
TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.1Slides by Wes J. Lloyd

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

Free Space Management,
Introduction to Paging

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 5/12

 Class Activity: Memory Segmentation

 Tutorial 2 (pthreads, locks, conditions)

 Assignment 2 (based on Ch. 30)

 Coming soon: Quiz 3 – Active Reading Chapter 19

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

 Chapter 18: Introduction to Paging

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.2

OBJECTIVES – 5/19

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.2Slides by Wes J. Lloyd

 Please classify your perspective on material covered in
today’s class (46 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.74 ( from 6 .54)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.77 ( from 5.86)

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.3

MATERIAL / PACE

 Questions ?

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.4

FEEDBACK FROM 5/14

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.3Slides by Wes J. Lloyd

 Questions from 5/12

 Class Activity: Memory Segmentation

 Tutorial 2 (pthreads, locks, conditions)

 Assignment 2 (based on Ch. 30)

 Coming soon: Quiz 3 – Active Reading Chapter 19

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

 Chapter 18: Introduction to Paging

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.5

OBJECTIVES – 5/19

 Questions from 5/12

 Class Activity: Memory Segmentation

 Tutorial 2 (pthreads, locks, conditions)

 Assignment 2 (based on Ch. 30)

 Coming soon: Quiz 3 – Active Reading Chapter 19

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

 Chapter 18: Introduction to Paging

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.6

OBJECTIVES – 5/19

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.4Slides by Wes J. Lloyd

 Questions from 5/12

 Class Activity: Memory Segmentation

 Tutorial 2 (pthreads, locks, conditions)

 Assignment 2 (based on Ch. 30)

 Coming soon: Quiz 3 – Active Reading Chapter 19

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

 Chapter 18: Introduction to Paging

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.7

OBJECTIVES – 5/19

 Questions from 5/12

 Class Activity: Memory Segmentation

 Tutorial 2 (pthreads, locks, conditions)

 Assignment 2 (based on Ch. 30)

 Coming soon: Quiz 3 – Active Reading Chapter 19

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

 Chapter 18: Introduction to Paging

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.8

OBJECTIVES – 5/19

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.5Slides by Wes J. Lloyd

TCSS 422 WILL RETURN
AT ~2:40PM

May 19, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L14.9

CHAPTER 17: FREE
SPACE MANAGEMENT

May 19, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L14.10

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.6Slides by Wes J. Lloyd

 Questions from 5/12

 Class Activity: Memory Segmentation

 Tutorial 2 (pthreads, locks, conditions)

 Assignment 2 (based on Ch. 30)

 Coming soon: Quiz 3 – Active Reading Chapter 19

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

 Chapter 18: Introduction to Paging

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.11

OBJECTIVES – 5/19

 How should free space be managed, when satisfying
variable-sized requests?

 What strategies can be used to minimize fragmentation?

 What are the time and space overheads of alternate
approaches?

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.12

FREE SPACE MANAGEMENT

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.7Slides by Wes J. Lloyd

 Management of memory using:

 Fixed-sized units

 Easy: keep a list…

Memory request  return first free entry
 Simple search

 With variable sized units

More challenging

 Results from variable sized malloc requests

 Leads to fragmentation

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.13

FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk  return NULL

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.14

FRAGMENTATION

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.8Slides by Wes J. Lloyd

 External: OS can compact

 Example: Client asks for 100 bytes: malloc(100)

 OS: No 100 byte contiguous chunk is available:
returns NULL

Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

 OS returns memory units that are too large

 Example: Client asks for 100 bytes: malloc(100)

 OS: Returns 125 byte chunk

 Fragmentation is *in* the allocated chunk

Memory is lost, and unaccounted for – can’t compact
May 19, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L14.15

FRAGMENTATION - 2

 Request for 1 byte of memory: malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.16

ALLOCATION STRATEGY: SPLITTING

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.9Slides by Wes J. Lloyd

 Consider 30-byte heap

 Free() frees all 10 bytes segments (l ist of 3-free 10-byte chunks)

 Request arrives: malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space l ist

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.17

ALLOCATION STRATEGY: COALESCING

 Memory API:
free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block:
 Small descriptive block of memory at start of chunk

