TCSS 422 B — Spring 2020
School of Engineering and Technology

Concurrency Problems,
Introduction to memory
virtualization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

MayizRe2g School of Engineering and Technology, University of Washington [liTacoma

TCSS 422: OPERATING SYSTEMS

5/14/2020

OBJECTIVES - 5/12

= Questlons from 5/7 |

= Midterm review

= Asslgnment 2

= Chapter 32: Concurrency Problems
= Deadlock causes
= Deadlock prevention
= Chapter 13: Introduction to memory virtuallzation
= The address space
= Goals of 0S memory virtualization
= Chapter 14: Memory API
= Common memory errors
= Chapter 15: Address translation
= Base and bounds
= HW and OS Support

(based on Ch. 30)

May 12,2020

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L22

MATERIAL / PACE

today’s class (44 respondents):

= Average - 6.87 (T from 6.27)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.81 (1 from 5.77)

= Please classify your perspective on material covered in

= 1-mostly review, 5-equal new/review, 10-mostly new

TCS5422: Operating Systems [Spring 2020]
L7 ey Foollof Enineers K haolosUnversity S = TR

123

FEEDBACK FROM 5/7

May 12,2020

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L4

OBJECTIVES - 5/12

= Questlons from 5/7
|- Midterm review |
= Asslgnment 2 (based on Ch. 30)
= Chapter 32: Concurrency Problems
= Deadlock causes
= Deadlock prevention
= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization
= Chapter 14: Memory API
= Common memory errors
= Chapter 15: Address translation
= Base and bounds
= HW and OS Support

TCS5422: Operating Systems [Spring 2020]
L Y ‘ SeFoo[of Enginearing andiechnolonyiUnve sty S = TR

u2s

Average: 85.41
Mode: 95.5
Medlan: 88.3

1st quartile:
0 to 79.5

2nd quartile:
79.5 to 88.3

3" quartile:
88.3 to 94.5

4t quartile:
94.5 to 99.5
Std. dev:
10.96

MIDTERM RESULTS

Distribution is log normal

®

Z I I
|

%

%

6a

of students

3
23

e

F3

P
2%
50
e
o
a0
o

TCSS 422 Spring 2020 Midterm

May 12,2020

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L6

Slides by Wes J. Lloyd

L12.1

TCSS 422 B — Spring 2020
School of Engineering and Technology

NOTES ON SCORING

= Questlons 5, 6, 10, 11:
= When | transferred this question to Canvas,
I changed job D’s arrival time from T=20 to T=10

= My solution accidentally did not capture this change

= Scores have been updated, please verify scoring:

= Question 5: 25 (turnaround time job D)

= Questlon 6: 28.8 (average turnaround time all jobs)
= Question 10: 20 (response time job D)

= Question 11: 16.3 (average response time all jobs)

= |nitial answers in Canvas incorrectly scored these questions

+1
+1
+1
+1

May 12, 2020 TCS5422; Operating Systems [Spring 2020]
hool of

nology, ity ington - Tacoma

‘ u27

5/14/2020

NOTES ON SCORING - 2

= Questlon 34:
= MLFQ Scheduler Question
= How many jobs execute in the medium priority queue?

= This question was simply asking of jobs A, B, C, how many of
them ran at some point in the medium priority queue

(this question can be answered using only the starter graph)

= Answer: 3

= | have also accepted as an answer to the questions, the total
number of timer units jobs ran in the medium priority queue

= Second answer: 24 (ok)

May 12, 2020 ms«uz; Operating Systems [Spring 2020]

School of Technology, University i - Tacoma

128 ‘

NOTES ON SCORING - 3

= Questlon 48:
= Classify the API:
= pthread_mutex_timelock()

the best answer was “all of the above”
= Partial credit for BLOCKING or NON-BLOCKING

® This APl is both BLOCKING (for a while) and NON-BLOCKING, so

May 12,2020

TCS5422: Operating Systems [Spring 2020]
hool of Engineeri nology, University i - Tacoma

‘ 129

NOTES ON SCORING - 4

= All other questions have been reviewed for partial credit,
and Canvas grading interpretation
= Canvas autograder is sensitive and wants exact answers

= Where answers were not recognized, | have manually added
points

= Please review scoring for correctness,
and notify of any issues / questions

= Midterm questions ?

