TCSS 422 B — Spring 2020
School of Engineering and Technology

Memory API,
Address Translation,
Segmentation

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

LEy 52D School of Engineering and Technology, University of Washington [l Tacoma

TCSS 422: OPERATING SYSTEMS

5/14/2020

OBJECTIVES - 5/14

| = Questlons from 5/12 |
= Assignment 2 (based on Ch. 30)
= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization
= Chapter 14: Memory API
= Common memory errors
= Chapter 15: Address translation
= Base and bounds
= HW and OS Support
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

May 14,2020

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, University i - Tacoma

132

MATERIAL / PACE

today’s class (25 respondents):

= Average - 6.54 ({ from 6.87)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.86 (T from 5.81)

= Please classify your perspective on material covered in

= 1-mostly review, 5-equal new/review, 10-mostly new

May 14, 2020 TCS5422; Operating Systems [Spring 2020]
hool of

nology, ity ington - Tacoma

133

FEEDBACK FROM 5/12

May 14, 2020 TBSMZ; Operating Systems [Spring 2020]

School of Technology, University of Washi - Tacoma

[SEX)

OBJECTIVES - 5/14

= Questlons from 5/12
| = Assignment 2 (based on Ch. 30) |
= Chapter 13: Introduction to memory virtuallzation
= The address space
= Goals of 0S memory virtualization
= Chapter 14: Memory API
= Common memory errors
= Chapter 15: Address translation
= Base and bounds
= HW and OS Support
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

May 14, 2020 TCS5422; Operating Systems [Spring 2020]
hool of

chnology, ity ington - Tacoma

uss

Slides by Wes J. Lloyd

CHAPTER 13:

ADDRESS SPACES

TCSS422: Operating Systems [Spring 2020]

vy School of Engineering and Technology, University of Washington -

L13.1

TCSS 422 B - Spring 2020 5/14/2020

School of Engineering and Technology

OBJECTIVES - 5/14

= Questlons from 5/12
= Assignment 2 (based on Ch. 30)

= Chapter 13: Introduction to memory virtuallzation
= The address space
= Goals of 0S memory virtualization

= Chapter 14: Memory API
= Common memory errors
= Chapter 15: Address translation
= Base and bounds
= HW and OS Support
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

TCS5422: Operating Systems [Spring 2020]
el AT o T B s oy ATty A T = TRy us7

MEMORY VIRTUALIZATION

= What is memory virtualization?

= This is not “virtual” memory,
= Classic use of disk space as additional RAM

=When available RAM was low

= Less common recently

TCS5422: Operating Systems [Spring 2020] ‘ 138

W28, P o BT T T o e A S T e

MEMORY VIRTUALIZATION - 2

= Presentation of system memory to each process

= Appears as if each process can access the entire
machine’s address space

= Each process’s view of memory is isolated from others
= Everyone has their own sandbox
Process A

Process B Process C

7 " &Bs 7
TCS5422: Operating Systems [Spring 2020]
el 22, ‘ e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome us9

MOTIVATION FOR
MEMORY VIRTUALIZATION

= Easier to program
= Programs don’t need to understand special memory models

= Abstraction enables sophisticated approaches to manage
and share memory among processes

= |solation
= From other processes: easier to code

= Protection
= From other processes
= From programmer error (segmentation fault)

TCS5422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 14, 2020 113.10 ‘

EARLY MEMORY MANAGEMENT

= Load one process at a time into memory
0KB

= Poor memory utilization
= Little abstraction

Operating System
(code, data, etc.)

64KB

Current
rogram
(code, data, etc)

Physical Memory

TCS5422: Operating Systems [Spring 2020]

avLizZhz0 School of Engineering and Technology, University of Washington - Tacoma e

MULTIPROGRAMMING
WITH SHARED MEMORY

= Later machines supported running multiple okB

Operating System
processes oace | code,data etc)
= Swap out processes during I/0 waits to Fraa
increase system utilization and efficiency 128, prona C
= Swap entire memory of a process to disk 10 | ods dam ete)
for context switch Pk 8
. 256KB e
= Too slow, especially for large processes e
320KB b A
. rocess
= Solution> (code, data, etc)
. 384KB
= Leave processes in memory Froe
448KB
= Need to protect from errant memory o .

accesses in a multiprocessing environment Physical Memory

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma us.2

May 14,2020

Slides by Wes J. Lloyd

L13.2

TCSS 422 B — Spring 2020
School of Engineering and Technology

5/14/2020

ADDRESS SPACE

= Easy-to-use abstraction of physical

=Example: 16KB address space

memory for a process Program Code
1KB
Heap
. 2KB
= Main elements: l
=Program code o
=Stack
: T
Heap 15KB
Stack
16KB
Address Space

