
TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.1Slides by Wes J. Lloyd

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

Concurrency Problems,
Introduction to memory

virtualization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 5/7

 Midterm rev iew

 Assignment 2 (based on Ch . 30)

 Chapter 32: Concurrency Problems

 Deadlock causes

 Deadlock prevention

 Chapter 13: In troduction to memory v i rtualization

 The address space

 Goals of OS memory virtualization

 Chapter 14: Memory API

 Common memory errors

 Chapter 15: Address t ranslation

 Base and bounds

 HW and OS Support
May 12, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L12.2

OBJECTIVES – 5/12

 Please classify your perspective on material covered in
today’s class (44 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.87 ( from 6 .27)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.81 ( from 5.77)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.3

MATERIAL / PACE

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.4

FEEDBACK FROM 5/7

 Questions from 5/7

 Midterm rev iew

 Assignment 2 (based on Ch . 30)

 Chapter 32: Concurrency Problems

 Deadlock causes

 Deadlock prevention

 Chapter 13: In troduction to memory v i rtualization

 The address space

 Goals of OS memory virtualization

 Chapter 14: Memory API

 Common memory errors

 Chapter 15: Address t ranslation

 Base and bounds

 HW and OS Support
May 12, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L12.5

OBJECTIVES – 5/12

Average: 85.41

Mode: 95.5
Median: 88.3

1st quartile:
0 to 79.5

2nd quartile:
79.5 to 88.3

3rd quartile:
88.3 to 94.5

4th quartile:
94.5 to 99.5

Std. dev:
10.96

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.6

MIDTERM RESULTS

Distribution is log normal

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.2Slides by Wes J. Lloyd

 Questions 5, 6 , 10, 11:

 When I transferred this question to Canvas,
I changed job D’s arrival time from T=20 to T=10

 My solution accidentally did not capture this change

 Initial answers in Canvas incorrectly scored these questions

 Scores have been updated, please verify scoring:

 Question 5: 25 (turnaround time job D) +1

 Question 6: 28.8 (average turnaround time all jobs) +1

 Question 10: 20 (response time job D) +1

 Question 11: 16.3 (average response time all jobs) +1

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.7

NOTES ON SCORING

 Question 34:

 MLFQ Scheduler Question

 How many jobs execute in the medium priority queue?

 This question was simply asking of jobs A, B, C, how many of
them ran at some point in the medium priority queue

(this question can be answered using only the starter graph)

 Answer: 3

 I have also accepted as an answer to the questions, the total
number of timer units jobs ran in the medium priority queue

 Second answer: 24 (ok)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.8

NOTES ON SCORING - 2

 Question 48:

 Classify the API:

 pthread_mutex_timelock()

 This API is both BLOCKING (for a while) and NON-BLOCKING, so
the best answer was “all of the above”

 Partial credit for BLOCKING or NON-BLOCKING

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.9

NOTES ON SCORING - 3

 All other questions have been reviewed for partial credit,
and Canvas grading interpretation

 Canvas autograder is sensitive and wants exact answers

 Where answers were not recognized, I have manually added
points

 Please review scoring for correctness,
and notify of any issues / questions

 Midterm questions ?

 Special session - midterm review:
recording LIVE on Wed May 13 @ 5:50p

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.10

NOTES ON SCORING - 4

 Questions from 5/7

 Midterm rev iew

 Assignment 2 (based on Ch . 30)

 Chapter 32: Concurrency Problems

 Deadlock causes

 Deadlock prevention

 Chapter 13: In troduction to memory v i rtualization

 The address space

 Goals of OS memory virtualization

 Chapter 14: Memory API

 Common memory errors

 Chapter 15: Address t ranslation

 Base and bounds

 HW and OS Support
May 12, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L12.11

OBJECTIVES – 5/12

CHAPTER 32 –
CONCURRENCY

PROBLEMS

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L12.12

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.3Slides by Wes J. Lloyd

 Questions from 5/7

 Midterm rev iew

 Assignment 2 (based on Ch . 30)