= Special session - midterm review:
recording LIVE on Wed May 13 @ 5:50p

May 12, 2020 1210

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, University of Washington - Tacoma

OBJECTIVES - 5/12

= Questlons from 5/7
= Midterm review
= Asslgnment 2 (based on Ch. 30) |
= Chapter 32: Concurrency Problems
= Deadlock causes
= Deadlock prevention
= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization
= Chapter 14: Memory API
= Common memory errors
= Chapter 15: Address translation
= Base and bounds
= HW and OS Support

TCS5422: Operating Systems [Spring 2020]
L Y SeFoo[of Enginearing andiechnolonyiUnve sty S = TR

211

Slides by Wes J. Lloyd

CHAPTER 32 -

CONCURRENCY
PROBLEMS

TCSS422: Operating Systems [Spring 2020]

Lk B 22D School of Engineering and Technology, University of Washington -

L12.2

TCSS 422 B — Spring 2020
School of Engineering and Technology

OBJECTIVES - 5/12

= Questlons from 5/7

= Midterm review

= Asslgnment 2 (based on Ch. 30)

= Chapter 32: Concurrency Problems
= Deadlock causes
= Deadlock prevention

= Chapter 13: Introductlon to memory virtuallzation
= The address space

= Goals of 0S memory virtualization
= Chapter 14: Memory API

= Common memory errors
= Chapter 15: Address translation

= Base and bounds

= HW and OS Support

5/14/2020

TCS5422: Operating Systems [Spring 2020]
L ey AT o T B s oy ATty A T = TRy

11213

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

=Qrder violation: failure to initialize lock/condition
before use

TCS5422: Operating Systems [Spring 2020]
W2, P o BT T T o e A S T e

1214

® Add locks for all uses of: thd->proc_info

ATOMICITY VIOLATION - SOLUTION

pthread mutex_t lock = PTHREAD MUTEX_INITTALIZER;

3
2
3 Threadi::

4 pthread mutex_lock(slock);
5 if(thd->proc_info) {

6

7

fputs (thd->proc_info , ..):

}
10 pthread mutex_unlock (slock);

12 Thread2::

13 pthread mutex_lock(slock);
14 thd->proc_info = NULL;

15 pthread mutex_unlock (slock);

TCS5422: Operating Systems [Spring 2020]
L7 ey e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome

11215

ORDER VIOLATION - SOLUTION

= Use condition & signal to enforce order

1 pthread mutex t mtLock = PTHREAD MUTEX INITIALIZER;
2 pthread cond t mtCond = PTHREAD COND_INITIALIZER;
3 int mtInit = 0
4
5 Thread 1::
6 void init(){
7
8 mThread = PR_CreateThread (mMain,..);
9
10 signal that the thread
11 pthread mutex lock (smtLock) ;
12 mtInit = 1;
13 [(pthread cond signal (smtcond) ;]
14 pthread_mutex_unlock (smtLock) ;
15
16)
17
18 Thread2::
19 void mMain(..){
20
May 12, 2020 TCSS422: Operating Systems [Spring 2020] 216

School of Engineering and Technology, University of Washington - Tacoma

= Use condition & signal to enforce order

ORDER VIOLATION - SOLUTION - 2

School of Engineering and Technology, University of Washington - Tacoma

21 jait for the thread t tialize
22 pthread mutex_lock (smtLock) ;
23 while (mtInif == 0)
24 | pthread_cond_wait (smtCond, &mtLock); |
25 pthread MUCEX UNTOCK{EMCLOCRTT
26
27 mState = mThread->State;
28
29)
May 12, 2020 TCS5422: Operating Systems [Spring 2020] 217

