TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Introduction to Paging,
Translation Lookaside Buffer
(TLB)

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

favit 12020 School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 5/21

" Questions from 5/19]
= Tuesday Class Activity: (Submit by May 22 11:59pm AOE)
® Tutorial 2 posted (pthreads, locks, conditions)
® Quiz 3 posted - Active Reading Chapter 19
= Assighment 2 (based on Ch. 30)
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Tradeoffs, Context Switch
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Hybrid Tables, Multi-level Page Tables

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.2

May 21, 2020

Lioyd

5/21/2020

L15.1

TCSS 422 B — Spring 2020
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in
today’s class (46 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly nhew
= Average - 6.53 (\ from 6.74)

® Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.66 (¥ from 5.77)

TCSS422: Operating Systems [Spring 2020]

iMayj2232020 School of Engineering and Technology, University of Washington - Tacoma

L15.3

FEEDBACK FROM 5/19

® Questions ?

TCSS422: Operating Systems [Spring 2020]

Mavizdgzo2l School of Engineering and Technology, University of Washington - Tacoma

L15.4

Slides by Wes J. Lloyd

5/21/2020

L15.2

TCSS 422 B — Spring 2020 5/21/2020
School of Engineering and Technology

NOTE ON ASSIGNMENT 1 - EXTRA CREDIT

® Some programs did not include comments at the top of
mash.c to notify graders which extra credit features to grade

® This requirement was documented in Assignment #1.:
* . EXTRA CREDIT- COMMENTS ARE. REQUIRED:

Comments must be included at the top of the mash.c file to indicate which extra credit features
(EC1, EC2, EC3, and EC4) have been implemented to receive credit. If there is no indication
that extra credit features are implemented, no extra credit will be awarded.

Example of required comment:
// EXTRA CREDIT FEATURES: EC2, EC3 implemented
= |If missing points, to request extra credit be graded:

® |n Canvas, go to assighment #1, click:
“Submission Details” link on the RIGHT

m Add a comment in the “Add a comment” box
® Indicate which extra credit (EC1, EC2, EC3, EC4) needs graded

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 21, 2020 L15.5

OBJECTIVES - 5/21

® Questions from 5/19
| " Tuesday Class Activity: (Submit by May 22 11:59pm AOE)|
® Tutorial 2 posted (pthreads, locks, conditions)
® Quiz 3 posted - Active Reading Chapter 19
= Assighment 2 (based on Ch. 30)
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Tradeoffs, Context Switch
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Hybrid Tables, Multi-level Page Tables

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 21, 2020

L15.6

Slides by Wes J. Lloyd L15.3

TCSS 422 B — Spring 2020 5/21/2020
School of Engineering and Technology

OBJECTIVES - 5/21

® Questions from 5/19
= Tuesday Class Activity: (Submit by May 22 11:59pm AOE)
mutorial 2 posted (pthreads, locks, conditions)|
® Quiz 3 posted - Active Reading Chapter 19
®m Assignment 2 (based on Ch. 30)
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Tradeoffs, Context Switch
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Hybrid Tables, Multi-level Page Tables

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L157

May 21, 2020

OBJECTIVES - 5/21

® Questions from 5/19
= Tuesday Class Activity: (Submit by May 22 11:59pm AOE)
® Tutorial 2 posted (pthreads, locks, conditions)
= Quiz 3 posted - Active Reading Chapter 19 |
= Assighment 2 (based on Ch. 30)
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Tradeoffs, Context Switch
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Hybrid Tables, Multi-level Page Tables

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L158

May 21, 2020

Slides by Wes J. Lloyd L15.4

TCSS 422 B — Spring 2020
School of Engineering and Technology

OBJECTIVES - 5/21

® Questions from 5/19
= Tuesday Class Activity: (Submit by May 22 11:59pm AOE)
= Tutorial 2 posted (pthreads, locks, conditions)
® Quiz 3 posted - Active Reading Chapter 19
[= Assignment 2 (based on Ch. 30)]
= Chapter 17: Free Space Management
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Tradeoffs, Context Switch
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Hybrid Tables, Multi-level Page Tables

TCSS422: Operating Systems [Spring 2020]

iMayj2232020 School of Engineering and Technology, University of Washington - Tacoma

L15.9

e -4 H

A

CHAPTER 17: FREE

SPACE MANAGEMENT

TCSS422: Operating Systems [Spring 2020]

Maviaien School of Engineering and Technology, University of Washington - Tacoma

T
.

l
\

Slides by Wes J. Lloyd

5/21/2020

L15.5

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

OBJECTIVES - 5/21

® Questions from 5/19
= Tuesday Class Activity: (Submit by May 22 11:59pm AOE)
= Tutorial 2 posted (pthreads, locks, conditions)
® Quiz 3 posted - Active Reading Chapter 19
®m Assignment 2 (based on Ch. 30)
= Chapter 17: Free Space Management|
= Chapter 18: Introduction to Paging
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Tradeoffs, Context Switch
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Hybrid Tables, Multi-level Page Tables

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1511

May 21, 2020

Which memory allocation strategy is more likely to
distribute free chunks closer together which could
help when coalescing the free space list?

