
TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.1Slides by Wes J. Lloyd

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

Memory API,
Address Translation,

Segmentation

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions f rom 5/12

 A ssignment 2 (based on Ch . 30)

 Chapter 13 : In troduction to memory v i r tual ization

 The address space

 Goals of OS memory vir tualization

 Chapter 14 : Memory A PI

 Common memory errors

 Chapter 15 : A ddress t r anslation

 Base and bounds

 HW and OS Support

 Chapter 16: Segmentation

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.2

OBJECTIVES – 5/14

 Please classify your perspective on material covered in
today’s class (25 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.54 (from 6 .87)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.86 (from 5.81)

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.3

MATERIAL / PACE

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.4

FEEDBACK FROM 5/12

 Questions f rom 5/12

 A ssignment 2 (based on Ch . 30)

 Chapter 13 : In troduction to memory v i r tual ization

 The address space

 Goals of OS memory vir tualization

 Chapter 14 : Memory A PI

 Common memory errors

 Chapter 15 : A ddress t r anslation

 Base and bounds

 HW and OS Support

 Chapter 16: Segmentation

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.5

OBJECTIVES – 5/14

CHAPTER 13:
ADDRESS SPACES

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.6

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.2Slides by Wes J. Lloyd

 Questions f rom 5/12

 A ssignment 2 (based on Ch . 30)

 Chapter 13 : In troduction to memory v i r tual ization

 The address space

 Goals of OS memory vir tualization

 Chapter 14 : Memory A PI

 Common memory errors

 Chapter 15 : A ddress t r anslation

 Base and bounds

 HW and OS Support

 Chapter 16: Segmentation

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.7

OBJECTIVES – 5/14

 What is memory vir tualization?

 This is not “virtual” memory,

 Classic use of disk space as additional RAM

When available RAM was low

 Less common recently

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.8

MEMORY VIRTUALIZATION

 Presentation of system memory to each process

 Appears as if each process can access the entire
machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.9

MEMORY VIRTUALIZATION - 2

Process A Process B Process C

 Easier to program
 Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage
and share memory among processes

 Isolation
 From other processes: easier to code

 Protection
 From other processes
 From programmer error (segmentation fault)

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.10

MOTIVATION FOR
MEMORY VIRTUALIZATION

 Load one process at a time into memory

Poor memory utilization

 Little abstraction

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.11

EARLY MEMORY MANAGEMENT

 Later machines supported running multiple
processes

 Swap out processes during I/O waits to
increase system utilization and efficiency

 Swap entire memory of a process to disk
for context switch

 Too slow, especially for large processes

 Solution
 Leave processes in memory

 Need to protect from errant memory
accesses in a multiprocessing environment

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.12

MULTIPROGRAMMING
WITH SHARED MEMORY

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.3Slides by Wes J. Lloyd

Easy-to-use abstraction of physical
memory for a process

Main elements:

Program code

Stack

Heap

Example: 16KB address space

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.13

ADDRESS SPACE

 Code
 Program code

 Stack
 Program counter (PC)

 Local variables

 Parameter variables

 Return values (for functions)

 Heap
 Dynamic storage

 Malloc() new()

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.14

ADDRESS SPACE - 2

 Program code
 Static size

 Heap and stack
 Dynamic size

 Grow and shrink during program execution

 Placed at opposite ends

 Addresses are vir tual
 They must be physically mapped by the OS

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.15

ADDRESS SPACE - 3

Every address is virtual

OS translates virtual to physical addresses

EXAMPLE: virtual.c

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.16

VIRTUAL ADDRESSING

 Output from 64-bit Linux:

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.17

VIRTUAL ADDRESSING - 2

location of code: 0x400686
location of heap: 0x1129420
location of stack: 0x7ffe040d77e4

 Transparency

Memory shouldn’t appear virtualized to the program

 OS multiplexes memory among different jobs behind the
scenes

 Protection

 Isolation among processes

 OS itself must be isolated

 One program should not be able to affect another
(or the OS)

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.18

GOALS OF
OS MEMORY VIRTUALIZATION

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.4Slides by Wes J. Lloyd

Efficiency
 Time
 Performance: virtualization must be fast

 Space
 Virtualization must not waste space
 Consider data structures for organizing memory
 Hardware support for virtual address translation:

TLB: Translation Lookaside Buffer

Goals considered when evaluating memory
virtualization schemes

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.19

GOALS - 2

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.2
0

CHAPTER 14: THE
MEMORY API

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.21

 Questions f rom 5/12

 A ssignment 2 (based on Ch . 30)

 Chapter 13 : In troduction to memory v i r tual ization

 The address space

 Goals of OS memory vir tualization

 Chapter 14 : Memory A PI

 Common memory errors

 Chapter 15 : A ddress t r anslation

 Base and bounds

 HW and OS Support

 Chapter 16: Segmentation

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.22

OBJECTIVES – 5/14

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() often used to ask the system how large a given
datatype or struct is

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.23

MALLOC

 Not safe to assume
data type sizes using
different compilers,
systems

 Dynamic array of 10 ints

 Static array of 10 ints

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.24

SIZEOF()

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.5Slides by Wes J. Lloyd

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.25

FREE()

26

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

27

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$./pointer_error
The magic number is=53247
The magic number is=11111

What will this code do?

