
TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.1Slides by Wes J. Lloyd

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

Concurrency Problems,
Introduction to memory

virtualization

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Questions from 5/7

 Midterm rev iew

 Assignment 2 (based on Ch . 30)

 Chapter 32: Concurrency Problems

 Deadlock causes

 Deadlock prevention

 Chapter 13: In troduction to memory v i rtualization

 The address space

 Goals of OS memory virtualization

 Chapter 14: Memory API

 Common memory errors

 Chapter 15: Address t ranslation

 Base and bounds

 HW and OS Support
May 12, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L12.2

OBJECTIVES – 5/12

 Please classify your perspective on material covered in
today’s class (44 respondents):

 1-mostly review, 5-equal new/review, 10-mostly new

 Average – 6.87 (from 6 .27)

 Please rate the pace of today’s class:

 1-slow, 5-just right, 10-fast

 Average – 5.81 (from 5.77)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.3

MATERIAL / PACE

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.4

FEEDBACK FROM 5/7

 Questions from 5/7

 Midterm rev iew

 Assignment 2 (based on Ch . 30)

 Chapter 32: Concurrency Problems

 Deadlock causes

 Deadlock prevention

 Chapter 13: In troduction to memory v i rtualization

 The address space

 Goals of OS memory virtualization

 Chapter 14: Memory API

 Common memory errors

 Chapter 15: Address t ranslation

 Base and bounds

 HW and OS Support
May 12, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L12.5

OBJECTIVES – 5/12

Average: 85.41

Mode: 95.5
Median: 88.3

1st quartile:
0 to 79.5

2nd quartile:
79.5 to 88.3

3rd quartile:
88.3 to 94.5

4th quartile:
94.5 to 99.5

Std. dev:
10.96

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.6

MIDTERM RESULTS

Distribution is log normal

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.2Slides by Wes J. Lloyd

 Questions 5, 6 , 10, 11:

 When I transferred this question to Canvas,
I changed job D’s arrival time from T=20 to T=10

 My solution accidentally did not capture this change

 Initial answers in Canvas incorrectly scored these questions

 Scores have been updated, please verify scoring:

 Question 5: 25 (turnaround time job D) +1

 Question 6: 28.8 (average turnaround time all jobs) +1

 Question 10: 20 (response time job D) +1

 Question 11: 16.3 (average response time all jobs) +1

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.7

NOTES ON SCORING

 Question 34:

 MLFQ Scheduler Question

 How many jobs execute in the medium priority queue?

 This question was simply asking of jobs A, B, C, how many of
them ran at some point in the medium priority queue

(this question can be answered using only the starter graph)

 Answer: 3

 I have also accepted as an answer to the questions, the total
number of timer units jobs ran in the medium priority queue

 Second answer: 24 (ok)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.8

NOTES ON SCORING - 2

 Question 48:

 Classify the API:

 pthread_mutex_timelock()

 This API is both BLOCKING (for a while) and NON-BLOCKING, so
the best answer was “all of the above”

 Partial credit for BLOCKING or NON-BLOCKING

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.9

NOTES ON SCORING - 3

 All other questions have been reviewed for partial credit,
and Canvas grading interpretation

 Canvas autograder is sensitive and wants exact answers

 Where answers were not recognized, I have manually added
points

 Please review scoring for correctness,
and notify of any issues / questions

 Midterm questions ?

 Special session - midterm review:
recording LIVE on Wed May 13 @ 5:50p

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.10

NOTES ON SCORING - 4

 Questions from 5/7

 Midterm rev iew

 Assignment 2 (based on Ch . 30)

 Chapter 32: Concurrency Problems

 Deadlock causes

 Deadlock prevention

 Chapter 13: In troduction to memory v i rtualization

 The address space

 Goals of OS memory virtualization

 Chapter 14: Memory API

 Common memory errors

 Chapter 15: Address t ranslation

 Base and bounds

 HW and OS Support
May 12, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L12.11

