TCSS 422 B — Spring 2020
School of Engineering and Technology

TCSS 422: OPERATING SYSTEMS

Free Space Management,
Introduction to Paging

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

Mavla2020 School of Engineering and Technology, University of Washington [liTacoma

5/19/2020

OBJECTIVES - 5/19

| = Questlons from 5/12 |
= Class Actlvity: Memory Segmentation
= Tutorial 2 (pthreads, locks, conditions)
= Assignment 2 (based on Ch. 30)
= Coming soon: Qulz 3 - Actlve Reading Chapter 19
= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies
= Chapter 18: Introduction to Paging

TCS5422: Operating Systems [Spring 2020]

2 P e T T T o ey A S T = TPy

a2

MATERIAL / PACE

= Please classify your perspective on material covered in
today’s class (46 respondents):

= 1-mostly review, 5-equal new/review, 10-mostly new
= Average - 6.74 (1 from 6.54)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.77 ({ from 5.86)

May 19, 2020 TCS5422; Operating Systems [Spring 2020]
hool of

Technology, ity ington - Tacoma

143

FEEDBACK FROM 5/14

= Questions ?

TCS5422: Operating Systems [Spring 2020]

2k P Sehoollof Erineering andTech nolosyiUnversity oWashinstonkTeconta

[Sr¥)

OBJECTIVES - 5/19

= Questlons from 5/12
| = Class Actlvity: Memory Segmentation|
= Tutorial 2 (pthreads, locks, conditions)
= Assignment 2 (based on Ch. 30)
= Comling soon: Qulz 3 - Actlve Reading Chapter 19
= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies
= Chapter 18: Introduction to Paging

May 19, 2020

TCS5422: Operating Systems [Spring 2020]
hool of Engineeri Technology, University i - Tacoma

uas

OBJECTIVES - 5/19

= Questlons from 5/12
= Class Actlvity: Memory Segmentation
| = Tutorial 2 (pthreads, locks, conditions)|
= Assignment 2 (based on Ch. 30)
= Coming soon: Qulz 3 - Actlve Reading Chapter 19
= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies
= Chapter 18: Introduction to Paging

TCS5422: Operating Systems [Spring 2020]

W2 P Sehoollof Ergineenng andTechnolosyjUniversity ofWashinaton Sk Tecoma

146

Slides by Wes J. Lloyd

L14.1

TCSS 422 B — Spring 2020
School of Engineering and Technology

OBJECTIVES - 5/19

= Questlons from 5/12
= Class Actlvity: Memory Segmentation
= Tutorial 2 (pthreads, locks, conditions)
| = Assignment 2 (based on Ch. 30)|
= Comling soon: Qulz 3 - Actlve Readlng Chapter 19
= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies
= Chapter 18: Introduction to Paging

5/19/2020

May 19, 2020 Tcsizfg; Operating Systems [Spring 2020]

nology, ity ington - Tacoma

ua7

OBJECTIVES - 5/19

= Questlons from 5/12
= Class Actlvity: Memory Segmentation
= Tutorial 2 (pthreads, locks, conditions)
= Assignment 2 (based on Ch. 30)
|= Coming soon: Qulz 3 - Actlve Reading Chapter 19 |
= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies
= Chapter 18: Introduction to Paging

May 19, 2020 TtSSMZ; Operating Systems [Spring 2020]

School o Technology, ity ington - Tacoma

148

TCSS 422 WILL RETURN
AT ~2:40PM

TCSS422: Operating Systems [Spring 2020]

Lk TEL 20D School of Engineering and Technology, University of Washington -

CHAPTER 17: FREE
SPACE MANAGEMENT

TCSS422: Operating Systems [Spring 2020]

Havora02 School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/19

= Questlons from 5/12
= Class Actlvity: Memory Segmentation
= Tutorial 2 (pthreads, locks, conditions)
= Assignment 2 (based on Ch. 30)
= Comling soon: Qulz 3 - Actlve Reading Chapter 19
= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies
= Chapter 18: Introduction to Paging

May 19,2020

TCS5422: Operating Systems [Spring 2020]
0ol of Engineeri nology, University i - Tacoma

411

FREE SPACE MANAGEMENT

= How should free space be managed, when satisfying
variable-sized requests?

= What strategies can be used to minimize fragmentation?

= What are the time and space overheads of alternate
approaches?