DEADLOCK BUGS

= Presence of a cycle in code
= Thread 1 acquires lock L1, waits for lock L2
= Thread 2 acquires lock L2, waits for lock L1

&

Thread 1: Thread 2:

Holds
lock (L1); lock (L2) ; —— 5 |rock 11
lock(L2); lock(L1);

= Both threads can block, unless
one manages to acquire both locks

Wanted by

Lock L2 | €——
Holds

Aq payuem

TCSS422: Operating Systems [Spring 2020]
pievilagaray ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma

1218

Slides by Wes J. Lloyd

L12.3

TCSS 422 B — Spring 2020
School of Engineering and Technology

5/14/2020

REASONS FOR DEADLOCKS

= Complex code

= Must avoid circular dependencies - can be hard to find...
= Encapsulation hides potential locking conflicts

= Easy-to-use APls embed locks inside

= Programmer doesn’t know they are there

= Consider the Java Vector class:

X Vector v1,v2;

v1.AddA1l(v2) 7

= Vector is thread safe (synchronized) by design
= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional

Hold-and-wait
resources

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1219

May 12,2020

Circular wait y 3 2
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2020]
W2, P o BT T T o e A S T e 1220

PREVENTION - MUTUAL EXCLUSION

= Build wait-free data structures
= Eliminate locks altogether
= Build structures using CompareAndSwap atomic CPU (HW)
instruction

= C pseudo code for CompareAndSwap
= Hardware executes this code atomically

1 int CompareAndSwap(int *address, int expected, int new)({
2 if (*address == expected)

3 *address = new;

4 return 17
5

6

7

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 221

May 12,2020

PREVENTION - MUTUAL EXCLUSION - 2

= Recall atomic increment

void AtomicIncrement (int *value, int amount){
do{
int old = *value;
Jwhile(CompareAndswap (value, old, old+amount)==0);

EFS

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic

= When it runs it is ALWAYS atomic (at HW level)

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 222

May 12,2020

MUTUAL EXCLUSION: LIST INSERTION

= Consider list insertion

1 void insert(int value){
2 node t * malloc(sizeof (node_t));
3 assert(n NULL)7
4 n->value = value ;
5 n->next = head;
6 head =n;
e Bk
May 12, 2020 TCSS422: Operating Systems [Spring 2020] 223

School of Engineering and Technology, University of Washington - Tacoma

MUTUAL EXCLUSION - LIST INSERTION - 2

®Lock based implementation

id insert(int value){
node_t * n = malloc(sizeof (node_t)):
assert(n != NULL);
n->value = value ;
lock(Listlock) ; begin critical section
n->next = head;
head =n;
unlock(listlock) ;

oo wn e

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma t224

May 12,2020

Slides by Wes J. Lloyd

L12.4

TCSS 422 B — Spring 2020
School of Engineering and Technology

MUTUAL EXCLUSION - LIST INSERTION - 3

= Wait free (no lock) implementation

oid insert(int value) {
node_t *n = malloc (sizeof (node_t));
assert(n != NULL);

n->value = value;
{
n->next = head;
} (CompareAndSwap (shead, n->next, n));

@ e W

= Assign &head to n (new node ptr)
= 0Only when head = n->next

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1225

May 12,2020

PREVENTION LOCK - HOLD AND WAIT

= Problem: acquire all locks atomically
= Solution: use a “lock” “lock”... (like a guard lock)

1 lock(prevention);
2 lock(nl);

3 lock(n2):
4
5

unlock (prevention) ;

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

= Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

= Encapsulation: consider the Java Vector class...

TCS5422: Operating Systems [Spring 2020]

L7 ey e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome

11227

PREVENTION - NO PREEMPTION

= When acquiring locks, don’t BLOCK forever if
unavailable...