Best Fit
Worst Fit
First Fit

None of the above

All of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Lloyd

5/21/2020

L15.6

TCSS 422 B — Spring 2020
School of Engineering and Technology

SEGREGATED LISTS

® OS provides object caches:

= Collections of pre-initialized ready-to-use objects

® Allocated for popular OS data types/structures

= e.g. for kernel objects such as locks, inodes, etc.

® Managed as segregated free lists

= OS DESIGN QUESTION:

How much memory should be dedicated for OS object caches?

® |f a given cache is low in memory, can request “slabs” of

memory from the general allocator for caches.

® General allocator will reclaim slabs when not used

May 21, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L15.13

BUDDY ALLOCATION

= Binary buddy allocation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

® Consider a 7KB request

‘ 64 KB

‘ 32 KB ‘ 32 KB

64KB free space for 7KB request

May 21, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L15.14

Slides by Wes J. Lloyd

5/21/2020

L15.7

TCSS 422 B — Spring 2020 5/21/2020
School of Engineering and Technology

BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation
® Allocated fragments, typically too large

® Coalescing is simple
= Two adjacent blocks are promoted up

May 21, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.15

.ﬁ computer system manages program memory using
three separate segments for code, stack, and the
heap. The codesize of a program is 1KB but the
minimal segment available is 16KB. This is an
example of:

External fragmentation
Binary buddy allocation
Internal fragmentation
Coalescing

Splitting

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Slides by Wes J. Lloyd L15.8

TCSS 422 B - Spring 2020 5/21/2020
School of Engineering and Technology

A request is made to store 1 byte. For this scenario,
which memory allocation strategy will always locate
memory the fastest?

Best fit
Worst fit
Next fit

None of the above

All of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

CHAPTER 18:
INTRODUCTION TO

PAGING

TCSS422: Operating Systems [Spring 2020]

Maviaien School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L15.9

TCSS 422 B — Spring 2020 5/21/2020
School of Engineering and Technology

OBJECTIVES - 5/21

® Questions from 5/19
= Tuesday Class Activity: (Submit by May 22 11:59pm AOE)
= Tutorial 2 posted (pthreads, locks, conditions)
® Quiz 3 posted - Active Reading Chapter 19
®m Assignment 2 (based on Ch. 30)
= Chapter 17: Free Space Management
[= Chapter 18: Introduction to Paging |
= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Tradeoffs, Context Switch
= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Hybrid Tables, Multi-level Page Tables

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.19

May 21, 2020

® Split up address space of process into fixed sized pieces

called pages

® Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

®m Physical memory is split up into an array of fixed-size slots
called page frames.

®m Each process has a page table which translates virtual
addresses to physical addresses

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.20

May 21, 2020

Slides by Wes J. Lloyd L15.10

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

® Flexibility

Just add more pages...

= No need to store unused space
As with segments...

= Simplicity

ADVANTAGES OF PAGING

= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

= Abstracts the process address space into pages
= No need to track direction of HEAP / STACK growth

May 21, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L15.21

m Consider a 128 byte (27) address space
with 16-byte (24) pages

m Consider a 64-byte (2°9)
program address space

0 64
(page 0 of

16 the address space) 20
(page 1)

32 9%
(page 2)

48 112
(page 3)

64

128
A Simple 64-byte Address Space

PAGING: EXAMPLE

Page Table:

VPO > PF3
VP1 > PF7
VP2 > PF5
VP3 > PF2

reserved for OS

(unused)

page 3 of AS

page 0 of AS

(unused)

page 2 of AS

(unused)

page 1 of AS

page frame 0 of
physical memory

page frame 1
page frame 2
page frame 3
page frame 4
page frame 5
page frame 6

page frame 7

64-Byte Address Space Placed In Physical Memory

May 21, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L15.22

Lloyd

5/21/2020

L15.11

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

PAGING: ADDRESS TRANSLATION

® PAGE: Has two address components
= VPN: Virtual Page Number (serves as the page ID)
= Offset: Offset within a Page (indexes any byte in the page)

VPN offset
I i il : 1

Va5 | Va4 | Va3 | Va2 | Val | Va0

= Example:
Page Size: 16-bytes (2%),
Program Address Space: 64-bytes (2°)
VPN offset

Here program can have

I I
[[1

Jjust four pages...

0 1 0 d 0 1

TCSS422: Operating Systems [Spring 2020]
iMayj2232020 School of Engineering and Technology, University of Washington - Tacoma

L15.23

EXAMPLE:

PAGING ADDRESS TRANSLATION

m Consider a 64-byte (2°) program address space (4 pages—>232)
m Stored in 128-byte (27) physical memory (8 frames—> 23)

: VPN offset
® Offset is preserved ‘ ,

= 4 bits indexes any byte Virtual
i i 4 Address 0 1 0 1 0 1
= Page size is 16 bytes (2%)
= Page table translates a ‘L ‘L
Virtual Page Number (VPN) to Addiens
a Physical Frame Number (PFN) Translation
Page Table: ¢ i i
VPO = PF3 5o
VP1 > PF7 Adhess |3 |2 |n | ® (Y 0 A
VP2 = PF5 0 . 1 :
VP3 - PF2 PFN offset
Mavizdgzo2l ;(c:t?zilztznf Sr?;i;ac:(ie':'ignzy:;edm‘lig‘:\:?fgio fJ(r)l]iversity of Washington - Tacoma L15.24

Lloyd

5/21/2020

L15.12

TCSS 422 B — Spring 2020 5/21/2020
School of Engineering and Technology

PAGING DESIGN QUESTIONS

® (1) Where are page tables stored?