May 19, 2020 114.12

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, University ington - Tacoma

Slides by Wes J. Lloyd

L14.2

TCSS 422 B — Spring 2020
School of Engineering and Technology

FREE SPACE MANAGEMENT

= Management of memory using:

= Fixed-sized units
= Easy: keep a list...
= Memory request - return first free entry
Simple search

= With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

5/19/2020

May 19, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L3

FRAGMENTATION

= Consider a 30-byte heap

30-byte heap: [free [Tused | free |
0 10 20 30

= Request for 15-bytes

addr:0 addr:20
free list: head — 1.1.10 —® 1ep:10 —> NULL

= Free space: 20 bytes

= No available contiguous chunk > return NULL

TCS5422: Operating Systems [Spring 2020]
2 P o BT T T o e A S T e

a4

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Memory is externally fragmented - - Compaction can fix!

= Internal: /ost space - OS can’t compact
= 0S returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for - can’t compact

May 19, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma ‘ L5

ALLOCATION STRATEGY: SPLITTING

= Request for 1 byte of memory: malloc(1)
30-byte heap: [free [Tused | free]
0

10 20 30

addr:0 addr:20

free list: 'head —> 1.,.70 — 1en:10 — > NULL

= 0S locates a free chunk to satisfy request
= Splits chunk into two, returns first chunk

30-byte heap: [free [Used] free |
0 10

20 21 30

addr:0 addr:21

free list: head — ;...10 —® 1cn:9 —> NULL

TCS5422: Operating Systems [Spring 2020]
2k P ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma

L1416

ALLOCATION STRATEGY: COALESCING

= Consider 30-byte heap
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

addr:10 addr:0 addr:20

head —> 1on:10 > Len:10 len:10

— NULL

= Request arrives: malloc(30)
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!
= Coalescing regroups chunks into contiguous chunk

addr:0

head > len:30

— NULL

= Allocation can now proceed
= Coalescing is defragmentation of the free space list

May 19, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L7

MEMORY HEADERS

= Memory API:
free(void *ptr): Does not require a size parameter

= How does the OS know how much memory to free?

= Header block:
= Small descriptive block of memory at start of chunk

:|» The header used by malloc library

ptr —>

The 20 bytes returned to caller

An Allocated Region Plus Header

TCSS422: Operating Systems [Spring 2020]
W2 P ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma

L1418

Slides by Wes J. Lloyd

L14.3

TCSS 422 B — Spring 2020
School of Engineering and Technology

MEMORY HEADERS - 2

5/19/2020

hptr —> . 20
magic: 1234567 s ‘ __header_t {
ptr [Fre————— t size;
t magic;
The 20 bytes } header_t;
returned to caller
. A Simple Header
Specific Contents Of The Header
= Contains size
= Pointers: for faster memory access
= Magic number: integrity checking
May 19, 2020 TCS5422: Operating Systems [Spring 2020] ‘ Lats ‘

School of Engineering and Technology, University of Washington - Tacoma

MEMORY HEADERS - 3

= Size of memory chunk is:
= Header size + user malloc size
= N bytes + sizeof(header)

= Easy to determine address of header

void free(void *ptr) {

header_t *hptr = (void *)ptr - si

£ (header_t);

THE FREE LIST

= Simple free list struct

ct _node_t *next;

} nodet_t;

= Use mmap to create free list
= 4kb heap, 4 byte header, one contiguous free chunk

ns a pointer to a chunk of free space
mmap (NULL, 4096, PROT_READ|PROT_WRITE,
MAP_ANON|MAP_PRIVATE, -1, 0);

node_t *head

head->size = 4096 - sizeof (node_t);
head->next = NULL;
May 19, 2020 TCS5422: Operating Systems [Spring 2020] ‘ 11421 ‘

School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington - Tacoma

TCS$422: Operating Systems [Spring 2020]
2 P o BT T T o e A S T e ‘ 1420 ‘
= Create and initialize free-list “heap”
// p() re s a to a ch free space
node._ 6, PROT_READ|PROT_WRITE,
MAP_ANON|MAP_PRIVATE, -1, 0);
head->size = 40 of (node_t)
head->next = NULL;
= Heap layout:
[virtual address: 16KB]
- header: size field
size: 4088
head —>| next: 0 | header: next field(NULL is 0)
e the rest of the 4KB chunk
May 19, 2020 TCSS422: Operating Systems [Spring 2020] ‘ a2 ‘

FREE LIST: MALLOC() CALL

= Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes

= 4 bytes for size, 4 bytes for magic number
= Split the heap - header goes with each block N

A 4KB Heap With One Free Chunk A Heap : After One Allocation :
head —> =
size: 4088 S'ze'_ = 100
e 5 N o
the rest of First block the 100 bytes now allocated
the 4KB chunk is used
head —>
size: 3980
next: 0
the free 3980 byte chunk
May 19,2020 ‘ TCSS422: Operating Systems [Spring 2020] ‘ a2 ‘