OBJECTIVES – 5/12

CHAPTER 32 –
CONCURRENCY

PROBLEMS

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L12.12

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.3Slides by Wes J. Lloyd

 Questions from 5/7

 Midterm rev iew

 Assignment 2 (based on Ch . 30)

 Chapter 32: Concurrency Problems

 Deadlock causes

 Deadlock prevention

 Chapter 13: In troduction to memory v i rtualization

 The address space

 Goals of OS memory virtualization

 Chapter 14: Memory API

 Common memory errors

 Chapter 15: Address t ranslation

 Base and bounds

 HW and OS Support
May 12, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L12.13

OBJECTIVES – 5/12

Majority of concurrency bugs

Most common:

Atomicity violation: forget to use locks

Order violation: failure to initialize lock/condition
before use

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.14

NON-DEADLOCK BUGS

 Add locks for all uses of: thd->proc_info

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.15

ATOMICITY VIOLATION - SOLUTION

 Use condition & signal to enforce order

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.16

ORDER VIOLATION - SOLUTION

 Use condition & signal to enforce order

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.17

ORDER VIOLATION – SOLUTION - 2

 Presence of a cycle in code

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, waits for lock L1

 Both threads can block, unless
one manages to acquire both locks

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.18

DEADLOCK BUGS

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.4Slides by Wes J. Lloyd

 Complex code
 Must avoid circular dependencies – can be hard to find…

 Encapsulation hides potential locking conflicts
 Easy-to-use APIs embed locks inside

 Programmer doesn’t know they are there

 Consider the Java Vector class:

 Vector is thread safe (synchronized) by design

 If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.19

REASONS FOR DEADLOCKS

 Four conditions are required for dead lock to occur

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.20

CONDITIONS FOR DEADLOCK

 Build wait-free data structures

 Eliminate locks altogether

 Build structures using CompareAndSwap atomic CPU (HW)
instruction

 C pseudo code for CompareAndSwap

 Hardware executes this code atomically

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.21

PREVENTION – MUTUAL EXCLUSION

Recall atomic increment

Compare and Swap tries over and over until
successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.22

PREVENTION – MUTUAL EXCLUSION - 2

Consider list insertion

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.23

MUTUAL EXCLUSION: LIST INSERTION

 Lock based implementation

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.24

MUTUAL EXCLUSION – LIST INSERTION - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.5Slides by Wes J. Lloyd

Wait free (no lock) implementation

Assign &head to n (new node ptr)

Only when head = n->next

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.25

MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {
2 node_t *n = malloc(sizeof(node_t));
3 assert(n != NULL);
4 n->value = value;
5 do {
6 n->next = head;
7 } while (CompareAndSwap(&head, n->next, n));
8 }

 Four conditions are required for dead lock to occur

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.26

CONDITIONS FOR DEADLOCK

 Problem: acquire all locks atomically

 Solution: use a “lock” “lock”… (like a guard lock)

 Effective solution – guarantees no race conditions while
acquiring L1, L2, etc.

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code
 Acts Lowers lock granularity

 Encapsulation: consider the Java Vector class…

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.27

PREVENTION LOCK – HOLD AND WAIT

 Four conditions are required for dead lock to occur

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.28

CONDITIONS FOR DEADLOCK

When acquiring locks, don’t BLOCK forever if
unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.29

PREVENTION – NO PREEMPTION

Can lead to livelock

 Two threads execute code in parallel
always fail to obtain both locks

 Fix: add random delay

Allows one thread to win the
livelock race!

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.30

NO PREEMPTION – LIVELOCKS PROBLEM

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.6Slides by Wes J. Lloyd

Four conditions are required for dead lock to occur

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.31

CONDITIONS FOR DEADLOCK

Provide total ordering of lock acquisition
throughout code
Always acquire locks in same order

L1, L2, L3, …

Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire
program

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.32

PREVENTION – CIRCULAR WAIT

 If any of the following conditions DOES NOT
EXSIST, describe why deadlock can not occur?