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.18

MEMORY HEADERS

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.10Slides by Wes J. Lloyd

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.19

MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.20

MEMORY HEADERS - 3

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.11Slides by Wes J. Lloyd

 Simple free list struct

 Use mmap to create free l ist

 4kb heap, 4 byte header, one contiguous free chunk

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.21

THE FREE LIST

 Create and initialize free-l ist “heap”

 Heap layout:

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.22

FREE LIST - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.12Slides by Wes J. Lloyd

 Consider a request for a 100 bytes: malloc(100)

 Header block requires 8 bytes
 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.23

FREE LIST: MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384
+ 108 (end of 1st chunk)
+ 108 (end of 2nd chunk)
+ 108 (end of 3rd chunk)
= 16708

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.24

FREE LIST: FREE() CALL

Free this
block

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.13Slides by Wes J. Lloyd

 Free(sptr)

 Our 3 chunks start at 16 KB
(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500
 addr – sizeof(node_t)

 Actual start of chunk #2
 16492

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.25

FREE LIST:
FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)
 Free(16608)

 Walk back 8 bytes for actual
star t of chunk

 External fragmentation
 Free chunk pointers

out of order

 Coalescing of next
pointers is needed

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.26

FREE LIST- FREE ALL CHUNKS

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.14Slides by Wes J. Lloyd

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.27

GROWING THE HEAP

Segmented heap

 Best fit

 Traverse free list

 Identify all candidate free chunks

 Note which is smallest (has best fit)

When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

 Worst fit

 Traverse free list

 Identify largest free chunk

 Split largest free chunk, leaving a still large free chunk

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.28

MEMORY ALLOCATION STRATEGIES

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.15Slides by Wes J. Lloyd

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.29

EXAMPLES

 First fit
 Start search at beginning of free list

 Find first chunk large enough for request

 Split chunk, returning a “fit” chunk, saving the remainder

 Avoids full free list traversal of best and worst fit

 Next fit
 Similar to first fit, but start search at last search location

 Maintain a pointer that “cycles” through the list

 Helps balance chunk distribution vs. first fit

 Find first chunk, that is large enough for the request, and split

 Avoids full free list traversal

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.30

MEMORY ALLOCATION STRATEGIES - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.16Slides by Wes J. Lloyd

May 19, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.3
1

 OS provides object caches:

 Collections of pre-initialized ready-to-use objects

 Allocated for popular OS data types/structures

 e.g. for kernel objects such as locks, inodes, etc.

 Managed as segregated free lists

 OS DESIGN QUESTION:
How much memory should be dedicated for OS object caches?

 If a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

 General allocator will reclaim slabs when not used

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.32

SEGREGATED LISTS

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.17Slides by Wes J. Lloyd

 Binary buddy allocation
 Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small…

 Consider a 7KB request

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.33

BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

 Two adjacent blocks are promoted up

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.34

BUDDY ALLOCATION - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.18Slides by Wes J. Lloyd

May 19, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.3
5

May 19, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.3
6

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.19Slides by Wes J. Lloyd

CHAPTER 18:
INTRODUCTION TO

PAGING

May 19, 2020
TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L14.37

 Questions from 5/12

 Class Activity: Memory Segmentation

 Tutorial 2 (pthreads, locks, conditions)

 Assignment 2 (based on Ch. 30)

 Coming soon: Quiz 3 – Active Reading Chapter 19

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

 Chapter 18: Introduction to Paging

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.38

OBJECTIVES – 5/19

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.20Slides by Wes J. Lloyd

 Split up address space of process into f ixed sized pieces
called pages

 Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

 Physical memory is split up into an array of fixed-size slots
called page frames.

 Each process has a page table which translates vir tual
addresses to physical addresses

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.39

PAGING

 Flexibility

 Abstracts the process address space into pages

 No need to track direction of HEAP / STACK growth
 Just add more pages…

 No need to store unused space
 As with segments…

 Simplicity

 Pages and page frames are the same size

 Easy to allocate and keep a free list of pages

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.40

ADVANTAGES OF PAGING

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.21Slides by Wes J. Lloyd

 Consider a 128 byte address space
with 16-byte pages

 Consider a 64-byte program
address space

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.41

PAGING: EXAMPLE
Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

 PAGE: Has two address components

 VPN: Virtual Page Number

 Offset: Offset within a Page

 Example:
Page Size: 16-bytes, Address Space: 64-bytes

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.42

PAGING: ADDRESS TRANSLATION

Here there are
just four pages…

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.22Slides by Wes J. Lloyd

 Consider a 64-byte program address space (4 pages)

 Stored in 128-byte physical memory (8 frames)

 Offset is preserved

 VPN is looked up

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.43

EXAMPLE:
PAGING ADDRESS TRANSLATION

Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

 (1) Where are page tables stored?