School of Engineering and Technology, University of Washington - Tacoma

FREE LIST: FREE() CALL

= Addresses of chunks

= Start=16384

& bjtes Haader { [virtual address: 16K8]

100 bytes still allocated

+ 108 (end of 15t chunk) [sizer 100 |
+ 108 (end of 2" chunk) Freethis | 60 isics sl alicestii
ree this es still allocate
+ 108 (end of 3" chunk) [block } (but about to be freed)
= 16708 100
: 1234567
100 bytes still allocated
head e
et 0|
The free 3764-byte chunk
Free Space With Three Chunks Allocated
May 19, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

[oo |

Slides by Wes J. Lloyd

L14.4

TCSS 422 B — Spring 2020
School of Engineering and Technology

FREE LIST:

= Free(sptr)

® Our 3 chunks start at 16 KB
(@ 16,384 bytes)

= Free chunk #2 - sptr sptr —>
= Sptr = 16500
= addr - sizeof(node_t)

= Actual start of chunk #2
= 16492

FREE() CHUNK #2

[virtual address: 16KB]

100 bytes still allocated

next: 16708 | ——————

Block (now a free chunk of

Now Free memory)

magic: 1234567

] 100 bytes still allocated

5/19/2020

The free 3764-byte chunk

|

May 19, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

11425

FREE LIST- FREE ALL CHUNKS

Now free remaining chunks: virtual address: 16KE]

= Free(16392) G
= Free(16608) (now free)
o) —
= Walk back 8 bytes for actual next: 16708
start of chunk
(now free)
head —»|—— 100
= External fragmentation ::;W
= Free chunk pointers
out of order (now free)
sizer 3764 |«
= Coalescing of next LEZE 0
pointers is needed The free 3764-byte chunk
[

TCS5422: Operating Systems [Spring 2020]

2 P o BT T T o e A S T e

114.26

= Start with small sized heap
= Request more memory when full
= sbrk(), brk()

GROWING THE HEAP

School of Engineering and Technology, University of Washington - Tacoma

Segmented heap
(not in use) (not in use)
Heap Heap Heap Heap
P l break sbrik(),
break 7 (not in use)
(not in use)
Address Space Address Space Heap
Physical Memory
May 19, 2020 ‘ TCS5422: Operating Systems [Spring 2020] a2

MEMORY ALLOCATION STRATEGIES

= Best fit
=Traverse free list
= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful - fragmented)

= Worst fit
=Traverse free list
= ldentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

TCS5422: Operating Systems [Spring 2020]

2k P ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma

114.28

EXAMPLES

= Allocation request for 15 bytes

head —> 10 —> 30 —> 20

= Result of Best Fit

head —>» 10 ——> 30 —> 5

= Result of Worst Fit

head —> 10 —> 15 ——> 20

—> NULL

—> NULL

—> NULL

May 19, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

114.29

MEMORY ALLOCATION STRATEGIES - 2

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fit
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit
= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

TCS5422: Operating Systems [Spring 2020]

W2 P ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma

11430

Slides by Wes J. Lloyd

L14.5

TCSS 422 B — Spring 2020
School of Engineering and Technology

| |
“Which memory allocation strategy is more likely to"

distribute free chunks closer together which could
help when coalescing the free space list?

Best Fit

Worst Fit

First Fit

None of the above

All of the above

5/19/2020

SEGREGATED LISTS

= 0S provides object caches:

= Collections of pre-initialized ready-to-use objects
= Allocated for popular OS data types/structures

= e.g. for kernel objects such as locks, inodes, etc.
= Managed as segregated free lists

= 0S DESIGN QUESTION:
How much memory should be dedicated for OS object caches?

= |f a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.
= General allocator will reclaim slabs when not used

TCS5422: Operating Systems [Spring 2020]

2 P o BT T T o e A S T e

1432

BUDDY ALLOCATION

= Binary buddy allocation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

= Consider a 7KB request

64KB free space for 7KB request

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1433

May 19, 2020 ‘

BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation
= Allocated fragments, typically too large

= Coalescing is simple
=Two adjacent blocks are promoted up

TCS5422: Operating Systems [Spring 2020]

2k P ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma

[SPEY)

.l computer system manages program memory using
three separate segments for code, stack, and the
heap. The codesize of a program is 1KB but the
minimal segment available is 16KB. This is an
example of:

External fragmentation
Binary buddy allocation
Internal fragmentation

Coalescing

Splitting

Slides by Wes J. Lloyd

| |
"A request is made to store 1 byte. For this scenario,-

which memory allocation strategy will always locate
memory the fastest?