® (2) What are the typical contents of the page table?

® (3) How big are page tables?

® (4) Does paging make the system too slow?

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.25

May 21, 2020

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (4GB=232 pytes)
= With 4 KB pages (4KB=212 pytes)
= 20 bits for VPN (229 pages)
= 12 bits for the page offset (212 unique bytes in a page)

® Page tables for each process are stored in RAM

= Support potential storage of 22° translations
= 1,048,576 pages per process

= Each page has a page table entry size of 4 bytes

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.26

May 21, 2020

Slides by Wes J. Lloyd L15.13

TCSS 422 B — Spring 2020
School of Engineering and Technology

® Each slot (i.e. entry) dereferences a VPN
®m Each entry provides a physical frame number

® Each entry requires 4 bytes (32 bits)
= 20 for the PFN on a 4GB system with 4KB pages
= 12 for the offset which is preserved

= (note we have no status bits, so this is
unrealistically small)

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

VPN,

VPN,

VPN,

VPN 1048576

® How much memory is required to store the page table
for 1 process?

= Hint: # of entries x space per entry
= 4,194,304 bytes (or 4MB) to index one process

May 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.27

NOW FOR AN ENTIRE OS

= |f 4 MB is required to store one process

400 MB / 4000 GB

® |s this efficient?

® Consider how much memory is required for an entire 0S?
= With for example 100 processes...

®m Page table memory requirement is now 4MB x 100 = 400MB

® |[f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

May 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.28

Slides by Wes J. Lloyd

5/21/2020

L15.14

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

(2) WHAT'S ACTUALLY IN THE PAGE TAB

®m Page table is data structure used to map virtual page

Number PFN)
= Linear page table - simple array

® Page-table entry
= 32 bits for capturing state

3NV BHTH5MUB2A0191817161541B3 121109 87 6543210
= O 'd
PFN 0§D<E§3§1

An x86 Page Table Entry(PTE)

3

numbers (VPN) to the physical address (Physical Frame

TCSS422: Operating Systems [Spring 2020]
iMayj2232020 School of Engineering and Technology, University of Washington - Tacoma

L15.29

PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

VBT B32A0191817161514131211109 87 6543210
—) v
PFN o|g|o|<(82|53]~

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 21, 2020

L15.30

Lloyd

5/21/2020

L15.15

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

PAGE TABLE ENTRY - 2

= Common flags:

= Valid Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

= Dirty Bit: Indicating whether the page has been modified since
it was brought into memory

= Reference Bit(Accessed Bit): Indicating that a page has been
accessed

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.31

May 21, 2020

TCSS 422 WILL RETURN

AT ~2:40PM

TCSS422: Operating Systems [Spring 2020]

ilayj20y2020 School of Engineering and Technology, University of Washington - Tacoma

Lioyd

5/21/2020

L15.16

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

(3) HOW BIG ARE PAGE TABLES?

® Page tables are too big to store on the CPU

® Page tables are stored using physical memory

® Paging supports efficiently storing a sparsely populated
address space

= Reduced memory requirement
Compared to base and bounds, and segments

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.33

May 21, 2020

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

® Translation

= Issue #1: Starting location of the page table is

heeded
= HW Support: Page-table base register Page Table:
stores active process VPO - PF3
Facilitates translation VP1 > PF7
. VP2 = PF5
Stored in RAM > VP3 > PF2

= I[ssue #2: Each memory address translation for paging
requires an extra memory reference

= HW Support: TLBs (Chapter 19)

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1534

May 21, 2020

Lloyd

5/21/2020

L15.17

TCSS 422 B — Spring 2020
School of Engineering and Technology

PAGING MEMORY ACCESS

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)
5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else 1f (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it
17. offset = vVirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)

TCSS422: Operating Systems [Spring 2020]

iMayj2232020 School of Engineering and Technology, University of Washington - Tacoma

L15.35

COUNTING MEMORY ACCESSES

m Example: Use this Array initialization Code

int array[1000]:

for (i = 07 1 < 1000; i++)
array[i] = 0:

m Assembly equivalent:

0x1024 movl §0x0, (%edi, %eax,4)
0x1028 incl %eax

0x102c cmpl $0x03e8, $eax
0x1030 jne 0x1024

TCSS422: Operating Systems [Spring 2020]

Mavizdgzo2l School of Engineering and Technology, University of Washington - Tacoma

L15.36

Slides by Wes J. Lloyd

5/21/2020

L15.18

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

® Locations:
= Page table
= Array
= Code

® 50 accesses
for 5 loop
iterations

Page Table[39]

\ ~ 1224
O O O O] F174 £
b
Page Table[1] 1124 §
()
\ -7 B
0 0000 0O00 0000 0oon oool g,
20100 — ~ 7132
% 40050 — 7282 &
3] E
< []
40000 ——m m u 7952
- ~ 4196
g 1124 : opet z
L 1074 - 4146 T
S L) L L) (L) L S
104 +m—mE" gy pB 7, pET, w87, @7

0 10 20 30 40 50

Memory Access

May 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.37

Consider a 4GB Computer with 4KB (4096 byte)
pages. How many pages would fit into physical

2A32 [2720 =2"12 pages
2732 [2712 = 2120 pages
2732 [27A16 =2/16 pages

2732 [278 = 2724 pages

None of the above

memory?