TCS5422: Operating Systems [Spring 2020]

el AT o T B S oy ATt A T T

113.13

ADDRESS SPACE - 2

= Code
= Program code L Program Code
K8
Heap
= Stack 2B
= Program counter (PC) l
= Local variables
fre
= Parameter variables -
= Return values (for functions) T
15KB
= Heap Stack
16KB

= Dynamic storage Address Space

= Malloc() new()

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 34

May 14,2020

ADDRESS SPACE - 3

= Program code

. - 0KB
Static size Program Code
1KB
Heap
= Heap and stack 2B
= Dynamic size l
= Grow and shrink during program execution ‘
= Placed at opposite ends -
= Addresses are virtual T
15k8
= They must be physically mapped by the 0S Stack
16k8
Address Space

TCS5422: Operating Systems [Spring 2020]

el 22, e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome

113.15

VIRTUAL ADDRESSING

= Every address is virtual
= 0S translates virtual to physical addresses

#include <stdio.h>
#include <stdlib.h>

int main(int argec, char *argv([]){

printf("location of code : %p\n", d *) main);
printf("location of heap : %p\n", (void *) malloc(1));
int x = 3;

printf("location of stack : $p\n", (void *) &x);
return x;

*EXAMPLE: virtual.c

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma uste

May 14,2020

Address Space

= Qutput from 64-bit Linux: i Code
- 0x401000 o)
location of code: 0x400686 Data
location of heap: 0x1129420 0xcf2000 Haap;

location of stack: 0x7ffe040d77e4 ot i
heap
(free)
stack
0x7fff9ca28000 Stack

f9ca49000
TCSS422: Of ing Sy [Spring 2020]
avLizZhz0 School of s:;::e"r?ngv::m:cnz?\fgw Uiversity/cfWeshingtonETecome ‘ s ”—‘

GOALS OF

0S MEMORY VIRTUALIZATION

= Transparency
= Memory shouldn’t appear virtualized to the program

= 0S multiplexes memory among different jobs behind the
scenes

= Protectlon
= |solation among processes
= 0S itself must be isolated

=One program should not be able to affect another
(or the 0S)

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L8

May 14,2020

Slides by Wes J. Lloyd

L13.3

TCSS 422 B — Spring 2020
School of Engineering and Technology

= Efficiency
=Time
= Performance: virtualization must be fast

= Space
= Virtualization must not waste space
= Consider data structures for organizing memory

= Hardware support for virtual address translation:
TLB: Translation Lookaside Buffer

= Goals considered when evaluating memory
virtualization schemes

May 14, 2020 TCS5422; Operating Systems [Spring 2020]
hool of

nology, ity ington - Tacoma

113.19

5/14/2020

Which of the following DOES NOT challenge the
efficiency of an 0S memory virtualization scheme?

Virtual address translation

Data structures used to organize
memory

Simultaneous sharing (e.g. multiplexing)
of memory among multiple programs

Hardware support - translation
lookaside buffer

None of the above

CHAPTER 14: THE

MEMORY API

TCSS422: Operating Systems [Spring 2020]

Lk 0, 200 School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/14

= Questlons from 5/12
= Assignment 2 (based on Ch. 30)
= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization
= Chapter 14: Memory API
= Common memory errors
= Chapter 15: Address translation
= Base and bounds
= HW and OS Support
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

TCSS422: Operating Systems [Spring 2020]
W28, P Sehoslo Ergineerins andTechnokosyjUnvest i = TP

1322

MALLOC

#include <stdlib.h>

void* malloc(si
= Allocates memory on the heap
= size_t unsigned integer (must be +)

= size size of memory allocation in bytes

_t size)

= Returns
= SUCCESS: A void * to a memory address
= FAIL: NULL

= sizeof() often used to ask the system how large a given
datatype or struct is

May 14, 2020 TCS5422; Operating Systems [Spring 2020]
hool of

nology, ity ington - Tacoma

11323

Slides by Wes J. Lloyd

SIZEOF()

= Not safe to assume int *x = malloc(10 * sizeof (int));
N . printf(“sd\n”, sizeof(x));
data type sizes using
different compilers, \ 4
systems
= Dynamic array of 10 iny int x[10]7
printf(“$d\n”, sizeof (x)):
= Static array of 10 ints [
TCSS422: Operating Systems [Spring 2020]
W28, P Sehool of Engineering and Technolosy/University ot Washi Tacoma U324

L13.4

TCSS 422 B — Spring 2020
School of Engineering and Technology

5/14/2020

FREE()

#include <stdlib.h>

void free(void* ptr)