We have not changed *x but
the value has changed!!

Why?

 Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

DANGLING POINTER (1/2)

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.28

Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

DANGLING POINTER (2/2)

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.29

 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…
 size_t num : number of blocks to allocate

 size_t size : size of each block(in bytes)

 Calloc() prevents…

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.30

CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.6Slides by Wes J. Lloyd

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address
 New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c
 EXAMPLE: nom.c

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.31

REALLOC()

 Can’t deallocate twice

 Second call core dumps

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.32

DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory
for a user program

 See man page

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.33

SYSTEM CALLS

L13.3
4

TCSS 422 WILL RETURN
AT ~2:40PM

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.3
5

CHAPTER 15: ADDRESS
TRANSLATION

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.36

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.7Slides by Wes J. Lloyd

 Questions f rom 5/12

 A ssignment 2 (based on Ch . 30)

 Chapter 13 : In troduction to memory v i r tual ization

 The address space

 Goals of OS memory vir tualization

 Chapter 14 : Memory A PI

 Common memory errors

 Chapter 15 : A ddress t r anslation

 Base and bounds

 HW and OS Support

 Chapter 16: Segmentation

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.37

OBJECTIVES – 5/14

 64KB
Address space
example

 Translation:
mapping
vir tual to
physical

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.38

ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register
 Stores size of program address space (16KB)

 OS verifies that every address:

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.39

BASE AND BOUNDS

0 ≤ 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr) ↑
 Phy addr = virt addr + base reg

 32896 = 128 + 32768 (base)

 Execute instruction
 Load from address (var x is @ 15kb=15360)

 48128 = 15360 + 32768 (base) -- found x…

 Bounds register: terminate process if
 ACCESS VIOLATION: Virtual address > bounds reg

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.40

INSTRUCTION EXAMPLE

Int x

 MMU
 Portion of the CPU dedicated to address translation

 Contains base & bounds registers

 Base & Bounds Example:
 Consider address translation

 4 KB (4096 bytes) address space, loaded at 16 KB physical location

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.41

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.42

DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in
bounds

Translation circuitry, check limits

Privileged instruction(s) to
update base / bounds regs

Instructions for modifying base/bound
registers

Privileged instruction(s)
to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.8Slides by Wes J. Lloyd

 For base and bounds OS support required

When process starts running
 Allocate address space in physical memory

When a process is terminated
 Reclaiming memory for use

When context switch occurs
 Saving and storing the base-bounds pair

 Exception handlers
 Function pointers set at OS boot time

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.43

OS SUPPORT FOR MEMORY
VIRTUALIZATION

 OS searches for free space for new process
 Free list: data structure that tracks available memory slots

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.44

OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.45

OS: WHEN PROCESS IS TERMINATED

 OS must save base and bounds registers
 Saved to the Process Control Block PCB (task_struct in Linux)

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.46

OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS deschedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.47

DYNAMIC RELOCATION

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.4
8

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.9Slides by Wes J. Lloyd

CHAPTER 16:
SEGMENTATION

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.49

 Questions f rom 5/12

 A ssignment 2 (based on Ch . 30)

 Chapter 13 : In troduction to memory v i r tual ization

 The address space

 Goals of OS memory vir tualization

 Chapter 14 : Memory A PI

 Common memory errors

 Chapter 15 : A ddress t r anslation

 Base and bounds

 HW and OS Support

 Chapter 16: Segmentation

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.50

OBJECTIVES – 5/14

 Address space

 Contains significant unused memory

 Is relatively large
 Preallocates space to handle stack/heap growth

 Large address spaces
 Hard to fit in memory

 How can these issues be addressed?

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.51

BASE AND BOUNDS INEFFICIENCIES

 Memory segmentation

 Manage the address space as (3) separate segments
 Each is a contiguous address space

 Provides logically separate segments for: code, stack, heap

 Each segment can placed separately

 Track base and bounds for each segment (registers)

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.52

MULTIPLE SEGMENTS

 Consider 3 segments:

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.53

SEGMENTS IN MEMORY

Much smaller

Virtual Address Space Physical Address Space

 Code segment - physically starts at 32KB (base)

 Starts at “0” in vir tual address space

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.54

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB

address space?

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.10Slides by Wes J. Lloyd

 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104 (vir t addr – virt heap start)

 Physical address = 104 + 34816 (offset + heap base)

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.55

ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address. Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.56

SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset

 Example: vir tual heap address 4200 (01000001101000)

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.57

SEGMENT REGISTERS

 VIRTUAL ADDRESS = 01000001101000 (on heap)
 SEG_MASK = 0x3000 (11000000000000)
 SEG_SHIFT = 01 heap (mask gives us segment code)
 OFFSET_MASK = 0xFFF (00111111111111)
 OFFSET = 000001101000 = 104 (isolates segment offset)
 OFFSET < BOUNDS : 104 < 2048

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.58

SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.59

STACK SEGMENT

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library

 .so (linux): shraed object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.60

SHARED CODE SEGMENTS

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.11Slides by Wes J. Lloyd

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.6
1

Coarse-grained

Manage memory as large purpose
based segments:

Code segment

Heap segment

Stack segment

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.62

SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed
of multiple smaller segments

 Segment table

 On early systems

 Stored in memory

 Tracked large number of segments

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.63

SEGMENTATION GRANULARITY - 2

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap
segment

 Can we fulfil the request for 20 KB of
contiguous memory?