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Lloyd

5/21/2020

L15.19

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

| |
“For the 4GB computer example, how many bits are"

required for the VPN?

24 VPN bits (indexes
2724 locations)

16 VPN bits (indexes
2716 locations)

20 VPN bits (indexes
2720 locations)

12 VPN bits (indexes
2712 locations)

None of the above

~ TC88422: Operating Systems [Spring 2020] L15.
.. May 21, 2080 the presentationge Fsdive FE¥RI ERIFGRATH TSy 2EsmgEnits Spraaninelect polesemiapp 5 ..

| ||
“For the 4GB computer example, how many bits are"

available for page status bits?

32-12 VPN bits
=20 status bits

32 -24 VPN bits
= 8 status bits

32-16 VPN bits
= 16 status bits

32 -20VPN bits
= 12 status bits

None of the
above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Lloyd

5/21/2020

L15.20

TCSS 422 B — Spring 2020 5/21/2020
School of Engineering and Technology

| |
“ For the 4GB computer, how much space does this .

page table require? (number of page table entries x
size of page table entry)

2720 entries x4b =4 MB

2712 entries x 4b =16 KB

2716 entries x 4b =256 KB

2724 entries x 4b =64 MB

None of the above

~ TC88422: Operating Systems [Spring 2020] L15.
.. May 21, 2080 the presentationge Fsdive FE¥RI ERIFGRATH TSy 2EsmgEnits Spraaninelect polesemiapp : ..

| |
“ For the 4GB computer, how many page tables (for -

user processes) would fill the entire 4GB of memory?

4 GB /16 KB =65,536
4GB /64 MB =256
4GB /256 KB=16,384
4GB /4MB = 1,024

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Slides by Wes J. Lloyd L15.21

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

PAGING SYSTEM EXAMPLE

® Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:

= For the page table entry, how many bits are required for the

VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

= How much space does this page table require?
of page table entries x size of page table entry

= How many page tables (for user processes)
would fill the entire 4GB of memory?

TCSS422: Operating Systems [Spring 2020]

iMayj2232020 School of Engineering and Technology, University of Washington - Tacoma

L15.43

CHAPTER 19:

TRANSLATION
LOOKASIDE BUFFER
(TLB)

TCSS422: Operating Systems [Spring 2020]

Maviaien School of Engineering and Technology, University of Washington - Tacoma

Lioyd

5/21/2020

L15.22

TCSS 422 B — Spring 2020
School of Engineering and Technology

OBJECTIVES - 5/21

® Questions from 5/19
= Tuesday Class Activity: (Submit by May 22 11:59pm AOE)
= Tutorial 2 posted (pthreads, locks, conditions)
® Quiz 3 posted - Active Reading Chapter 19

®m Assignment 2 (based on Ch. 30)

= Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

= Chapter 19: Translation Lookaside Buffer (TLB)
= TLB Algorithm, Tradeoffs, Context Switch

= Chapter 20: Paging: Smaller Tables
= Smaller Tables, Hybrid Tables, Multi-level Page Tables

May 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.45

TRANSLATION LOOKASIDE BUFFER

®mlLegacy name...

m Better name, “Address Translation Cache”

mTLB is an on CPU cache of address translations
=virtual 2> physical memory

May 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.46

Slides by Wes J. Lloyd

5/21/2020

L15.23

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

TRANSLATION LOOKASIDE BUFFER - 2

Page Table[39]

= Goal: \ s
Reduce access o o o u o L 2
to the page Page Table[1] 1124 ?ﬁ
tables \ Lo7a &

O 0OO00 Onon oonn ooon - -noono-l 1024 -

= Example:
50 RAM accesses g G r7s2 g
for first 5 for-loop ~ F4mws0 4 ° - T
iterations < s0000 m m u » 7952

® Move Iookups 2 U4, 4o -4
from RAM to TLB 5 o |° *°7 L oae §
by caching page O i mmNy au®, u®, Lud, gl O
table entries 0 o ® o 40 .