= Free memory allocated with malloc()
= Provide: (void *) ptr to malloc’d memory

= Returns: nothing

TCS5422: Operating Systems [Spring 2020]
hool of Engineeri i

Technology, ity i Tacoma L1325

May 14,2020

#include<stdio.h>

What will this code do?

int * set_magic_number_a()

int a =53247;
return &a;

void set_magic_number_b()

int b = 11111;

int mainQ)

int * X = NULL;

x = set_magic_number_a();

printf("The magic number is=%d\n“,*x);
set_magic_number_bQ);

printf(“The magic number is=%d\n“,*x);
return 0;

#include<stdio.h>

What will this code do?

int * set_magic_number_a()

int a =53247;
return &a; Output:
} $./pointer_error
)) The magic number is=53247
void set_magic_number_b() [RPN R R

int b = 11111;
We have not changed *x but

int main() the value has changed!!
int * x = NULL; Why?

x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b(Q);

printf("The magic number is=%d\n“,*x);
return 0;

} 27

DANGLING POINTER (1/2)

= Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

= The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

TCS5422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 14, 2020 113.28

DANGLING POINTER (2/2)

mFortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int¥
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

®This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

11329

May 14, 2020 TCS5422; Operating Systems [Spring 2020]
hool of

Technology, ity i Tacoma

CALLOC()

#include <stdlib.h>

void *calloc(size_t num, size t size)

= Allocate “C”lear memory on the heap

= Calloc wipes memory in advance of use...

" size_t num : number of blocks to allocate
=" size_t size:size of each block(in bytes)

= Calloc() prevents...

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=@@F

TCS5422: Operating Systems [Spring 2020]

School of Technology, University of Washi Tacoma 1330

May 14,2020

Slides by Wes J. Lloyd

L13.5

TCSS 422 B — Spring 2020
School of Engineering and Technology

5/14/2020

REALLOC()

#include <stdlib.h>

void *realloc(void *ptr, size t size)

= Resize an existing memory allocation

= Returned pointer may be same address, or a new address
= New if memory allocation must move

" void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc

" size_t size: New size for the memory block(in bytes)

= EXAMPLE: realloc.c
= EXAMPLE: nom.c

May 14,2020 TCSi:lzg;Ope_raling Systems [Spring 2020]

nology, ity ington - Tacoma

11331

DOUBLE FREE

int *x = (int *)mal

free(x);

/ free

loc(sizeof (int)); //

free(x); // free rej

allocated ‘

= Can’t deallocate twice
= Second call core dumps

2KB

2KB

[allocated i freed 1
He. l Heap | |
free (x) i free(x)
Undefined
(free) — (free) —
Error
T Stack T Stack
i 2B R g L 2KBanvalid) [)
Address Space Address Space
TCSS422: Operating Systems [Spring 2020]
avEs 2020 e BT T T T g ey f T 332

SYSTEM CALLS

= brk(), sbrk()

= Used to change data segment size (the end of the heap)
= Don’t use these

= Mmap(), munmap()

= Can be used to create an extra independent “heap” of memory
for a user program

= See man page

May 14, 2020 11333

TCS5422: Operating Systems [Spring 2020]
School of Engineeri nology, University i Tacoma

|
*Which of the following is the most performant (e.g.
fast) memory API?

calloc()
malloc()

realloc()

None of
the above

] . L1
4 N

TCSS 422 WILL RETURN |.
AT ~2:40PM k&

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington -

May 14, 2020

Slides by Wes J. Lloyd

CHAPTER 15: ADDRESS

TRANSLATION

TCSS422: Operating Systems [Spring 2020]

Mo School of Engineering and Technology, University of Washington -

L13.6

TCSS 422 B — Spring 2020
School of Engineering and Technology

OBJECTIVES - 5/14

= Questlons from 5/12
= Assignment 2 (based on Ch. 30)
= Chapter 13: Introduction to memory virtuallzation
= The address space
= Goals of 0S memory virtualization
= Chapter 14: Memory API
= Common memory errors
= Chapter 15: Address translation
= Base and bounds
= HW and OS Support
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

5/14/2020

TCS5422: Operating Systems [Spring 2020]

el AT o T B s oy ATty A T = TRy

11337

ADDRESS TRANSLATION

Virtual mapping
= 64KB oke oKB
Address space Program Code Operating System
example —
Heap
. (not in use)
= Translation:
ety ! o
virtual to heap v &
. (allocated o
physical (free) but not in use) 2
t 4
. ey Stack K]
T (not in use)
Stack
kel 1 Physical M
Address Space yesemory
TCSS422: Operating Systems [Spring 2020]
W28, P o BT T T o e A S T e 1338 ‘

BASE AND BOUNDS

= Dynamic relocation
= Two registers base & bounds: on the CPU
= 0S places program in memory

