
TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.1Slides by Wes J. Lloyd

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

Memory API, 
Address Translation, 

Segmentation

Wes J. Lloyd
School of Engineering and Technology
University of Washington  - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions f rom 5/12

 A ssignment 2  (based on  Ch .  30 )

 Chapter 13 :  In troduction to  memory v i r tual ization

 The address space

 Goals of OS memory vir tualization

 Chapter 14 :  Memory  A PI

 Common memory errors

 Chapter 15 :  A ddress t r anslation

 Base and bounds

 HW and OS Support

 Chapter 16: Segmentation

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L13.2

OBJECTIVES – 5/14

 Please classify your perspective on material covered in 
today’s class (25 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.54 ( from 6 .87)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.86 ( from 5.81)
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MATERIAL / PACE
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OBJECTIVES – 5/14

CHAPTER 13: 
ADDRESS SPACES
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OBJECTIVES – 5/14

 What is memory vir tualization?

 This is not “virtual” memory, 

 Classic use of disk space as additional RAM

When available RAM was low

 Less common recently

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.8

MEMORY VIRTUALIZATION

 Presentation of system memory to each process

 Appears as if each process can access the entire 
machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox
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MEMORY VIRTUALIZATION - 2

Process A Process B Process C

 Easier to program
 Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage 
and share memory among processes

 Isolation
 From other processes: easier to code

 Protection
 From other processes
 From programmer error (segmentation fault)
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MOTIVATION FOR 
MEMORY VIRTUALIZATION

 Load one process at a time into memory

Poor memory utilization

 Little abstraction
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EARLY MEMORY MANAGEMENT

 Later machines supported running multiple 
processes

 Swap out processes during I/O waits to 
increase system utilization and efficiency

 Swap entire memory of a process to disk 
for context switch

 Too slow, especially for large processes

 Solution
 Leave processes in memory

 Need to protect from errant memory 
accesses in a multiprocessing environment
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MULTIPROGRAMMING 
WITH SHARED MEMORY
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Easy-to-use abstraction of physical 
memory for a process

Main elements:

Program code

Stack

Heap

Example: 16KB address space
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ADDRESS SPACE

 Code
 Program code

 Stack
 Program counter (PC)

 Local variables

 Parameter variables

 Return values (for functions)

 Heap
 Dynamic storage

 Malloc() new()
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ADDRESS SPACE - 2

 Program code
 Static size

 Heap and stack
 Dynamic size

 Grow and shrink during program execution

 Placed at opposite ends

 Addresses are vir tual
 They must be physically mapped by the OS
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ADDRESS SPACE - 3

Every address is virtual

OS translates virtual to physical addresses

EXAMPLE: virtual.c
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VIRTUAL ADDRESSING

 Output from 64-bit Linux:
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VIRTUAL ADDRESSING - 2

location of code: 0x400686
location of heap: 0x1129420
location of stack: 0x7ffe040d77e4

 Transparency

Memory shouldn’t appear virtualized to the program

 OS multiplexes memory among different jobs behind the 
scenes

 Protection

 Isolation among processes

 OS itself must be isolated

 One program should not be able to affect another 
(or the OS)
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GOALS OF 
OS MEMORY VIRTUALIZATION
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Efficiency
 Time
 Performance: virtualization must be fast

 Space
 Virtualization must not waste space
 Consider data structures for organizing memory
 Hardware support for virtual address translation:

TLB: Translation Lookaside Buffer

Goals considered when evaluating memory 
virtualization schemes
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GOALS - 2
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CHAPTER 14: THE 
MEMORY API
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OBJECTIVES – 5/14

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof()  often used to ask the system how large a given 
datatype or struct is
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MALLOC

 Not safe to assume 
data type sizes using 
different compilers, 
systems

 Dynamic array of 10 ints

 Static array of 10 ints

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
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SIZEOF()
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 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing
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School of Engineering and Technology, University of Washington - Tacoma

L13.25

FREE()

26

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247; 
return &a;

}

void set_magic_number_b() 
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

27

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247; 
return &a;

}

void set_magic_number_b() 
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$ ./pointer_error
The magic number is=53247
The magic number is=11111

What will this code do?