= pthread_mutex_trylock() - try once
mpthread_mutex_timedlock() - try and wait awhile

1 top:
L T——— NO
P STOPPING
ANY
= Eliminates deadlocks TIME

TCS5422: Operating Systems [Spring 2020]

L Y Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

11229

5/14/2020

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

. Threads hold resources allocated to them while waiting for additional
Hold-and-wait
resources

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait y 3 2
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2020]
W2, P o BT T T o e A S T e 1226

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

*No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait y 3 2
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2020]
W22, P ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma 228

NO PREEMPTION - LIVELOCKS PROBLEM

= Can lead to livelock

1 top:

2 lock(Ll)

3 if(tryLock(12) == -1){
4 unlock (L1) 7

5 goto top;

6

}

= Two threads execute code in parallel >
always fail to obtain both locks

= Fix: add random delay

=Allows one thread to win the
livelock race!

May 12, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 1230

Slides by Wes J. Lloyd

L12.5

TCSS 422 B — Spring 2020
School of Engineering and Technology

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

Cliclsvisil There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

TCS5422: Operating Systems [Spring 2020]

‘ L ey AT o T B S oy ATt A T T

11231

5/14/2020

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code
=Always acquire locks in same order
=L1,L2,L3, ..
=Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2....

®Must carry out same ordering through entire
program

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 232

‘ May 12,2020

CONDITIONS FOR DEADLOCK

= If any of the following conditions DOES NOT
EXSIST, describe why deadlock can not occur?

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

CircGla wart resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2020]
Mavil272020 e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome 233

" Thedining philosophers problem where 5

philosophers compete for 5 forks, and where a
philosopher must hold two forks to eat involves
which deadlock condition(s)?

Mutual Exclusion
Hold-and-wait
No preemption

Circular wait

All of the above

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

= Consider a smart scheduler
=Scheduler knows which locks threads use

= Consider this scenario:
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2)

= Lock requirements of threads:

L1 yes yes no no
[[yes | v | yes | m |
TCS5422: Operating Systems [Spring 2020]
L Y ‘ Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms L23s

Slides by Wes J. Lloyd

INTELLIGENT SCHEDULING - 2

mScheduler produces schedule:

cru1 RS

= No deadlock can occur

= Consider:
1 yes yes yes no
| 2 | ves [yes | yes | no
TCSS422: Operating Systems [Spring 2020]
pievilagaray ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma 1238

L12.6

TCSS 422 B — Spring 2020
School of Engineering and Technology

INTELLIGENT SCHEDULING - 3

= Scheduler produces schedule

= Scheduler must be conservative and not take risks
= Slows down execution - many threads

thread

= There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every

5/14/2020

May 12, 2020 Tcsizfg; Operating Systems [Spring 2020]

nology, ity ington - Tacoma

11237

DETECT AND RECOVER

= Allow deadlock to occasionally occur and then take some
action.

= Example: When OS freezes, reboot...

= How often is this acceptable?
= Once per year
= Once per month
= Once per day
= Consider the effort tradeoff of finding every deadlock bug

= Many database systems employ deadlock detection and
recovery techniques.

May 12, 2020 11238

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, University i Tacoma

TCSS422: Operating Systems [Spring 2020]

Magiziz12) School of Engineering and Technology, University of Washington -

CHAPTER 13:
ADDRESS SPACES

TCSS422: Operating Systems [Spring 2020]

avizianzy School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/12

= Questlons from 5/7
= Midterm review
= Asslgnment 2 (based on Ch. 30)
= Chapter 32: Concurrency Problems
= Deadlock causes
= Deadlock prevention
= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization
= Chapter 14: Memory API
= Common memory errors
= Chapter 15: Address translation
= Base and bounds
= HW and OS Support

TCS5422: Operating Systems [Spring 2020]
Ly ey oollof Engineers K holosyUniversity S = TR

1241

MEMORY VIRTUALIZATION

= What is memory virtualization?