= Sets base register

[physical address = virtual address + base

= Bounds register
= Stores size of program address space (16KB)
= 0S verifies that every address:

[0 < virtual address < bounds J

May 14, 2020 ‘ TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1339

INSTRUCTION EXAMPLE

128 : movl 0x0(%ebx), %eax OKB 128t omt (v e
= Base = 32768 :i: rogam ot
= Bounds =16384 e e
= Fetch instruction at 128 (virt addr) 1 48

= Phy addr = virt addr + base reg
= 32896 = 128 + 32768 (base) >
= Execute instruction o
= Load from address (var x is @ 15kb=15360)
= 48128 = 15360 + 32768 (base) -- found x... stack
= Bounds register: terminate process if
= ACCESS VIOLATION: Virtual address > bounds reg 4K
15KB |s000 INtX
[physical address = virtual address + base 16k8 Stack
[wmaam St of Eegnemmog nt Tethnaigy nhersiyofWashingionTocoma ado

MEMORY MANAGEMENT UNIT

= MMU
= Portion of the CPU dedicated to address translation
= Contains base & bounds registers

= Base & Bounds Example:
= Consider address translation
= 4 KB (4096 bytes) address space, loaded at 16 KB physical location

Virtual Address Physlical Address

0 16384
1024 17408
3000 19384
FAULT 4400 20784 (out of bounds)

TCS5422: Operating Systems [Spring 2020]

el 220, Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

u3.41

Slides by Wes J. Lloyd

DYNAMIC RELOCATION OF PROGRAMS

= Hardware requirements:

Requirements | HWsuwpot ______|

Privileged mode CPU modes: kernel, user
Base / bounds registers

Translate virtual addr; check if in
bounds

Registers to support address translation
Translation circuitry, check limits

Privileged instruction(s) to Instructions for modifying base/bound
update base / bounds regs registers

Privileged instruction(s)
to register exception handlers

Ability to raise exceptions

Set code pointers to OS code to handle faults

For out-of-bounds memory access, or
attempts to access privileged instr.

May 14, 2020 TCS5422: Operating Systems [Spring 2020]

o
School of Engineering and Technology, University of Washington - Tacoma 34z

L13.7

TCSS 422 B - Spring 2020

School of Engineering and Technology

5/14/2020

0S SUPPORT FOR MEMORY

VIRTUALIZATION

= For base and bounds OS support required

= When process starts running
Allocate address space in physical memory

=When a process is terminated
Reclaiming memory for use

= When context switch occurs
Saving and storing the base-bounds pair

= Exception handlers
Function pointers set at OS boot time

TCS5422: Operating Systems [Spring 2020]
el AT o T B S oy ATt A T T

113.43

0S: WHEN PROCESS STARTS RUNNING

= 0S searches for free space for new process
= Free list: data structure that tracks available memory slots

0kB
Operating System
The OS lookup the free list
16K8B
Free list
(not in use)
16K8 3268 s
Heap
i (allocated but not in use)|
48K8 48K8B Stack
(not in use)
64K8

Physical Memory

TCS5422: Operating Systems [Spring 2020]

W28, P o BT T T o e A S T e U344

= 0S places memory back on the free list
0KB Free list 0KB
l Operating System Operating System
16K8 16K8
16K8 _ Be .
(not in use) (not in use)
L 328 L 3268
48K8 Process A 32KB (not in use)
456 l 438
(not in use) (not in use)
64KB 48K8 64KB
Physical Memory Physical Memory
TCS5422: Operating Systems [Spring 2020]
el 22, e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome L1345

0S: WHEN CONTEXT SWITCH OCCURS

= 0S must save base and bounds registers
= Saved to the Process Control Block PCB (task_struct in Linux)

Process A PCB

0kB Context Switching k8
Operating System — Operating System
1668 168
(not in use) base (not in use) —
3268 | 32KB 328] 48Ke
Procesei. bounds Process A bounds
Currently Running
48K8 458 48K8 e
Process B Lioceseit
@i e
6aK8 648

Physical Memory Physical Memory

TCS5422: Operating Systems [Spring 2020]

B
School of Engineering and Technology, University of Washington - Tacoma usde

May 14,2020

DYNAMIC RELOCATION

= 0S can move process data when not running

. 0S deschedules process from scheduler

0S copies address space from current to new location
. 0OS updates PCB (base and bounds registers)

. OS reschedules process

AW N PR

= When process runs new base register is restored to CPU

= Process doesn’t know it was even moved!

TCS5422: Operating Systems [Spring 2020]
el 220, Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

13.47

.'Consider a 64KB computer the loads a program. The..
BASE register is set to 32768, and the BOUNDS
register is set to 4096. What is the physical memory
address translation for a virtual address of 6000 ?