 Chapter 32: Concurrency Problems

 Deadlock causes

 Deadlock prevention

 Chapter 13: In troduction to memory v i rtualization

 The address space

 Goals of OS memory virtualization

 Chapter 14: Memory API

 Common memory errors

 Chapter 15: Address t ranslation

 Base and bounds

 HW and OS Support
May 12, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L12.13

OBJECTIVES – 5/12

Majority of concurrency bugs

Most common:

Atomicity violation: forget to use locks

Order violation: failure to initialize lock/condition
before use

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.14

NON-DEADLOCK BUGS

 Add locks for all uses of: thd->proc_info

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.15

ATOMICITY VIOLATION - SOLUTION

 Use condition & signal to enforce order

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.16

ORDER VIOLATION - SOLUTION

 Use condition & signal to enforce order

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.17

ORDER VIOLATION – SOLUTION - 2

 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless
one manages to acquire both locks

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.18

DEADLOCK BUGS

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.4Slides by Wes J. Lloyd

 Complex code
 Must avoid circular dependencies – can be hard to find…

 Encapsulation hides potential locking conflicts
 Easy-to-use APIs embed locks inside

 Programmer doesn’t know they are there

 Consider the Java Vector class:

 Vector is thread safe (synchronized) by design

 If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.19

REASONS FOR DEADLOCKS

 Four conditions are required for dead lock to occur

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.20

CONDITIONS FOR DEADLOCK

 Build wait-free data structures

 Eliminate locks altogether

 Build structures using CompareAndSwap atomic CPU (HW)
instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.21

PREVENTION – MUTUAL EXCLUSION

Recall atomic increment

Compare and Swap tries over and over until
successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.22

PREVENTION – MUTUAL EXCLUSION - 2

Consider list insertion

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.23

MUTUAL EXCLUSION: LIST INSERTION

 Lock based implementation

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.24

MUTUAL EXCLUSION – LIST INSERTION - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.5Slides by Wes J. Lloyd

Wait free (no lock) implementation

Assign &head to n (new node ptr)

Only when head = n->next

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.25

MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {
2 node_t *n = malloc(sizeof(node_t));
3 assert(n != NULL);
4 n->value = value;
5 do {
6 n->next = head;
7 } while (CompareAndSwap(&head, n->next, n));
8 }

 Four conditions are required for dead lock to occur

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.26

CONDITIONS FOR DEADLOCK

 Problem: acquire all locks atomically

 Solution: use a “lock” “lock”… (like a guard lock)

 Effective solution – guarantees no race conditions while
acquiring L1, L2, etc.

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code
 Acts Lowers lock granularity

 Encapsulation: consider the Java Vector class…

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.27

PREVENTION LOCK – HOLD AND WAIT

 Four conditions are required for dead lock to occur

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.28

CONDITIONS FOR DEADLOCK

When acquiring locks, don’t BLOCK forever if
unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.29

PREVENTION – NO PREEMPTION

Can lead to livelock

 Two threads execute code in parallel 
always fail to obtain both locks

 Fix: add random delay

Allows one thread to win the
livelock race!

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.30

NO PREEMPTION – LIVELOCKS PROBLEM

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.6Slides by Wes J. Lloyd

Four conditions are required for dead lock to occur

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.31

CONDITIONS FOR DEADLOCK

Provide total ordering of lock acquisition
throughout code
Always acquire locks in same order

L1, L2, L3, …

Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire
program

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.32

PREVENTION – CIRCULAR WAIT

 If any of the following conditions DOES NOT
EXSIST, describe why deadlock can not occur?

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.33

CONDITIONS FOR DEADLOCK

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.3
4

Consider a smart scheduler

Scheduler knows which locks threads use

Consider this scenario:

4 Threads (T1, T2, T3, T4)

2 Locks (L1, L2)

 Lock requirements of threads:

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.35

DEADLOCK AVOIDANCE
VIA INTELLIGENT SCHEDULING

Scheduler produces schedule:

No deadlock can occur

Consider:

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.36

INTELLIGENT SCHEDULING - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.7Slides by Wes J. Lloyd

 Scheduler produces schedule

 Scheduler must be conservative and not take risks

 Slows down execution – many threads

 There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.37

INTELLIGENT SCHEDULING - 3

 Allow deadlock to occasionally occur and then take some
action.