We have not changed *x but 
the value has changed!!

Why?

 Dangling pointers arise when a variable referred (a) goes 
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location 
of the deallocated memory (a), 
which has now been reclaimed for (b).

DANGLING POINTER (1/2)
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Fortunately in the case, a compiler warning 
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int* 
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local 
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have 
gone “out of scope”  

DANGLING POINTER (2/2)
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 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…
 size_t num : number of blocks to allocate

 size_t size : size of each block(in bytes)

 Calloc() prevents…

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma
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CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F
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 Resize an existing memory allocation

 Returned pointer may be same address, or a new address
 New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc, 
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c
 EXAMPLE: nom.c
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REALLOC()

 Can’t deallocate twice

 Second call core dumps
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DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory 
for a user program

 See man page
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SYSTEM CALLS

L13.3
4

TCSS 422 WILL RETURN 
AT ~2:40PM
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CHAPTER 15: ADDRESS
TRANSLATION

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L13.36



TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L13.7Slides by Wes J. Lloyd

 Questions f rom 5/12

 A ssignment 2  (based on  Ch .  30 )

 Chapter 13 :  In troduction to  memory v i r tual ization

 The address space

 Goals of OS memory vir tualization

 Chapter 14 :  Memory  A PI

 Common memory errors

 Chapter 15 :  A ddress t r anslation

 Base and bounds

 HW and OS Support

 Chapter 16: Segmentation

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington  - Tacoma

L13.37

OBJECTIVES – 5/14

 64KB 
Address space
example

 Translation:
mapping 
vir tual to
physical
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ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register
 Stores size of program address space (16KB)

 OS verifies that every address:
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BASE AND BOUNDS

0 ≤  𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr) ↑
 Phy addr = virt addr + base reg

 32896 = 128 + 32768 (base)

 Execute instruction
 Load from address (var x is @ 15kb=15360)

 48128 = 15360 + 32768 (base)  -- found x…

 Bounds register: terminate process if
 ACCESS VIOLATION: Virtual address > bounds reg
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INSTRUCTION EXAMPLE

Int x

 MMU
 Portion of the CPU dedicated to address translation

 Contains base & bounds registers 

 Base & Bounds Example:
 Consider address translation

 4 KB (4096 bytes) address space, loaded at 16 KB physical location
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MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT
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DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in 
bounds

Translation circuitry, check limits

Privileged instruction(s) to
update base / bounds regs

Instructions for modifying base/bound 
registers

Privileged instruction(s) 
to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.
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 For base and bounds OS support required

When process starts running
 Allocate address space in physical memory

When a process is terminated
 Reclaiming memory for use

When context switch occurs
 Saving and storing the base-bounds pair

 Exception handlers
 Function pointers set at OS boot time
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OS SUPPORT FOR MEMORY 
VIRTUALIZATION

 OS searches for free space for new process
 Free list: data structure that tracks available memory slots
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OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list
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OS: WHEN PROCESS IS TERMINATED

 OS must save base and bounds registers
 Saved to the Process Control Block PCB (task_struct in Linux)
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OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS deschedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it  was even moved!
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DYNAMIC RELOCATION
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CHAPTER 16: 
SEGMENTATION
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OBJECTIVES – 5/14

 Address space 

 Contains significant unused memory

 Is relatively large
 Preallocates space to handle stack/heap growth

 Large address spaces
 Hard to fit in memory

 How can these issues be addressed?
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BASE AND BOUNDS INEFFICIENCIES

 Memory segmentation

 Manage the address space as (3) separate segments
 Each is a contiguous address space 

 Provides logically separate segments for: code, stack, heap

 Each segment can placed separately

 Track base and bounds for each segment (registers)
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MULTIPLE SEGMENTS