 (2) What are the typical contents of the page table?

 (3) How big are page tables?

 (4) Does paging make the system too slow?

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.44

PAGING DESIGN QUESTIONS

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.23Slides by Wes J. Lloyd

 Example:

 Consider a 32-bit process address space (up to 4GB)

With 4 KB pages

 20 bits for VPN (220 pages)

 12 bits for the page offset (212 unique bytes in a page)

 Page tables for each process are stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process

 Each page has a page table entry size of 4 bytes

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.45

(1) WHERE ARE PAGE TABLES STORED?

 With 220 slots in our page table for a single process

 Each slot dereferences a VPN

 Provides physical frame number

 Each slot requires 4 bytes (32 bits)
 20 for the PFN on a 4GB system with 4KB pages
 12 for the offset which is preserved
 (note we have no status bits, so this is

unrealistically small)

 How much memory to store page table for 1 process?
 4,194,304 bytes (or 4MB) to index one process

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.46

PAGE TABLE EXAMPLE

VPN0

VPN1

VPN2

…

…

VPN1048576

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.24Slides by Wes J. Lloyd

 If 4 MB is required to store one process

 Consider how much memory is required for an entire OS?
 With for example 100 processes…

 Page table memory requirement is now 4MB x 100 = 400MB

 If computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

 Is this ef ficient?

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.47

NOW FOR AN ENTIRE OS

 Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

 Linear page table  simple array

 Page-table entry

 32 bits for capturing state

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.48

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.25Slides by Wes J. Lloyd

 P: present

 R/W: read/write bit

 U/S: supervisor

 A: accessed bit

 D: dirty bit

 PFN: the page frame number

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.49

PAGE TABLE ENTRY

 Common flags:

 Valid Bit : Indicating whether the particular translation is valid.

 Protection Bit: Indicating whether the page could be read
from, written to, or executed from

 Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

 Dirty Bit: Indicating whether the page has been modified since
it was brought into memory

 Reference Bit(Accessed Bit): Indicating that a page has been
accessed

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.50

PAGE TABLE ENTRY - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.26Slides by Wes J. Lloyd

 Page tables are too big to store on the CPU

 Page tables are stored using physical memory

 Paging supports efficiently storing a sparsely populated
address space

 Reduced memory requirement
Compared to base and bounds, and segments

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.51

(3) HOW BIG ARE PAGE TABLES?

 Translation

 Issue #1: Starting location of the page table is
needed
HW Support: Page-table base register
 stores active process
 Facilitates translation

 Issue #2: Each memory address translation for paging
requires an extra memory reference
HW Support: TLBs (Chapter 19)

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.52

(4) DOES PAGING MAKE
THE SYSTEM TOO SLOW?

Page Table:
VP0  PF3
VP1  PF7
VP2  PF5
VP3  PF2

Stored in RAM 

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.27Slides by Wes J. Lloyd

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)

5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.Valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else if (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it

17. offset = VirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset

19. Register = AccessMemory(PhysAddr)

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.53

PAGING MEMORY ACCESS

 Example: Use this Array initialization Code

 Assembly equivalent:

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.54

COUNTING MEMORY ACCESSES

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.28Slides by Wes J. Lloyd

 Locations:
 Page table

 Array

 Code

 50 accesses
for 5 loop
iterations

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.55

VISUALIZING MEMORY ACCESSES:
FOR THE FIRST 5 LOOP ITERATIONS

 Consider a 4GB Computer:

 With a 4096-byte page size (4KB)

 How many pages would fit in physical memory?

 Now consider a page table:

 For the page table entry, how many bits are required for the
VPN?

 If we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

 How much space does this page table require?
Page Table Entries x Number of pages

 How many page tables (for user processes)
would fi ll the entire 4GB of memory?

May 19, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L14.56

PAGING SYSTEM EXAMPLE

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/19/2020

L14.29Slides by Wes J. Lloyd

QUESTIONS

WILL RETURN IN A FEW
MINUTES