 Example: When OS freezes, reboot…

 How often is this acceptable?
 Once per year

 Once per month

 Once per day

 Consider the effort tradeoff of finding every deadlock bug

 Many database systems employ deadlock detection and
recovery techniques.

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.38

DETECT AND RECOVER

TCSS 422 WILL RETURN
AT ~2:48PM

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.3
9

CHAPTER 13:
ADDRESS SPACES

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L12.40

 Questions from 5/7

 Midterm rev iew

 Assignment 2 (based on Ch . 30)

 Chapter 32: Concurrency Problems

 Deadlock causes

 Deadlock prevention

 Chapter 13: In troduction to memory v i rtualization

 The address space

 Goals of OS memory virtualization

 Chapter 14: Memory API

 Common memory errors

 Chapter 15: Address t ranslation

 Base and bounds

 HW and OS Support
May 12, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L12.41

OBJECTIVES – 5/12

 What is memory vir tualization?

 This is not “virtual” memory,

 Classic use of disk space as additional RAM

When available RAM was low

 Less common recently

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.42

MEMORY VIRTUALIZATION

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.8Slides by Wes J. Lloyd

 Presentation of system memory to each process

 Appears as if each process can access the entire
machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.43

MEMORY VIRTUALIZATION - 2

Process A Process B Process C

 Easier to program
 Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage
and share memory among processes

 Isolation
 From other processes: easier to code

 Protection
 From other processes
 From programmer error (segmentation fault)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.44

MOTIVATION FOR
MEMORY VIRTUALIZATION

 Load one process at a time into memory

Poor memory utilization

 Little abstraction

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.45

EARLY MEMORY MANAGEMENT

 Later machines supported running multiple
processes

 Swap out processes during I/O waits to
increase system utilization and efficiency

 Swap entire memory of a process to disk
for context switch

 Too slow, especially for large processes

 Solution
 Leave processes in memory

 Need to protect from errant memory
accesses in a multiprocessing environment

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.46

MULTIPROGRAMMING
WITH SHARED MEMORY

Easy-to-use abstraction of physical
memory for a process

Main elements:

Program code

Stack

Heap

Example: 16KB address space

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.47

ADDRESS SPACE

 Code
 Program code

 Stack
 Program counter (PC)

 Local variables

 Parameter variables

 Return values (for functions)

 Heap
 Dynamic storage

 Malloc() new()

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.48

ADDRESS SPACE - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.9Slides by Wes J. Lloyd

 Program code
 Static size

 Heap and stack
 Dynamic size

 Grow and shrink during program execution

 Placed at opposite ends

 Addresses are vir tual
 They must be physically mapped by the OS

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.49

ADDRESS SPACE - 3

Every address is virtual

OS translates virtual to physical addresses

EXAMPLE: virtual.c

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.50

VIRTUAL ADDRESSING

 Output from 64-bit Linux:

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.51

VIRTUAL ADDRESSING - 2

location of code: 0x400686
location of heap: 0x1129420
location of stack: 0x7ffe040d77e4

 Transparency

Memory shouldn’t appear virtualized to the program

 OS multiplexes memory among different jobs behind the
scenes

 Protection

 Isolation among processes

 OS itself must be isolated

 One program should not be able to affect another
(or the OS)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.52

GOALS OF
OS MEMORY VIRTUALIZATION

Efficiency
Time
 Performance: virtualization must be fast

Space
 Virtualization must not waste space
 Consider data structures for organizing memory
 Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluating memory
virtualization schemes

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.53

GOALS - 2

CHAPTER 14: THE
MEMORY API

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L12.54

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.10Slides by Wes J. Lloyd

 Questions from 5/7

 Midterm rev iew

 Assignment 2 (based on Ch . 30)