Memory Access
May 21, 2020 TCSS422: Operating Systems [Spring 2020] 115.47

School of Engineering and Technology, University of Washington - Tacoma

TRANSLATION LOOKASIDE BUFFER (TLB)

® Part of the CPU’s Memory Management Unit (MMU)

m Address translation cache

Logical
Address

TLB

fockas TLB Hit

———>

TLB
popular v to p

—

Page Table

all v to p entries

Address Translation with MMU

Physical
Address

v

Page O

Page 1

Physical Memory

May 21, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L15.48

Lloyd

5/21/2020

L15.24

TCSS 422 B — Spring 2020
School of Engineering and Technology

® Part of the CPU’s Memory Management Unit (MMU)

m Address translation cache

— s @ | [

TRANSLATION LOOKASIDE BUFFER (TLB)

=]

The TLB is an addressltranslatioh cache
Different than L1, L2, L3 CPU memory caches

I Page 0
Page Table Page -
all v to p entries =

Physical Memory

Address Translation with MMU

May 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.49

® For: array
® Hardware

TLB BASIC ALGORITHM

based page table
managed TLB

» VPN = (VirtualAddress & VPN_MASK) >> SHIFT
» ¢ (Success , TlbEntry) = TLB Lookup (VPN)
if (Success == True){ // TLB Hit
if (CanAccess (T1bEntry.ProtectBits) == True){

offset = VirtualAddress & OFFSET MASK

»PhysAddr»(leEntry.PFN << SHIFT) | Offset

AccessMemory (PhysAddr)

}else RaiseException (PROTECTION_ ERROR)

Generate the physical address to access memory

May 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.50

Slides by Wes J. Lloyd

5/21/2020

L15.25

TCSS 422 B - Spring 2020

School of Engineering and Technology

TLB BASIC ALGORITHM - 2

33 else{ //TLB Miss

12 PTEAddr = PTBR + (VPN * sizeof (PTE))

23 » PTE = AccessMemory (ETEAddr)

14: (..) // Check for, and raise exceptions..
Toi

l6: TLB Insert(VPN , PTE.PFN , PTE.ProtectBits)
g brid RetryInstruction ()

18: }

19:}

Retry the instruction... (requery the TLB)

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.51

May 21, 2020

TLB - ADDRESS TRANSLATION CACHE

= Key detail:

® For a TLB miss, we first access the page table in RAM to
populate the TLB... we then requery the TLB

= All address translations go through the TLB

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.52

May 21, 2020

Slides by Wes J. Lloyd

5/21/2020

L15.26

TCSS 422 B — Spring 2020
School of Engineering and Technology

5/21/2020

TLB EXAMPLE

int sum = 0 ;

for(i=0; i<10; i++){

0
1
2 sum+=al[i] ;
3

= Example:

® Program address space: 256-byte
= Addressable using 8 total bits (28)
= 4 bits for the VPN (16 total pages)

® Page size: 16 bytes
= Offset is addressable using 4-bits

® Store an array: of (10) 4-byte integers

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN =14

VPN =15

00

04 08 12 16

OFFSET

afo] | a[1] | a[2]

a[3]

af4] | a[3] | a[6]

ag] | a[9]

May 21, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L15.53

TLB EXAMPLE - 2

0 int sum = 0 ;
1 for(i=0; i<10; i++){
25 sum+=al[i] ;
3

}

® Consider the code above:

® |nitially the TLB does not know where a[] is

® Consider the accesses:

= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7],
a[8], a[9]

= How many pages are accessed?

= What happens when accessing a page not
in the TLB?

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN = 14

VPN =15

00

04

OFFSET
08 12 16

afo] | a[] | a[2

a3

a4l | a[s] | al6]

a8l | a[9]

May 21, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L15.54

Slides by Wes J. Lloyd

L15.27

TCSS 422 B — Spring 2020 5/21/2020
School of Engineering and Technology

TLB EXAMPLE - 3

0: int sum = 0 ; OFFSET
00 04 08 12 16
1: for(i=0; i<10; i++){ ———
2: sum+=al[i]; VPN - 01
3 } VPN =03
VPN =04
= For the accesses: a[0], a[1], a[2], a[3], a[4], "
VPN =06 al0] | aml | af2]
— a[5], a[6]7 a[7]v a[8]7 a[9] VPN =07 [a[2) | aj4] | a[s] | al6l
VPN =08 a[7] a8l a[g]
) VPN =09
® How many are hits? s
® How many are misses? VPN =11
. . VPN - 12
= What is the hit rate? (%) VN - 13
= 70% (3 misses one for each VP, 7 hits) VPN = 14
VPN =15

TCSS422: Operating Systems [Spring 2020]

iMayj2232020 School of Engineering and Technology, University of Washington - Tacoma

L15.55

TLB EXAMPLE - 4

0: int sum = 0 ; OFFSET
00 04 08 12 16
1B for(i=0; i<10: i++){ VPN = 00
2: sum+=al[i]; VPN =01
3 } VPN = 03
VPN =04
. . VPN =05
= What factors affect the hit/miss rate? i e
= Page size VEN =07 | a3] | a4 | ais] | ale]
VPN =08 | a[n a[s] a[9]

= Data/Access locality (how is data accessed?)
Sequential array access vs. random array access V-1

= Temporal locality VN = 12

= Size of the TLB cache veN - 13
(how much history can you store?) Wb

VPN =09

VPN =11

VPN =15

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.56

May 21, 2020

Slides by Wes J. Lloyd L15.28

TCSS 422 B — Spring 2020

School of Engineering and Technology

May 21, 2020

CHAPTER 20:
PAGING:
SMALLER TABLES

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

OBJECTIVES - 5/21

® Questions from 5/19
= Tuesday Class Activity: (Submit by May 22 11:59pm AOE)
® Tutorial 2 posted (pthreads, locks, conditions)
® Quiz 3 posted - Active Reading Chapter 19