 Consider 3 segments:
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SEGMENTS IN MEMORY

Much smaller

Virtual Address Space Physical Address Space

 Code segment - physically starts at 32KB (base)

 Starts at “0” in vir tual address space

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.54

ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB 

address space?
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 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104   (vir t addr – virt heap start)

 Physical address = 104 + 34816  (offset + heap base)
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ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.  Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)
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SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset 

 Example: vir tual heap address 4200 (01000001101000)
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SEGMENT REGISTERS

 VIRTUAL ADDRESS = 01000001101000                     (on heap)
 SEG_MASK = 0x3000 (11000000000000)
 SEG_SHIFT = 01  heap            (mask gives us segment code)
 OFFSET_MASK = 0xFFF (00111111111111)
 OFFSET = 000001101000 = 104        (isolates segment offset)
 OFFSET < BOUNDS :  104 < 2048
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SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows
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STACK SEGMENT

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library 

 .so (linux): shraed object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
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SHARED CODE SEGMENTS
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Coarse-grained

Manage memory as large purpose
based segments:

Code segment

Heap segment

Stack segment
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SEGMENTATION GRANULARITY

 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed
of multiple smaller segments

 Segment table

 On early systems

 Stored in memory

 Tracked large number of segments
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SEGMENTATION GRANULARITY - 2

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap
segment

 Can we fulfil the request for 20 KB of
contiguous memory?

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
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MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of 
contiguous memory?

 Drawback: Compaction is slow
 Rearranging memory is time consuming

 64KB is fast

 4GB+ … slow

 Algorithms: 
 Best fit: keep list of free spaces, allocate the

most snug segment for the request

 Others: worst fit, first fit… (in future chapters)
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COMPACTION

CHAPTER 17: FREE 
SPACE MANAGEMENT
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 Questions f rom 5/12

 A ssignment 2  (based on  Ch .  30 )

 Chapter 13 :  In troduction to  memory v i r tual ization

 The address space

 Goals of OS memory vir tualization

 Chapter 14 :  Memory  A PI

 Common memory errors

 Chapter 15 :  A ddress t r anslation

 Base and bounds

 HW and OS Support

 Chapter 16: Segmentation

 Chapter 17: Free Space Management
 Fragmentation, Splitting, coalescing

 The Free List

 Memory Allocation Strategies
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OBJECTIVES – 5/14

 How should free space be managed, when satisfying 
variable-sized requests?

 What strategies can be used to minimize fragmentation? 

 What are the time and space overheads of alternate 
approaches?
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FREE SPACE MANAGEMENT

 Management of memory using

 Only fixed-sized units

 Easy: keep a list

Memory request  return first free entry
 Simple search

 With variable sized units

More challenging

 Results from variable sized malloc requests

 Leads to fragmentation
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FREE SPACE MANAGEMENT

 Consider a 30-byte heap

 Request for 15-bytes

 Free space: 20 bytes

 No available contiguous chunk  return NULL

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.70

FRAGMENTATION

 External: OS can compact

 Example: Client asks for 100 bytes:  malloc(100)

 OS: No 100 byte contiguous chunk is available:
returns NULL

Memory is externally fragmented - - Compaction can fix!

 Internal: lost space – OS can’t compact

 OS returns memory units that are too large

 Example:  Client asks for 100 bytes:  malloc(100)

 OS: Returns 125 byte chunk

 Fragmentation is *in* the allocated chunk

Memory is lost, and unaccounted for – can’t compact
May 14, 2020 TCSS422: Operating Systems [Spring 2020]
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FRAGMENTATION - 2

 Request for 1 byte of memory:  malloc(1)

 OS locates a free chunk to satisfy request

 Splits chunk into two, returns first chunk
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 Consider 30-byte heap

 Free() frees all 10 bytes segments  ( l ist  of 3-free 10-byte chunks)

 Request arrives:  malloc(30)

 SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!