34768
38768
32769
36864
Out of bounds
" : .

Slides by Wes J. Lloyd

L13.8

TCSS 422 B — Spring 2020
School of Engineering and Technology

5/14/2020

CHAPTER 16:

SEGMENTATION

TCSS422: Operating Systems [Spring 2020]

LAy 100, 20D School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/14

= Questlons from 5/12
= Assignment 2 (based on Ch. 30)
= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization
= Chapter 14: Memory API
= Common memory errors
= Chapter 15: Address translation
= Base and bounds
= HW and OS Support
| = Chapter 16: Segmentation |
= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, Universi ington - Tacoma

May 14, 2020 113,50

BASE AND BOUNDS INEFFICIENCIES

0KB

= Address space KB | Program Code
N . £ 2KB
= Contains significant unused memory 3K8
. 4KB
= |s relatively large i -
= Preallocates space to handle stack/heap growth 6ke l

= Large address spaces

= Hard to fit in memory (free)
= How can these issues be addressed? T
14KB
158 Stack
16KB
May 14, 2020 E D “:’E{f;’m! %) Tacoma uss1

MULTIPLE SEGMENTS

= Memory segmentation

= Manage the address space as (3) separate segments
= Each is a contiguous address space
= Provides logically separate segments for: code, stack, heap

= Each segment can placed separately

= Track base and bounds for each segment (registers)

TCS5422: Operating Systems [Spring 2020] 352
e f .

School o Technology, i i Tacoma

May 14,2020

SEGMENTS IN MEMORY

= Consider 3 segments:

Operating System
16KB - l
(not in use)
1 Segment Base Size
Stack Code 32K 2K
(not in use)
32KB o Heap 34K 2K
Heap Stack 28K 2K
BN (not in use)
64K

B
Physical Memory

11353

May 14, 2020 TCS5422; Operating Systems [Spring 2020]
hool of

nology, ity ington - Tacoma

ADDRESS TRANSLATION: CODE SEGMENT

[physical address = of fset + base J

= Code segment - physically starts at 32KB (base)
= Starts at “0” in virtual address space

Segment __Base

or 32868

Is virtual address within 2KB Fitee
address space? i

(not in use)

Virtual Address Space Physical Address Space

TCSS422: Operating Systems [Spring 2020]
L J

School o Technology, ity i Tacoma L1354

May 14, 2020

Slides by Wes J. Lloyd

L13.9

TCSS 422 B — Spring 2020
School of Engineering and Technology

ADDRESS TRANSLATION: HEAP

irtual address + base is not the correct physical address

= Heap starts at virtual address 4096

= The data is at 4200

= Offset= 4200 - 4096 = 104 (virt addr - virt heap start)
Physical address = 104 + 34816 (offset + heap base)

Segment Base size

Hewp s
(not in use)
3208
Code
. e [1044 34K or 31920
pedpn — is the desired
H sical address
68 l 36k | Physieal add J

(not in use)
Address Space

Physical Memory

5/14/2020

TCS5422: Operating Systems [Spring 2020]

el AT o T B S oy ATt A T T

11355

SEGMENTATION FAULT

= Access beyond the address space

= Heap starts at virtual address: 4096
= Data pointer is to 7KB (7168)

= |s data pointer valid?

= Heap starts at 4096 + 2 KB seg size = 6144

= Offset= 7168 > 4096 + 2048 (6144) B R
6KB
s
8KB

Address Space

TCS5422: Operating Systems [Spring 2020]

W28, P o BT T T o e A S T e

11356

SEGMENT REGISTERS

= Used to dereference memory during translation

13 1211 10. 9 8 7 € 5 4 3 2 1 0

L A J

T T
Segment Offset

= First two bits identify segment type
= Remaining bits identify memory offset

= Example: virtual heap address 4200 (01000001101000)

School of Engineering and Technology, University of Washington - Tacoma

13 12 11 10 9 8 7 6 5 4 3 2 1 0 Segment bits
| of1|o|ojojoflof1|l21]|0o|2|0|0]|0 | Code 00
Heap 01
L T 1 T J Stack 10
Segment Offset - 11
‘ May 14, 2020 ‘ TCS5422: Operating Systems [Spring 2020] L1357

SEGMENTATION DEREFERENCE

/ get top 2 bits of 14-bit VA
Segment = (VirtualAddress & SEG_MASK) >> SEG_SHIFT
// now get offset
Offset = VirtualAddress & OFFSET MASK
if (0ffset >= Bounds[Segment])

RaiseException (PROTECTION FAULT)

PhysAddr = Base [Segment] + Offset
Register = AccessMemory (PhysAddr)