= This is not “virtual” memory,
= Classic use of disk space as additional RAM

=When available RAM was low

= Less common recently

May 12, 2020 nss«uz; Operating Systems [Spring 2020]

4
School of Technology, ity i Tacoma 242

Slides by Wes J. Lloyd

L12.7

TCSS 422 B — Spring 2020
School of Engineering and Technology

5/14/2020

machine’s address space

= Everyone has their own sandbox

Process A Process B

Process C

MEMORY VIRTUALIZATION - 2

= Presentation of system memory to each process

= Appears as if each process can access the entire

= Each process’s view of memory is isolated from others

May 12, 2020 ‘ TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

11243

MOTIVATION FOR
MEMORY VIRTUALIZATION

= Easier to program
= Programs don’t need to understand special memory models

= Abstraction enables sophisticated approaches to manage
and share memory among processes

= |solation
= From other processes: easier to code

= Protection
= From other processes
= From programmer error (segmentation fault)

TCS5422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

12

May 12,2020

a4

= Load one process at a time into memory

EARLY MEMORY MANAGEMENT

= Poor memory utilization oK

= Little abstraction o

Operating System
(code, data, etc.)

Current
Program
(code, data, etc)

Physical Memory

MULTIPROGRAMMING
WITH SHARED MEMORY

= Later machines supported running multiple okB

Operating System
processes oace | code,data etc)
= Swap out processes during I/0 waits to Fraa
increase system utilization and efficiency 128, Prona C
= Swap entire memory of a process to disk 10 | ods dam ete)
B Process B
for context switch Rods dmsicte)
. 256KB
= Too slow, especially for large processes e
320KB b A
. rocess
= Solution> (code, data, etc)
. 384KB
= Leave processes in memory Froe
448KB
= Need to protect from errant memory o .

accesses in a multiprocessing environment

Physical Memory

May 12, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

11245

TCS5422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 12,2020

11246

ADDRESS SPACE

= Easy-to-use abstraction of physical
memory for a process

= Main elements:
=Program code
=Stack
=Heap

= Example: 16KB address space

1KB

2KB

15KB

16KB

Program Code

Heap

l

(free)

T

Stack

Address Space

May 12, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

1247

ADDRESS SPACE - 2

= Code
= Program code L Program Code
K8
Heap
= Stack 2xB
= Program counter (PC) l
= Local variables
f
= Parameter variables -
= Return values (for functions) T
15KB
= Heap Stack
16KB

= Dynamic storage
= Malloc() new()

Address Space

TCS5422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 12,2020

11248

Slides by Wes J. Lloyd

L12.8

TCSS 422 B - Spring 2020 5/14/2020
School of Engineering and Technology

= Program code = Every address is virtual
= Static size o D g q
1 =0S translates virtual to physical addresses
= Heap and stack 2KB Hesp #include <stdio.h>
5 L l #include <stdlib.h>
= Dynamic size
= Grow and shrink during program execution . A taraeciarg ar ozl
. : (free) printf("location of code : $p\n", *) main);
Placed at opposite ends printf("location of heap : $p\n",
int x = 3;
. printf("location of stack : %p\n",
= Addresses are virtual
15k8 return x;
= They must be physically mapped by the 0S Stack) e
16KB
Address Space i
=EXAMPLE: virtual.c
Wiz | ISR B g s W | [O SO st T

VIRTUAL ADDRESSING - 2 GOALS OF

0S MEMORY VIRTUALIZATION

Address Space
= Qutput from 64-bit Linux: i Code = Transparency

(Text) A A
0x401000 [] ’
location of code: 0x400686 . Memory.shouldn tappear VIrtualllzed to trTe progra.m
location of heap: 0x1129420 0xcf2000 HeaD = 0S multiplexes memory among different jobs behind the
location of stack: 0x7ffe040d77e4 ot l scenes
heap