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.64

MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of
contiguous memory?

 Drawback: Compaction is slow
 Rearranging memory is time consuming

 64KB is fast

 4GB+ … slow

 Algorithms:
 Best fit: keep list of free spaces, allocate the

most snug segment for the request

 Others: worst fit, first fit… (in future chapters)

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.65

COMPACTION

CHAPTER 17: FREE
SPACE MANAGEMENT

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.66

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.12Slides by Wes J. Lloyd

 Questions f rom 5/12

 A ssignment 2 (based on Ch . 30)

 Chapter 13 : In troduction to memory v i r tual ization

 The address space

 Goals of OS memory vir tualization

 Chapter 14 : Memory A PI

 Common memory errors

 Chapter 15 : A ddress t r anslation

 Base and bounds

 HW and OS Support

 Chapter 16: Segmentation

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.67

OBJECTIVES – 5/14

 How should free space be managed, when satisfying
variable-sized requests?

 What strategies can be used to minimize fragmentation?

 What are the time and space overheads of alternate
approaches?

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.68

FREE SPACE MANAGEMENT

 Management of memory using

 Only fixed-sized units

 Easy: keep a list

Memory request return first free entry
 Simple search

 With variable sized units

More challenging

 Results from variable sized malloc requests

 Leads to fragmentation

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.69

FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk return NULL

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.70

FRAGMENTATION

 External: OS can compact

 Example: Client asks for 100 bytes: malloc(100)

 OS: No 100 byte contiguous chunk is available:
returns NULL

Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

 OS returns memory units that are too large

 Example: Client asks for 100 bytes: malloc(100)

 OS: Returns 125 byte chunk

 Fragmentation is *in* the allocated chunk

Memory is lost, and unaccounted for – can’t compact
May 14, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L13.71

FRAGMENTATION - 2

 Request for 1 byte of memory: malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.72

ALLOCATION STRATEGY: SPLITTING

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.13Slides by Wes J. Lloyd

 Consider 30-byte heap

 Free() frees all 10 bytes segments (l ist of 3-free 10-byte chunks)

 Request arrives: malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.73

ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

 Small descriptive block of memory at start of chunk

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.74

MEMORY HEADERS

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.75

MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.76

MEMORY HEADERS - 3

 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.77

THE FREE LIST

 Create and initialize free-list “heap”

 Heap layout:

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.78

FREE LIST - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.14Slides by Wes J. Lloyd

 Consider a request for a 100 bytes: malloc(100)

 Header block requires 8 bytes
 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.79

FREE LIST: MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384
+ 108 (end of 1st chunk)
+ 108 (end of 2nd chunk)
+ 108 (end of 3rd chunk)
= 16708

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.80

FREE LIST: FREE() CALL

Free this
block

 Free(sptr)

 Our 3 chunks start at 16 KB
(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500
 addr – sizeof(node_t)

 Actual start of chunk #2
 16492

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.81

FREE LIST:
FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)
 Free(16608)

 Walk back 8 bytes for actual
start of chunk

 External fragmentation
 Free chunk pointers

out of order

 Coalescing of next
pointers is needed

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.82

FREE LIST- FREE ALL CHUNKS

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.83

GROWING THE HEAP

Segmented heap

 Best f it

 Traverse free list

 Identify all candidate free chunks

 Note which is smallest (has best fit)

When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

 Worst f it

 Traverse free list

 Identify largest free chunk

 Split largest free chunk, leaving a still large free chunk

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.84

MEMORY ALLOCATION STRATEGIES

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.15Slides by Wes J. Lloyd

 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.85

EXAMPLES

 First f i t
 Start search at beginning of free list

 Find first chunk large enough for request

 Split chunk, returning a “fit” chunk, saving the remainder

 Avoids full free list traversal of best and worst fit

 Next f it
 Similar to first fit, but start search at last search location

 Maintain a pointer that “cycles” through the list

 Helps balance chunk distribution vs. first fit

 Find first chunk, that is large enough for the request, and split

 Avoids full free list traversal

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.86

MEMORY ALLOCATION STRATEGIES - 2

 For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists

 Provide object caches: stores pre-initialized objects

 How much memory should be dedicated for specialized
requests (object caches)?

 If a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

 General allocator will reclaim slabs when not used

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.87

SEGREGATED LISTS

 Binary buddy allocation
 Divides free space by two to find a block that is big enough to

accommodate the request; the next split is too small…

 Consider a 7KB request

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.88

BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

 Two adjacent blocks are promoted up

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.89

BUDDY ALLOCATION - 2 QUESTIONS

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.16Slides by Wes J. Lloyd

WILL RETURN IN A FEW
MINUTES