= Assighment 2 (based on Ch. 30)

= Chapter 17: Free Space Management

= Chapter 18: Introduction to Paging

= Chapter 19: Translation Lookaside Buffer (TLB)

= TLB Algorithm, Tradeoffs, Context Switch

= Chapter 20: Paging: Smaller Tables

= Smaller Tables, Hybrid Tables, Multi-level Page Tables

TCSS422: Operating Systems [Spring 2020]

Rlayjaljzo20 School of Engineering and Technology, University of Washington - Tacoma

L15.58

Slides by Wes J. Lloyd

5/21/2020

L15.29

TCSS 422 B - Spring 2020

School of Engineering and Technology

LINEAR PAGE TABLES

®m Consider array-based page tables:

= Each process has its own page table

= 32-bit process address space (up to 4GB)
= With 4 KB pages

= 20 bits for VPN

= 12 bits for the page offset

May 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.59

LINEAR PAGE TABLES - 2

= Page tables stored in RAM

m Support potential storage of 22° translations
= 1,048,576 pages per process @ 4 bytes/page

= Page table size 4MB / process

32
Page table size = % * 4Byte = 4MByte

® Consider 100+ OS processes

= Requires 400+ MB of RAM to store process information

May 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.60

Slides by Wes J. Lloyd

5/21/2020

L15.30

TCSS 422 B — Spring 2020
School of Engineering and Technology

LINEAR PAGE TABLES - 2

® Page tables stored in RAM

® Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page
m Pagetable size 4MB / process

Page tables are too big and
consume too much memory.

Need Solutions ...

® Consider 100+ OS processes
= Requires 400+ MB of RAM to store process information

May 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.61

® Larger pages

PAGING: USE LARGER PAGES

= 16KB = 214

m 32-bit address space: 232
m 218 = 262,144 pages

¥4
;T& +4 = 1MB per page table

B Memory requirement cut to ¥4
® However pages are huge
® [nternal fragmentation results

® 16KB page(s) allocated for small programs with only a
few variables

May 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.62

Slides by Wes J. Lloyd

5/21/2020

L15.31

TCSS 422 B — Spring 2020
School of Engineering and Technology

A 16KB Address S

® Process: 16KB Address Space w/ 1KB pages

PAGE TABLES: WASTED SPACE

pace with 1KB Pages

Page Table Physical Memory
Virtual Address
Space
code 0. 4
1\ Allocate / N .
5 e PFN valid prot present dirty
5 N/ 10 1 rx 1 0
AN
heap 4 i/ 0
5 /
/ 0
RV
7 N o
8 /) 15 1 rw- i 1
0
n o/ 0
12/ 2} 1 rw- Al il
stack 13/ 23 1 rw- 1 1
W
A Page Table For 16KB Address Space

May 21, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L15.63

Page Table

Virtual Address
Space

code —| o

b \
1 WAllo
5N

heap

stack 13/

Physical Memory

cate |

PEN

® Process: 16 KB Address Space w/ 1KB pages

valid prot

rw-

PAGE TABLES: WASTED SPACE

present

Most of the page table is unused
and full of wasted space. (73%)

dirty

3 1 rw- 1 1
23 1 rw- 1 1

A 16KB Address Space with 1KB Pages

A Page Table For 16KB Address Space

May 21, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L15.64

Slides by Wes J. Lloyd

5/21/2020

L15.32

TCSS 422 B - Spring 2020

School of Engineering and Technology

32
Page table size = % * 4Byte = 4MByte

MULTI-LEVEL PAGE TABLES

® Consider a page table:
® 32-bit addressing, 4KB pages
m 220 page table entries

®m Even if memory is sparsely populated the per process page
table requires:

= MUST SAVE MEMORY!

®m Often most of the 4MB per process page table is empty
® Page table must be placed in 4MB contiguous block of RAM

May 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.65

MULTI-LEVEL PAGE TABLES - 2

o[mi o e[w0]
: PFN] :

®m Add level of indirection, the “page directory”

Linear Page Table Multi-level Page Table

200
]
T g 2 2 3
> S PN § & PN
ol o 12 - 1| 201 |[———> 1] 12
1 m 13 o o -
= S o - 1| o 13 S
gl - - = = I
a T |o ol - - z
1| rw 100 2 a
= 1 203 1w 100
0 % The Page Directory [Page 1 of PT:Not Allocated]
0 z
T —_—
o
0
0 on
0 = S g .
o 0 (=}
1 rw 26 o 3
| v 15 1 rw 86 i
o
1 mw 15
Linear (Left) And Multi-Level (Right) Page Tables
TCSS422: Operating Systems [Spring 2020]
Mavizdgzo2l School of Engineering and Technology, University of Washington - Tacoma L1566