= Protection
(free) = |solation among processes
= 0S itself must be isolated

stack
=One program should not be able to affect another
(or the 0S)
0x7fﬂ9ca2800§ Stack
TCSS422: Of ting Syste [Spring 2020] TCSS422: O ting Systs [Spring 2020]
May 12, 2020 o T T 0 e A P P \ mvﬂ May 12, 2020 S AT R S e A e ues2

= Efficiency
=Time
Performance: virtualization must be fast

=Space CHAPTER 14: THE

Virtualization must not waste space
Consider data structures for organizing memory M EM 0 RY API

Hardware support TLB: Translation Lookaside Buffer

= Goals considered when evaluating memory
virtualization schemes

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington -

May 12, 2020 1253 May 12, 2020

TCS5422: Operating Systems [Spring 2020]
hool of Engineeri chnology, University i Tacoma

Slides by Wes J. Lloyd L12.9

TCSS 422 B — Spring 2020
School of Engineering and Technology

5/14/2020

OBJECTIVES - 5/12

= Questlons from 5/7
= Midterm review
= Asslgnment 2 (based on Ch. 30)
= Chapter 32: Concurrency Problems
= Deadlock causes
= Deadlock prevention
= Chapter 13: Introductlon to memory virtuallzation
= The address space
= Goals of 0S memory virtualization

= Chapter 14: Memory API
= Common memory errors

= Chapter 15: Address translation
= Base and bounds
= HW and OS Support

MALLOC

#include <stdlib.h>

void* malloc(size t size)

= Allocates memory on the heap
" size_t unsigned integer (must be +)
= size size of memory allocation in bytes

= Returns
= SUCCESS: A void * to a memory address
= FAIL: NULL

= sizeof() often used to ask the system how large a given
datatype or struct is

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1256

May 12,2020

TCSS422: Operating Systems [Spring 2020]
L ey e Ty S o s oy Uty - TR L1255
] NO‘ Safe to assume int *x = malloc(10 * sizeof (int));
. . printf (“$d\n”, sizeof(x));
data type sizes using
different compilers, | 4
systems

= Dynamic array of 10 iny int x[10;
printf (“%d\n”, sizeof(x));

= Static array of 10 ints [e
TCSS422: Operating Systems [Spring 2020]
2202 ool o Engineeri chnology, University Tacoma 27

FREE()

#include <stdlib.h>

void free(void+* ptr)

= Free memory allocated with malloc()
= Provide: (void *) ptr to malloc’d memory

= Returns: nothing

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1258

May 12,2020

#include<stdio.h>

int * set_magic_number_a()

int a =53247;
return &a;

void set_magic_number_b()

int b = 11111;

int main()

int ¥ X = NULL;

X = set_magic_number_a();

printf("The magic number is=%d\n“,*x);
set_magic_number_b();

printf(“The magic number is=%d\n“,*x);
return 0;

What will this code do?

59

#include<stdio.h>
What will this code do?
int * set_magic_number_a()

int a =53247;
return &a; put:
$./pointer_error
The magic number is=53247

void set_magic_number_b() R N R

int b = 11111;

We have not changed *x but
the value has changed!!

int main()

int * x = NULL; Why?
X = set_magic_number_a();
printf("The magic number is=%d\n"“,*x);
set_magic_number_b();

printf("The magic number is=%d\n“,*x);
return 0;

Slides by Wes J. Lloyd

L12.10

TCSS 422 B — Spring 2020
School of Engineering and Technology

5/14/2020

DANGLING POINTER (1/2)

= Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

= The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

DANGLING POINTER (2/2)

=Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function “int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of Tlocal
variable ‘a’ returned [enabled by default]

®This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1261

May 12,2020

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma 262

May 12,2020

CALLOC()

#include <stdlib.h>

void *calloc(size_t num, size_t size)

= Allocate “C”lear memory on the heap

= Calloc wipes memory in advance of use...