R

= VIRTUAL ADDRESS = 01000001101000

= SEG_MASK = 0x3000 (11000000000000)
= SEG_SHIFT = 01 > heap
= OFFSET_MASK = OxFFF (00111111111111)
= OFFSET = 000001101000 = 104
= OFFSET < BOUNDS : 104 < 2048

(on heap)

(mask gives us segment code)

(isolates segment offset)

TCS5422: Operating Systems [Spring 2020]

W28, P ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma

11358

STACK SEGMENT

= Stack grows backwards (FILO)
= Requires hardware support:
= Direction bit: tracks direction segment grows

(not in use)
26KB T i i ive-(
Segment Register(with Negative-Growth Support)
Stack
28KB Segment Base Size Grows Positive?
(not in use) Soda 528 25 2
Heap 34K 2K 1
Stack 28K 2K 0

Physical Memory

TCS5422: Operating Systems [Spring 2020]

el 220, Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

11359

SHARED CODE SEGMENTS

= Code sharing: enabled with HW support

= Supports storing shared libraries in memory only once
= DLL: dynamic linked library

® .so (linux): shraed object in Linux (under /usr/lib)

= Many programs can access them

= Protection bits: track permissions to segment

Segment Register Values(with Protection)

Segment Base Size Grows Positive? Protection

Code 32K 2K Read-Execute
Heap 34K 2K L Read-Write
Stack 28K 2K 0 Read-Write
May 14, 2020 TCS5422: Operating Systems [Spring 2020] 360

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L13.10

TCSS 422 B — Spring 2020
School of Engineering and Technology

5/14/2020

.'Consider a program with 2KB of code, a 1 KB stack,'.
and a 2 KB heap. This program runs on a 64 KB
computer that manages memory with 4 kb
segments. If the computer is empty and segments
were allocated as: code, stack, heap, how large can
the heap grow to?

32KB
56 KB
24 KB
4KB
0 KB

SEGMENTATION GRANULARITY

m Coarse-grained

= Manage memory as large purpose
based segments:

=Code segment
=Heap segment
=Stack segment

TCS5422: Operating Systems [Spring 2020]

school of Technology, i i F— use2

May 14,2020

SEGMENTATION GRANULARITY - 2

= Fine-grained
= Manage memory as list of segments

= Code, heap, stack segments composed
of multiple smaller segments

= Segment table
= On early systems

= Stored in memory
= Tracked large number of segments

MEMORY FRAGMENTATION

= Consider how much free space? Not compacted
= We’ll say about 24 KB KB
8KB | Operating System
= Request arrives to allocate a 20 KB heap 16KB
segment (not in use)
24KB
Allocated
= Can we fulfil the request for 20 KB of 3KB e
contiguous memory? 40K Alloeated
#8K5) (not in use)
56KB
Allocated
64KB

TCS5422: Operating Systems [Spring 2020]

School of Technology, ity i Tacoma L1364

May 14,2020

TCSS422: Operating Systems [Spring 2020]
May 14, 2020 e o Technolog iUnNers Y " TET L1363
= Supports rearranging memory Compacted
0KB
= Can we fulfil the request for 20 KB of 8KB | Operating System

contiguous memory?

16KB

= Drawback: Compaction is slow S4KE
= Rearranging memory is time consuming Allocated
= 64KB is fast 2260
= 4GB+ ... slow 40K8
= Algorithms: 4K
. . (not in use)
= Best fit: keep list of free spaces, allocate the 56KB
most snug segment for the request
= Others: worst fit, first fit... (in future chapters) 6aKB,
May 14, 2020 S e [f‘:"'c:f;'z“! % : acoma 365

CHAPTER 17: FREE

SPACE MANAGEMENT

TCSS422: Operating Systems [Spring 2020]

vy School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

L13.11

TCSS 422 B — Spring 2020
School of Engineering and Technology

OBJECTIVES - 5/14

= Questlons from 5/12
= Assignment 2 (based on Ch. 30)
= Chapter 13: Introduction to memory virtuallzation
= The address space
= Goals of 0S memory virtualization
= Chapter 14: Memory API
= Common memory errors
= Chapter 15: Address translation
= Base and bounds
= HW and OS Support
= Chapter 16: Segmentation
= Chapter 17: Free Space Management
= Fragmentation, Splitting, coalescing
= The Free List
= Memory Allocation Strategies

5/14/2020

TCS5422: Operating Systems [Spring 2020]

el AT o T B s oy ATty A T = TRy

L1367

FREE SPACE MANAGEMENT

= How should free space be managed, when satisfying
variable-sized requests?

= What strategies can be used to minimize fragmentation?