Slides by Wes J. Lloyd

5/21/2020

L15.33

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

MULTI-LEVEL PAGE TABLES - 2

®m Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table
PBTR 201

Two level page table:
220 pages addressed with

two level-indexing
page directory index, page table index)

: S 0
z 0 b=y
1] w 86 o %
1] w 15 8 b L&
1] w 15

Linear (Left) And Multi-Level (Right) Page Tables

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.67

May 21, 2020

MULTI-LEVEL PAGE TABLES - 3

® Advantages

= Only allocates page table space in proportion to the
address space actually used

= Can easily grab next free page to expand page table

®m Disadvantages

= Multi-level page tables are an example of a time-space
tradeoff

= Sacrifice address translation time (now 2-level) for space
= Complexity: multi-level schemes are more complex

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.68

May 21, 2020

Lioyd

5/21/2020

L15.34

TCSS 422 B — Spring 2020
School of Engineering and Technology

5/21/2020

EXAMPLE

= 16KB address space, 64byte pages
® How large would a one-level page table need to be?
m 214 (address space) / 26 (page size) = 28 = 256 (pages)

Flag Detail

0000 000 code
00000001 code

(free) Address space 16 KB
(free) Page size 64 byte
heap Virtual address 14 bit
Besp VPN 8 bit
f
) Offset 6 bit
(free)

Page table entry 2%(256)
stack

1111 1111} stack A 16-KB Address Space With 64-byte Pages

13[12[11]10]9f8|7]6[5[af[3[2[1]0a]

Offset

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.69

May 21, 2020

EXAMPLE - 2

m 256 total page table entries (64 bytes each)

®m 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

®m Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

®m 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

= Key idea: the page table is stored using pages too!

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.70

May 21, 2020

Slides by Wes J. Lloyd L15.35

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:

= 8 bit VPN to map 256 pages
= 4 bits for page directory index (PDI - 15t level page table)
= 6 bits offset into 64-byte page

. _Page Directory Index
3

13]12]11 10’[9|8\7\6 s|al3|2]1]o0

VPN Offset

cu)
>

14-bits Virtual address

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1571

May 21, 2020

PAGE TABLE INDEX

" 4 bits page directory index (PDI - 1stlevel)
m 4 bits page table index (PTI - 29 |evel)

. Page Directory Index | Page Table Index

12 |11 IOT\ g

I‘13 8‘7’615‘4|3‘2|1|0‘

VPN Offset
14-bits Virtual address

® To dereference one 64-byte memory page,

= We need one page directory entry (PDE)
= One page table Index (PTI) - can address 16 pages

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1572

May 21, 2020

Lloyd

5/21/2020

L15.36

TCSS 422 B — Spring 2020 5/21/2020
School of Engineering and Technology

EXAMPLE - 3

= For this example, how much space is required to store as a
single-level page table with any number of PTEs?

m 16KB address space, 64 byte pages
m 256 page frames, 4 byte page size
®m 1,024 bytes required (single level)

= How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

® Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 4 entries x 4 bytes (1 x 64 byte page)
m 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.73

May 21, 2020

32-BIT EXAMPLE

m Consider: 32-bit address space, 4KB pages, 22° pages
® Only 4 mapped pages

m Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

® Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

® Savings = using just .78 % the space !!!

®m 100 sparse processes now require < 1MB for page tables

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1574

May 21, 2020

Slides by Wes J. Lloyd L15.37

TCSS 422 B — Spring 2020
School of Engineering and Technology

MORE THAN TWO LEVELS

® Consider: page size is 22 = 512 bytes
® Page size 512 bytes / Page entry size 4 bytes

= VPN is 21 bits

3029282726252423222120191817161514131211109 8 76 54 3 21 0

IRNRNRNRNNNNNNNNNNNRNNANENENEN

i
Ealy

N
>

<
€

VPN

offset

Flag Detail

Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit

May 21, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L15.75

MORE THAN TWO LEVELS - 2

= Page table entries per page = 512 / 4 = 128
m 7 bytes - for page table index (PTI)

3029282726252423222120191817161514131211109 8 76 54 3 21 0

[1]

NN

Page Directory Index

i
Calny

ERNNRNNNRRANRRNNRDY

.
>

VPN

offset

Flag Detail

Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset g bit
Page entry per page 128 PTEs

——1—> log,128 =7

May 21, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L15.76

Slides by Wes J. Lloyd

5/21/2020

L15.38

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

MORE THAN TWO LEVELS - 3

® To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required

® When using 27 (128 entry) page tables...

® Page size = 512 bytes / 4 bytes per addr

30292827262524232221201918171615141312111098 7654 3 21 0

ENNARRNANRNARNNARRNA AR ARRRAS

Page Directory Index

3l 3!

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——1—> log,128 =7

TCSS422: Operating Systems [Spring 2020]

iMayj2232020 School of Engineering and Technology, University of Washington - Tacoma

L15.77

MORE THAN TWO LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required
= When using 27 (128 entry) page tables...

B Pagess

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

| Virtualaddress |30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs ——1—> log, 128 =7

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 21, 2020

L15.78

Lioyd

5/21/2020

L15.39

TCSS 422 B - Spring 2020 5/21/2020
School of Engineering and Technology

MORE THAN TWO LEVELS - 3

® To map 1 GB address space (23°=1GB RAM, 512-byte pages)
m 214 = 16,384 page directory entries (PDEs) are required
® When using 27 (128 entry) page tables...

