed
= Consider how to approximate the oldest page access

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 26, 2020

L16.76

Slides by Wes J.

Lloyd

5/27/2020

L16.38

TCSS 422 B — Spring 2020
School of Engineering and Technology

® Harness the Page Table Entry (PTE) Use Bit

IMPLEMENTING LRU - 2

= HW sets to 1 when page is used

E0S setsto O

®mClock algorithm (approximate LRU)
=Refer to pages in a circular list
=Clock hand points to current page

=Loops around
IF USE_BIT=1 set to USE_BIT =0
IF USE_BIT=0 replace page

May 26, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.77

Slides by Wes J.

CLOCK ALGORITHM

® Not as efficient as LRU, but better than other

replacement algorithms that do not consider history

100%—

Hit Rate

The 80-20 Workload

Y

Cache Size (Blocks)

May 26, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L16.78

Lloyd

5/27/2020

L16.39

TCSS 422 B — Spring 2020 5/27/2020
School of Engineering and Technology

CLOCK ALGORITHM - 2

®m Consider dirty pages in cache
= If DIRTY (modified) bit is FALSE
=No cost to evict page from cache

= If DIRTY (modified) bit is TRUE
=Cache eviction requires updating memory

=Contents have changed

®mClock algorithm should favor no cost eviction

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.79

May 26, 2020

WHEN TO LOAD PAGES

® On demand > demand paging

® Prefetching
= Preload pages based on anticipated demand

= Prediction based on locality
= Access page P, suggest page P+1 may be used

= What other techniques might help anticipate required
memory pages?
Prediction models, historical analysis
In general: accuracy vs. effort tradeoff
High analysis techniques struggle to respond in real time

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.80

May 26, 2020

Slides by Wes J. Lloyd L16.40

TCSS 422 B — Spring 2020 5/27/2020
School of Engineering and Technology

OTHER SWAPPING POLICIES

= Page swaps / writes
=Group/cluster pages together
=Collect pending writes, perform as batch
=Grouping disk writes helps amortize latency costs

®Thrashing

=Occurs when system runs many memory intensive
processes and is low in memotry

=Everything is constantly swapped to-and-from disk

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L16.81

May 26, 2020

OTHER SWAPPING POLICIES - 2

= Working sets
=Groups of related processes

*When thrashing: prevent one or more working
set(s) from running

*Temporarily reduces memory burden
=Allows some processes to run, reduces thrashing

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1682

May 26, 2020

Slides by Wes J. Lloyd L16.41

TCSS 422 B - Spring 2020 5/27/2020
School of Engineering and Technology

QUESTIONS

WILL RETURN IN A FEW
MINUTES

Slides by Wes J. Lloyd L16.42