 Coalescing regroups chunks into contiguous chunk

 Allocation can now proceed

 Coalescing is defragmentation of the free space list
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ALLOCATION STRATEGY: COALESCING

 free(void *ptr): Does not require a size parameter

 How does the OS know how much memory to free?

 Header block

 Small descriptive block of memory at start of chunk
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MEMORY HEADERS

 Contains size

 Pointers: for faster memory access

 Magic number: integrity checking
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MEMORY HEADERS - 2

 Size of memory chunk is:

 Header size + user malloc size

 N bytes + sizeof(header)

 Easy to determine address of header
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MEMORY HEADERS - 3

 Simple free list struct

 Use mmap to create free list

 4kb heap, 4 byte header, one contiguous free chunk

May 14, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L13.77

THE FREE LIST

 Create and initialize free-list “heap”

 Heap layout:
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School of Engineering and Technology, University of Washington - Tacoma

L13.78

FREE LIST - 2
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 Consider a request for a 100 bytes:   malloc(100)

 Header block requires 8 bytes 
 4 bytes for size, 4 bytes for magic number

 Split the heap – header goes with each block
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FREE LIST:  MALLOC() CALL

First block
is used

 Addresses of chunks

 Start=16384 
+ 108 (end of 1st chunk)
+ 108 (end of 2nd chunk)
+ 108 (end of 3rd chunk)
= 16708
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FREE LIST: FREE() CALL

Free this
block

 Free(sptr)

 Our 3 chunks start at 16 KB
(@ 16,384 bytes)

 Free chunk #2 - sptr

 Sptr = 16500
 addr – sizeof(node_t)

 Actual start of chunk #2
 16492
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FREE LIST: 
FREE() CHUNK #2

Block
Now Free

 Now free remaining chunks:

 Free(16392)
 Free(16608)

 Walk back 8 bytes for actual 
start of chunk

 External fragmentation
 Free chunk pointers 

out of order

 Coalescing of next 
pointers is needed
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FREE LIST- FREE ALL CHUNKS

 Start with small sized heap

 Request more memory when full

 sbrk(), brk()
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GROWING THE HEAP

Segmented heap

 Best f it

 Traverse free list

 Identify all candidate free chunks

 Note which is smallest (has best fit)

When splitting, “leftover” pieces are small 
(and potentially less useful  -- fragmented)

 Worst f it

 Traverse free list

 Identify largest free chunk

 Split largest free chunk, leaving a still large free chunk
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MEMORY ALLOCATION STRATEGIES
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 Allocation request for 15 bytes

 Result of Best Fit

 Result of Worst Fit
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EXAMPLES

 First f i t
 Start search at beginning of free list

 Find first chunk large enough for request

 Split chunk, returning a “fit” chunk, saving the remainder

 Avoids full free list traversal of best and worst fit

 Next f it
 Similar to first fit, but start search at last search location

 Maintain a pointer that “cycles” through the list 

 Helps balance chunk distribution vs. first fit

 Find first chunk, that is large enough for the request, and split

 Avoids full free list traversal
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MEMORY ALLOCATION STRATEGIES - 2

 For popular sized requests 
e.g. for kernel objects such as locks, inodes, etc.

 Manage as segregated free lists 

 Provide object caches: stores pre-initialized objects

 How much memory should be dedicated for specialized 
requests (object caches)?

 If a given cache is low in memory, can request “slabs” of 
memory from the general allocator for caches.

 General allocator will reclaim slabs when not used
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SEGREGATED LISTS

 Binary buddy allocation
 Divides free space by two to find a block that is big enough to 

accommodate the request; the next split is too small…

 Consider a 7KB request
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BUDDY ALLOCATION

 Buddy allocation: suffers from internal fragmentation

 Allocated fragments, typically too large

 Coalescing is simple

 Two adjacent blocks are promoted up
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BUDDY ALLOCATION - 2 QUESTIONS
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WILL RETURN IN A FEW 
MINUTES