= What are the time and space overheads of alternate
approaches?

TCS5422: Operating Systems [Spring 2020]
W28, P e T T T o ey A S T = TPy

L1368

FREE SPACE MANAGEMENT

= Management of memory using

= Only fixed-sized units
= Easy: keep a list
= Memory request - return first free entry
Simple search

= With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

TCS5422: Operating Systems [Spring 2020]

el 22, e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome

113,69

FRAGMENTATION

= Consider a 30-byte heap
30-byte heap: [free [Tused | free |
0

10 20 30

= Request for 15-bytes

addr:0 addr:20

free list: head —» 1., .19 eni10

— NULL

= Free space: 20 bytes

= No available contiguous chunk > return NULL

May 14, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 370

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Internal: lost space - OS can’t compact
= 0S returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk

= Memory is lost, and unaccounted for - can’t compact

= Memory is externally fragmented - - Compaction can fix!

TCS5422: Operating Systems [Spring 2020]

el 220, Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

‘ 1371

ALLOCATION STRATEGY: SPLITTING

= Request for 1 byte of memory: malloc(1)
30-byte heap: [free [Tused | free]
0

10 20 30

addr:0 addr:20

free list: _head —> ;.,.19 o0

— NULL

= 0S locates a free chunk to satisfy request
= Splits chunk into two, returns first chunk
30-byte heap: [free [used | free |
0 10

20 21 30

- addr:0 addr:21
free list: head — ;...90 —® 1cn.9 —> NULL

TCSS422: Operating Systems [Spring 2020]
W28, P ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma

1372

Slides by Wes J. Lloyd

L13.12

TCSS 422 B — Spring 2020
School of Engineering and Technology

= Consider 30-byte heap

addr:10 addr:0 addr:20

head —> 1on:10 > Len:10 > ten:10

= Request arrives: malloc(30)

= Coalescing regroups chunks into contiguous chunk

addr:0

head > len:30

— NULL

= Allocation can now proceed
= Coalescing is defragmentation of the free space list

ALLOCATION STRATEGY: COALESCING

— NULL

= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

5/14/2020

TCS5422: Operating Systems [Spring 2020]

el AT o T B S oy ATt A T T

11373

MEMORY HEADERS

= free(void *ptr): Does not require a size parameter

= How does the OS know how much memory to free?

= Header block
=Small descriptive block of memory at start of chunk

:|» The header used by malloc library

The 20 bytes returned to caller

An Allocated Region Plus Header

TCS5422: Operating Systems [Spring 2020]

W28, P o BT T T o e A S T e

[SERZ)

MEMORY HEADERS - 2

size: 20

magic: 1234567

The 20 bytes } header_t;

returned to caller

. A Simple Header
Specific Contents Of The Header

= Contains size
= Pointers: for faster memory access
= Magic number: integrity checking

TCS5422: Operating Systems [Spring 2020]

el 22, e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome

11375

MEMORY HEADERS - 3

= Size of memory chunk is:
= Header size + user malloc size
= N bytes + sizeof(header)

= Easy to determine address of header

void free(void *ptr) {

header_t *hptr =

TCS5422: Operating Systems [Spring 2020]

W28, P ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma

11376

THE FREE LIST

= Simple free list struct

typedef struct _node t {
nt size;
truct _ node t *next;

} nodet_t;

= Use mmap to create free list
= 4kb heap, 4 byte header, one contiguous free chunk

returns a pointer to a chunk of free space
mmap (NULL, 4096, PROT_READ|PROT_WRITE,

MAP_ANON|MAP_PRIVATE, -1, 0);
cof (node_t) ;

head->size
head->next

4096 - s
NULL;

TCS5422: Operating Systems [Spring 2020]

el 220, Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

11377

FREE LIST - 2

= Create and initialize free-list “heap”

x
node_t *head

, 4096, PROT_READ|PROT_WRITE,
MAP_ANON |MAP_PRIVATE, -1, 0);
head->size = 4 zeof (node_t) 7

head->next = NULL

= Heap layout:

[virtual address: 16KB]
header: size field

size: 4088

o

head ——>| next: header: next field(NULL s 0)

LAl the rest of the 4KB chunk

TCS5422: Operating Systems [Spring 2020]

W28, P ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma

11378

Slides by Wes J. Lloyd

L13.13

TCSS 422 B — Spring 2020
School of Engineering and Technology

FREE LIST: MALLOC() CALL

= Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes

= 4 bytes for size, 4 bytes for magic number
= Split the heap - header goes with each block N

A 4KB Heap With One Free Chunk A Heap : After One Allocation
head —> e)
size: 4088 2t 100,

magic: 1234567

next: 0 ptr
the rest of Firstblock | 100 bytes now allocated
the 4KB chunk is used
\—1 head —>
size: 3980
next: 0