Best fit

Worst fit

Next fit

None of the above

All of the above

L14.6

TCSS 422 B — Spring 2020
School of Engineering and Technology

CHAPTER 18:
INTRODUCTION TO

PAGING

70 TCSS422: Operating Systems [Spring 2020]
Y19, School of Engineering and Technology, University of Washington -

5/19/2020

OBJECTIVES - 5/19

= Questlons from 5/12
= Class Actlvity: Memory Segmentation
= Tutorial 2 (pthreads, locks, conditions)
= Assignment 2 (based on Ch. 30)
= Coming soon: Qulz 3 - Actlve Reading Chapter 19
= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies
| = Chapter 18: Introduction to Paging |

‘ May 19, 2020

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, University i - Tacoma

11438

PAGING

= Split up address space of process into fixed sized pieces
called pages

= Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

= Physical memory is split up into an array of fixed-size slots
called page frames.

= Each process has a page table which translates virtual
addresses to physical addresses

May 19, 2020 TCS8422; Operating Systems [Spring 2020])
hool of nology, y Tacoma

11439

ADVANTAGES OF PAGING

= Flexibility
= Abstracts the process address space into pages

= No need to track direction of HEAP / STACK growth
Just add more pages...

= No need to store unused space
As with segments...

= Simplicity
= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

TCSS422: Operating Systems [Spring 2020]
2k P Sehosl o Ergineering andTechnolosyjUniversity ot Washi Tecoma

L14.40

Page Table:
VPO - PF3
VP1 > PF7
VP2 > PF5
VP3 > PF2

PAGING: EXAMPLE

= Consider a 128 byte address space
with 16-byte pages

page frame 0 of

reserved for OS| opyycical memory

= Consider a 64-byte program (unused)

page frame 1
32
address space

page 3 of AS | page frame 2

page 0 of AS | page frame 3

0 64

(page 0 of (unused) | page frame 4
16 the address space) 50

(page 1) page 2 of AS | page frame 5
32 %

(page 2) (unused) page frame 6
48 2
@ o= page 1 of AS | page frame 7

128
64-Byte Address Space Placed In Physical Memory

A Simple 64-byte Address Space

May 19, 2020 TCS5422; Operating Systems [Spring 2020]
hool of

chnology, ity i Tacoma L

PAGING: ADDRESS TRANSLATION

= PAGE: Has two address components
=VPN: Virtual Page Number
= Offset: Offset within a Page

VPN offset
1

o o e o e
= Example:

Page Size: 16-bytes, Address Space: 64-bytes

VPN offset
— 1

BEOHER

Slides by Wes J. Lloyd

May 19, 2020

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, University of Washi Tacoma

1442

L14.7

TCSS 422 B — Spring 2020
School of Engineering and Technology

EXAMPLE:
PAGING ADDRESS TRANSLATION

= Consider a 64-byte program address space (4 pages)
= Stored in 128-byte physical memory (8 frames)

. VPN ffset
= Offset is preserved e
P G—

= VPN is looked up rams [0 [2 o]a o]
Vo

5/19/2020

Page Table:
VPO - PF3
Address

VP1-> PF7 Translation
VP2 > PF5
VP3 > PF2 Vol

Physical

Eiysical ‘1‘1‘1‘0‘1‘0‘1

L J L
PFN offset
TCS5422: Operating Systems [Spring 2020]

v 12020 AT o T B S oy ATt A T T L1443

PAGING DESIGN QUESTIONS

= (1) Where are page tables stored?

= (2) What are the typical contents of the page table?

= (3) How big are page tables?

= (4) Does paging make the system too slow?

TCS5422: Operating Systems [Spring 2020]

2 P o BT T T o e A S T e

L1444

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN (22° pages)
= 12 bits for the page offset (212 unique bytes in a page)

= Page tables for each process are stored in RAM
= Support potential storage of 220 translations
= 1,048,576 pages per process
= Each page has a page table entry size of 4 bytes

TCS5422: Operating Systems [Spring 2020]

el e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome

L14.45

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

= Each slot dereferences a VPN VPN,
VPN
= Provides physical frame number :
VPN,

= Each slot requires 4 bytes (32 bits)

= 20 for the PFN on a 4GB system with 4KB pages
= 12 for the offset which is preserved

= (note we have no status bits, so this is VPN 048576

unrealistically small)

= How much memory to store page table for 1 process?
= 4,194,304 bytes (or 4MB) to index one process

TCS5422: Operating Systems [Spring 2020]

2k P ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma

L14.46

NOW FOR AN ENTIRE OS

= If 4 MB is required to store one process

= Consider how much memory is required for an entire 0S?
= With for example 100 processes...