" size_t num : number of blocks to allocate
" size_t size:size of each block(in bytes)

= Calloc() prevents...

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=@@F

REALLOC()

#include <stdlib.h>

void *realloc(void *ptr, size_t size

= Resize an existing memory allocation

= Returned pointer may be same address, or a new address
= New if memory allocation must move

® void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc
" size_t size: New size for the memory block(in bytes)

= EXAMPLE: realloc.c
= EXAMPLE: nom.c

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1264

May 12,2020

TCS5422: Operating Systems [Spring 2020]
Mavil272020 ‘ e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome L1263
int *x = (int *)malloc(sizeof(int)); a cate:
free(x); // free memory
free(x); ree e

= Can’t deallocate twice
= Second call core dumps

2KB 2KB

SYSTEM CALLS

= brk(), sbrk()

= Used to change data segment size (the end of the heap)
= Don’t use these

= Mmap(), munmap()

= Can be used to create an extra independent “heap” of memory
for a user program

= See man page

allocated freed <
l Heap i Heap | |
free (x) | free(x
(free) — (free) | —*
1 Tou ||
_— K8 w e | 2KBwalld) [
‘Address Space Address Space
TCSS422: Operating Systems [Spring 2020]
L Y ‘ Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms L1265

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1266

May 12,2020

Slides by Wes J. Lloyd

L12.11

TCSS 422 B — Spring 2020
School of Engineering and Technology

CHAPTER 15: ADDRESS

TRANSLATION

TCSS422: Operating Systems [Spring 2020]

Lk T 20D School of Engineering and Technology, University of Washington -

5/14/2020

OBJECTIVES - 5/12

= Questlons from 5/7
= Midterm review
= Assignment 2 (based on Ch. 30)
= Chapter 32: Concurrency Problems
= Deadlock causes
= Deadlock prevention
= Chapter 13: Introduction to memory virtuallzation
= The address space
= Goals of 0S memory virtualization
= Chapter 14: Memory API
= Common memory errors
= Chapter 15: Address translation
= Base and bounds

= HW and OS Support
TCS5422: Operating Systems [Spring 2020]
{ W2, P e BT T e Uy i = e

112,68

CH. 15: OBJECTIVES

= Address translation
= Base and bounds

= HW and OS Support
= Memory segments

= Memory fragmentation

May 12, 2020 TCS5422; Operating Systems [Spring 2020]
hool of

Technology, ity i Tacoma

11269

ADDRESS TRANSLATION

Virtual mapping
= 64KB 0k8 . 0KB
Address space Program Code Operating System
example —
Heap
; ; .
= Translation: S
N 32KB P
mapping ! =78
virtual to heap v &
. (allocated o
physical (free) but not in use) £
t g
stack 48KB..- Sk &
T (not in use)
Stack
e 8
16KB i
Rddress Space Physical Memory
TCS$422: Operating Systems [Spring 2020]
avEzi2020 Sehosl o Ergineering andTechnolosyjUniversity ot Washi Tecoma 270 ‘

BASE AND BOUNDS

= Dynamic relocation
= Two registers base & bounds: on the CPU

= 0S places program in memory

= Sets base register

[physical address = virtual address + base

= Bounds register
= Stores size of program address space (16KB)
= 0S verifies that every address:

[0 < virtual address < bounds J

May 12, 2020 TCS5422; Operating Systems [Spring 2020]
hool of

Technology, University i Tacoma

1271

Slides by Wes J. Lloyd

INSTRUCTION EXAMPLE

128 : movl 0xO(%ebx), %eax ‘ OK8 syt e e |
= Base = 32768 :E: Programéod;
= Bounds =16384 e e
= Fetch instruction at 128 (virt addr) 1 48