 Chapter 32: Concurrency Problems

 Deadlock causes

 Deadlock prevention

 Chapter 13: In troduction to memory v i rtualization

 The address space

 Goals of OS memory virtualization

 Chapter 14: Memory API

 Common memory errors

 Chapter 15: Address t ranslation

 Base and bounds

 HW and OS Support
May 12, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L12.55

OBJECTIVES – 5/12

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() often used to ask the system how large a given
datatype or struct is

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.56

MALLOC

 Not safe to assume
data type sizes using
different compilers,
systems

 Dynamic array of 10 ints

 Static array of 10 ints

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.57

SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.58

FREE()

59

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

60

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$./pointer_error
The magic number is=53247
The magic number is=11111

What will this code do?

We have not changed *x but
the value has changed!!

Why?

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.11Slides by Wes J. Lloyd

 Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

DANGLING POINTER (1/2)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.61

Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

DANGLING POINTER (2/2)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.62

 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…
 size_t num : number of blocks to allocate

 size_t size : size of each block(in bytes)

 Calloc() prevents…

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.63

CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address
 New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c
 EXAMPLE: nom.c

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.64

REALLOC()

 Can’t deallocate twice

 Second call core dumps

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.65

DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory
for a user program

 See man page

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.66

SYSTEM CALLS

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.12Slides by Wes J. Lloyd

CHAPTER 15: ADDRESS
TRANSLATION

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L12.67

 Questions from 5/7

 Midterm rev iew

 Assignment 2 (based on Ch . 30)

 Chapter 32: Concurrency Problems

 Deadlock causes

 Deadlock prevention

 Chapter 13: In troduction to memory v i rtualization

 The address space

 Goals of OS memory virtualization

 Chapter 14: Memory API

 Common memory errors

 Chapter 15: Address t ranslation

 Base and bounds

 HW and OS Support
May 12, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L12.68

OBJECTIVES – 5/12

 Address translation

 Base and bounds

 HW and OS Support

 Memory segments

 Memory fragmentation

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.69

CH. 15: OBJECTIVES

 64KB
Address space
example

 Translation:
mapping
vir tual to
physical

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.70

ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register
 Stores size of program address space (16KB)

 OS verifies that every address:

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.71

BASE AND BOUNDS

0 ≤ 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr) ↑
 Phy addr = virt addr + base reg

 32896 = 128 + 32768 (base)

 Execute instruction
 Load from address (var x is @ 15kb=15360)

 48128 = 15360 + 32768 (base) -- found x…

 Bounds register: terminate process if
 ACCESS VIOLATION: Virtual address > bounds reg

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.72

INSTRUCTION EXAMPLE

Int x

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.13Slides by Wes J. Lloyd

 MMU
 Portion of the CPU dedicated to address translation

 Contains base & bounds registers

 Base & Bounds Example:
 Consider address translation

 4 KB (4096 bytes) address space, loaded at 16 KB physical location

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.73

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.74

DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in
bounds

Translation circuitry, check limits

Privileged instruction(s) to
update base / bounds regs

Instructions for modifying base/bound
registers

Privileged instruction(s)
to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.

 For base and bounds OS support required

When process starts running
 Allocate address space in physical memory

When a process is terminated
 Reclaiming memory for use

When context switch occurs
 Saving and storing the base-bounds pair

 Exception handlers
 Function pointers set at OS boot time

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.75

OS SUPPORT FOR MEMORY
VIRTUALIZATION

 OS searches for free space for new process
 Free list: data structure that tracks available memory slots

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.76

OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.77

OS: WHEN PROCESS IS TERMINATED

 OS must save base and bounds registers
 Saved to the Process Control Block PCB (task_struct in Linux)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.78

OS: WHEN CONTEXT SWITCH OCCURS

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.14Slides by Wes J. Lloyd

 OS can move process data when not running

1. OS deschedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.79

DYNAMIC RELOCATION QUESTIONS

TCSS 422
OFFICE HOURS

WILL RETURN IN A FEW
MINUTES