= Page table memory requirement is now 4MB x 100 = 400MB

= |f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

= |s thls efflclent?

TCS5422: Operating Systems [Spring 2020]

L2 LY Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

L14.47

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

= Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table - simple array

= Page-table entry
= 32 bits for capturing state

510N BT XSXNBRANVIBT6514131211109 876543210
| | EEEREEEEE

An x86 Page Table Entry(PTE)

TCS5422: Operating Systems [Spring 2020]

W2 P ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma

L14.48

Slides by Wes J. Lloyd

L14.8

TCSS 422 B — Spring 2020
School of Engineering and Technology

PAGE TABLE ENTRY

5/19/2020

PAGE TABLE ENTRY - 2

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

310VVBTXBAB2A0191817161514131211109 8 7 654 3

210
MRBAEA
| | EERRSEEER

An x86 Page Table Entry(PTE)

May 19, 2020 ‘ TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L14.49

= Common flags:

= Valld Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present Blt: Indicating whether this page is in physical
memory or on disk(swapped out)

= DIrty BIt: Indicating whether the page has been modified since
it was brought into memory

= Reference Bit(Accessed BIt): Indicating that a page has been

accessed

TCS5422: Operating Systems [Spring 2020]

2 P o BT T T o e A S T e

=

(3) HOW BIG ARE PAGE TABLES?

(4) DOES PAGING MAKE
THE SYSTEM TOO SLOW?

= Page tables are too big to store on the CPU

= Page tables are stored using physical memory

= Paging supports efficiently storing a sparsely populated
address space

= Reduced memory requirement
Compared to base and bounds, and segments

TCS5422: Operating Systems [Spring 2020]

el e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome

11451

= Translation

= Issue #1: Starting location of the page table is
needed

=HW Support: Page-table base register Page Table:
stores active process VPO > PF3
Facilitates translation VP12 PR

. VP2 - PF5

Stored in RAM > VP3 > PF2

= Issue #2: Each memory address translation for paging
requires an extra memory reference

=HW Support: TLBs (Chapter 19)

TCS5422: Operating Systems [Spring 2020]

2k P ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma

Las2

PAGING MEMORY ACCESS

1 // Extract the VPN from the virtual address
2 VPN = (virtualAddress & VPN_MASK) >> SHIFT
3
4. // Form the address of the page-table entry (PTE)
5. PTEAddr = PTBR + (VPN * sizeof(PTE))
6.
7. // Fetch the PTE
8. PTE = AccessMemory(PTEAddr)
9.
10. // check if process can access the page
11. if (PTE.valid == False)
12. RaiseException (SEGMENTATION_FAULT)
fIk else if (CanAccess(PTE.ProtectBits) == False)
14. RaiseException (PROTECTION_FAULT)
i15: else
16. // Access is ok: form physical address and fetch it
17. offset = virtualAddress & OFFSET_MASK
18. Physaddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)
(72 Sihool o eginetrig i ethmeragy ety of Washiglon Tacoma 145

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

int array[1000];
for (i = 0; i < 10
array(il

= Assembly equivalent:

0x1024 movl $0x0, (%edi, $eax, 4)
0x1028 incl $eax

0x102¢c cmpl $0x03e8, veax
0x1030 jne 0x1024

TCS5422: Operating Systems [Spring 2020]

W2 P ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma

a4

Slides by Wes J. Lloyd

L14.9

TCSS 422 B — Spring 2020
School of Engineering and Technology

5/19/2020

FOR THE FIRST 5 LOOP ITERATIONS
. Page Table([39]

® Locations: 1224
= Page table o o o o o un g
= Array Page Table[1] 12 3§
= Code wn B

1024
= 50 accesses 2 40100 " R o
for 5 loop % 40050 . 2 %
. A 2 - n [} - 2

iterations 40000 7232
g 1124 % E E % é F 4196 g
I o 446 3
Sl mmNiy wnly gul, gul, gul O

o 10 20 30 40 50
Memory Access
May 19, 2020 iSRS e 5"““"}:([::"2:?;“2“! % nton-Tacoma uass

PAGING SYSTEM EXAMPLE

= Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:

= For the page table entry, how many bits are required for the
VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

= How much space does this page table require?
Page Table Entries x Number of pages

= How many page tables (for user processes)
would fill the entire 4GB of memory?

May 19, 2020

TCS5422: Operating Systems [Spring 2020] L1456
e f .

School o Technology, ity i Tacoma

QUESTIONS

Slides by Wes J. Lloyd

WILL RETURN IN A FEW
MINUTES

L14.10