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

Virtual address bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs ——1—> log,128 =7

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1579

May 21, 2020

MORE THAN TWO LEVELS - 4

® We can now address 1GB with“fine grained” 512 byte pages
® Using multiple levels of indirection

302928 2726252423222120191817161514131211109 87654 3 21 0

NERRNRNNNNNNNNNENNRRAREE

o

Y. ¥

’ Page Table Index

L

VPN = >
® Consider the implications for address translation!
® How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’'s say 4 32-bit integers)
= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes
® Memory Usage= 1,536 (3-1evel) / 8,388,608 (1-1evel) = .0183% !!!

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.80

May 21, 2020

Slides by Wes J. Lloyd L15.40

TCSS 422 B — Spring 2020
School of Engineering and Technology

ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup
//

// Inputs:

// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.81

May 21, 2020

ADDRESS TRANSLATION - 2

pgd_offset():
pgd = pgd_offset(mm, vpage); Takes a vpage address and the mm_struct
if (pgd_none (*pgd) || pgd_bad(*pgd))| forthe process, returns the PGD entry that
return O0; covers the requested address...

p4d = p4d offset(pgd, vpage);
- = 4d/pud/pmd_offset():

£ 44 *pdad 4d bad (*p4ad p4d/pud/pmd_offset():

* (P4d_none (*pdd) || pdd_bad(*pdd)) Takes a vpage address and the

pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

return O0;
pud = pud_offset (p4d, vpage)
if (pud_none(*pud) || pud_bad(*pud))

return O0;

pmd = pmd_offset (pud, vpage);

if (pmd_none (*pmd) || pmd_bad(*pmd))
return O0;

if (!'(pte = pte_offset_map(pmd, vpage)))

return O0; pte_unmap()
if (! (iage z_Pte_Page (*pte))) release temporary kernel mapping
return 0; for the page table entry

physical page_addr = page_to_phys (page)
pte_unmap (pte) ;
return physical_ page_addr; // param to send back

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1582

May 21, 2020

Slides by Wes J. Lloyd

5/21/2020

L15.41

TCSS 422 B — Spring 2020 5/21/2020
School of Engineering and Technology

INVERTED PAGE TABLES

®m Keep a single page table for each physical page of memory

® Consider 4GB physical memory
m Using 4KB pages, page table requires 4MB to map all of RAM

= Page table stores
= Which process uses each page

= Which process virtual page (from process virtual address
space) maps to the physical page

m All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

® Finding process memory pages requires search of 22° pages
® Hash table: can index memory and speed lookups

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.83

May 21, 2020

MULTI-LEVEL PAGE TABLE EXAMPLE

® Consider a 16 MB computer which indexes memory using 4KB
pages

® (#1) For a single level page table, how many pages are
required to index memory?

® (#2) How many bits are required for the VPN?

® (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many offset bits are required?

® (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.84

May 21, 2020

Slides by Wes J. Lloyd L15.42

TCSS 422 B — Spring 2020 5/21/2020
School of Engineering and Technology

MULTI LEVEL PAGE TABLE EXAMPLE - 2

= (#5) How many bytes (or KB) are required for a single level
page table?

® Let’s assume a simple HelloWorld.c program.

= HelloWorld.c requires virtual address translation for 4 pages:
= 1 - code page 1 - stack page
= 1 - heap page 1 - data segment page

® (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

® (#7) How many bits are required for the Page Table Index
(PTI)?

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L15.85

May 21, 2020

MULTI LEVEL PAGE TABLE EXAMPLE - 3

® Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
= 6 bits for the Page Directory Index (PDI)
= 6 bits for the Page Table Index (PTI)
= 12 offset bits
= 8 status bits

= (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page
Table...

® HINT: how many entries are in the PD and PT

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1586

May 21, 2020

Slides by Wes J. Lloyd L15.43

TCSS 422 B — Spring 2020 5/21/2020
School of Engineering and Technology

MULTI LEVEL PAGE TABLE EXAMPLE - 4

® (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if all of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

= (#10) And finally, for this example, as a percentage (%),
how much memory does the 2-level page table scheme
consume compared to the 1-level scheme?

® HINT: two-level memory use / one-level memory use

TCSS422: Operating Systems [Spring 2020]

iMayj2232020 School of Engineering and Technology, University of Washington - Tacoma

L15.87

ANSWERS
®m #1 - 4096 pages
m#2 - 12 bits
m#3 - 12 bits
m #4 - 4 bytes
#5 - 4096 x 4 = 16,384 bytes (16KB)
m #6 - 6 bits
m#7 - 6 bits
m #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

® #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

" #10- 512/16384 = .03125 > 3.125%

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 21, 2020

L15.88

Slides by Wes J. Lloyd L15.44

TCSS 422 B - Spring 2020 5/21/2020
School of Engineering and Technology

QUESTIONS

WILL RETURN IN A FEW
MINUTES

Slides by Wes J. Lloyd L15.45