}the free 3980 byte chunk

TCS5422: Operating Systems [Spring 2020]

7
School of Engineering and Technology, University of Washington - Tacoma L1379

May 14,2020 ‘

5/14/2020

FREE LIST: FREE() CALL

= Addresses of chunks 8 i s { [virtual address: 16K8]

magic: 1234567

= Start=16384 100 bytes still allocated

+ 108 (end of 1st chunk)

+ 108 (end of 2" chunk) sptr —>g {1566 v i aieaes

es still allocate
+ 108 (end of 3" chunk) [} (but about to be freed)
=16708 [size_ 100]

magic: 1234567

100 bytes still allocated
head

size: 3764
next: [

The free 3764-byte chunk

Free Space With Three Chunks Allocated

TCS5422: Operating Systems [Spring 2020]

W28, P o BT T T o e A S T e

113.80

FREE LIST:

FREE() CHUNK #2

= Free(sptr)
® Our 3 chunks start at 16 KB
(@ 16,384 bytes)

[virtual address: 16KB]
1234567

100 bytes still allocated

head
= Free chunk #2 - sptr sptr — Xt 16708
Block | (now a free chunk of
= Sptr = 16500 Now Free memory)
. ize: 100
= addr - sizeof(node_t) =

] 100 bytes still allocated

= Actual start of chunk #2
= 16492

The free 3764-byte chunk

I

TCS5422: Operating Systems [Spring 2020]

el 22, e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome

11381 ‘

FREE LIST- FREE ALL CHUNKS

Now free remaining chunks: virtual address: 16KE]

100 |«——

= Free(16392) G
= Free(16608) (now free)
100 [«
= Walk back 8 bytes for actual next: 16708
start of chunk
(now free)
head —»)
= External fragmentation SW
= Free chunk pointers
out of order (now free)
sizer 3764 |«
= Coalescing of next LEZE 0
pointers is needed The free 3764-byte chunk
[

TCS5422: Operating Systems [Spring 2020]

W28, P ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma

[BEX)

GROWING THE HEAP

= Start with small sized heap
= Request more memory when full
= sbrk(), brk()

Segmented heap
(not in use) (not in use)
Heap Heap Heap Heap
= l break sbrik(), %
break 7 (not in use)
(not in use)
Address Space Address Space Heap
Physical Memory
TCSS422: Operating Systems [Spring 2020]
el 220, ‘ Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms L1383

MEMORY ALLOCATION STRATEGIES

= Best fit
=Traverse free list
= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful - fragmented)

= Worst fit
=Traverse free list
= ldentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

TCS5422: Operating Systems [Spring 2020]

W28, P ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma

L1384

Slides by Wes J. Lloyd

L13.14

TCSS 422 B — Spring 2020
School of Engineering and Technology

EXAMPLES

= Allocation request for 15 bytes

head —> 10 ——> 30 —> 20 —> NULL

= Result of Best Fit

head —>| 10 —> 30 —> 5 —> NULL

= Result of Worst Fit

head —> 10 —> 15 ——> 20 —> NULL

5/14/2020

May 14, 2020 TCS5422; Operating Systems [Spring 2020]
hool of

chnology, ity i Tacoma

11385

MEMORY ALLOCATION STRATEGIES - 2

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fit
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit
= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

TCS5422: Operating Systems [Spring 2020]

W28, P o BT T T o e A S T e

113.86

SEGREGATED LISTS

= For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.
= Manage as segregated free lists
= Provide object caches: stores pre-initialized objects

= How much memory should be dedicated for specialized
requests (object caches)?

memory from the general allocator for caches.
= General allocator will reclaim slabs when not used

= |f a given cache is low in memory, can request “slabs” of

May 14, 2020 TCS5422; Operating Systems [Spring 2020]
hool of

Technology, University i Tacoma

113,87

BUDDY ALLOCATION

= Binary buddy allocation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

= Consider a 7KB request

64KB free space for 7KB request

May 14, 2020 113.88

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, Uni

ity of i Tacoma

BUDDY ALLOCATION - 2

= Allocated fragments, typically too large

= Coalescing is simple
=Two adjacent blocks are promoted up

= Buddy allocation: suffers from internal fragmentation

May 14, 2020 TCS5422; Operating Systems [Spring 2020]
hool of

Technology, University i Tacoma

113.89

Slides by Wes J. Lloyd

QUESTIONS

L13.15

TCSS 422 B — Spring 2020
School of Engineering and Technology

MINUTES |

WILL RETURN IN A FEW - f-'/

Slides by Wes J. Lloyd

5/14/2020

L13.16