= Phy addr = virt addr + base reg
= 32896 = 128 + 32768 (base) >
= Execute instruction e
= Load from address (var x is @ 15kb=15360)
= 48128 = 15360 + 32768 (base) -- found x... stack
= Bounds register: terminate process if
= ACCESS VIOLATION: Virtual address > bounds reg 4K
15KB [s000 INtX
{ physical address = virtual address + base 16k8 Stack
[wwuan | [uomnene et tngon Taoms

L12.12

TCSS 422 B — Spring 2020
School of Engineering and Technology

= MMU

= Contains base & bounds registers

= Base & Bounds Example:
= Consider address translation

= Portion of the CPU dedicated to address translation

MEMORY MANAGEMENT UNIT

0 16384
1024 17408
3000 19384
FAULT 4400 20784 (out of bounds)

= 4 KB (4096 bytes) address space, loaded at 16 KB physical location

Virtual Address Physlical Address

5/14/2020

May 12, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

11273

DYNAMIC RELOCATION OF PROGRAMS

= Hardware requirements:

Requirements ______ HWswpot _____|

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation
Translate virtual addr; check if in Translation circuitry, check limits

bounds

Privileged instruction(s) to Instructions for modifying base/bound
update base / bounds regs registers

Privileged instruction(s) Set code pointers to 0S code to handle faults
to register exception handlers

Ability to raise exceptions For out-of-bounds memory access, or

attempts to access privileged instr.

TCS5422: Operating Systems [Spring 2020]

W2, P o BT T T o e A S T e

u274

= When process starts running

=When a process is terminated
Reclaiming memory for use

= When context switch occurs
Saving and storing the base-bounds pair

= Exception handlers
Function pointers set at OS boot time

VIRTUALIZATION

= For base and bounds OS support required

Allocate address space in physical memory

0S SUPPORT FOR MEMORY

May 12, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

11275

0S: WHEN PROCESS STARTS RUNNING

= 0S searches for free space for new process
= Free list: data structure that tracks available memory slots

0kB
Operating System
The OS lookup the free list
16Kk8B
Free list
(not in use)
16K8 3268 s
Heap
i (allocated but not in use)|
48K8 48K8B Stack
(not in use)
64K8

Physical Memory

TCS5422: Operating Systems [Spring 2020]

W22, P ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma

1276

= 0S places memory back on the free list

0S: WHEN PROCESS IS TERMINATED

School of Engineering and Technology, University of Washington - Tacoma

0KB Free list 0KB
l Operating System Operating System
16K8
o Y 16€8
(not in use) (not in use)
L 328 L 3268
48K8 Process A 32KB (not in use)
48KB l 48K8
(not in use) (not in use)
64KB 48KB 64KB
Physical Memory Physical Memory
May 12, 2020 TCSS422: Operating Systems [Spring 2020] 277

0S: WHEN CONTEXT SWITCH OCCURS

= 0S must save base and bounds registers
= Saved to the Process Control Block PCB (task_struct in Linux)

Process A PCB

base : 32kB
KB Context Switching k8 bounds ; 4818
Operating System — Operating System
16KB 16KB
(not in use) base (not in use)
38 | 32KB 328
Pl Beina Process A
Currently Running ounds
48KB :’AaKB 48K8.
Process B Pt
Currently Running
64KB 64KB
Physical Memory Physical Memory
TCSS422: Operating Systems [Spring 2020]
pievilagaray ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma 278

Slides by Wes J. Lloyd

L12.13

TCSS 422 B - Spring 2020 5/14/2020
School of Engineering and Technology

= 0S can move process data when not running

. 0S deschedules process from scheduler

0S copies address space from current to new location
. OS updates PCB (base and bounds registers)

. OS reschedules process

A WN PR

= When process runs new base register is restored to CPU

= Process doesn’t know it was even moved!

TCS5422: Operating Systems [Spring 2020]
L ey e Ty S o s oy Uty

11279

Tacoma

TCSS 422 | & = WILL RETURN IN A FEW
OFFICE HOURS X 2./ MINUTES

Slides by Wes J. Lloyd L12.14