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.33

CONDITIONS FOR DEADLOCK

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.3
4

Consider a smart scheduler

Scheduler knows which locks threads use

Consider this scenario:

4 Threads (T1, T2, T3, T4)

2 Locks (L1, L2)

 Lock requirements of threads:

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.35

DEADLOCK AVOIDANCE
VIA INTELLIGENT SCHEDULING

Scheduler produces schedule:

No deadlock can occur

Consider:

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.36

INTELLIGENT SCHEDULING - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.7Slides by Wes J. Lloyd

 Scheduler produces schedule

 Scheduler must be conservative and not take risks

 Slows down execution – many threads

 There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.37

INTELLIGENT SCHEDULING - 3

 Allow deadlock to occasionally occur and then take some
action.

 Example: When OS freezes, reboot…

 How often is this acceptable?
 Once per year

 Once per month

 Once per day

 Consider the effort tradeoff of finding every deadlock bug

 Many database systems employ deadlock detection and
recovery techniques.

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.38

DETECT AND RECOVER

TCSS 422 WILL RETURN
AT ~2:48PM

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.3
9

CHAPTER 13:
ADDRESS SPACES

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L12.40

 Questions from 5/7

 Midterm rev iew

 Assignment 2 (based on Ch . 30)

 Chapter 32: Concurrency Problems

 Deadlock causes

 Deadlock prevention

 Chapter 13: In troduction to memory v i rtualization

 The address space

 Goals of OS memory virtualization

 Chapter 14: Memory API

 Common memory errors

 Chapter 15: Address t ranslation

 Base and bounds

 HW and OS Support
May 12, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L12.41

OBJECTIVES – 5/12

 What is memory vir tualization?

 This is not “virtual” memory,

 Classic use of disk space as additional RAM

When available RAM was low

 Less common recently

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.42

MEMORY VIRTUALIZATION

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.8Slides by Wes J. Lloyd

 Presentation of system memory to each process

 Appears as if each process can access the entire
machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.43

MEMORY VIRTUALIZATION - 2

Process A Process B Process C

 Easier to program
 Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage
and share memory among processes

 Isolation
 From other processes: easier to code

 Protection
 From other processes
 From programmer error (segmentation fault)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.44

MOTIVATION FOR
MEMORY VIRTUALIZATION

 Load one process at a time into memory

Poor memory utilization

 Little abstraction

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.45

EARLY MEMORY MANAGEMENT

 Later machines supported running multiple
processes

 Swap out processes during I/O waits to
increase system utilization and efficiency

 Swap entire memory of a process to disk
for context switch

 Too slow, especially for large processes

 Solution
 Leave processes in memory

 Need to protect from errant memory
accesses in a multiprocessing environment

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.46

MULTIPROGRAMMING
WITH SHARED MEMORY

Easy-to-use abstraction of physical
memory for a process

Main elements:

Program code

Stack

Heap

Example: 16KB address space

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.47

ADDRESS SPACE

 Code
 Program code

 Stack
 Program counter (PC)

 Local variables

 Parameter variables

 Return values (for functions)

 Heap
 Dynamic storage

 Malloc() new()

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.48

ADDRESS SPACE - 2

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.9Slides by Wes J. Lloyd

 Program code
 Static size

 Heap and stack
 Dynamic size

 Grow and shrink during program execution

 Placed at opposite ends

 Addresses are vir tual
 They must be physically mapped by the OS

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.49

ADDRESS SPACE - 3

Every address is virtual

OS translates virtual to physical addresses

EXAMPLE: virtual.c

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.50

VIRTUAL ADDRESSING

 Output from 64-bit Linux:

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.51

VIRTUAL ADDRESSING - 2

location of code: 0x400686
location of heap: 0x1129420
location of stack: 0x7ffe040d77e4

 Transparency

Memory shouldn’t appear virtualized to the program

 OS multiplexes memory among different jobs behind the
scenes

 Protection

 Isolation among processes

 OS itself must be isolated

 One program should not be able to affect another
(or the OS)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.52

GOALS OF
OS MEMORY VIRTUALIZATION

Efficiency
Time
 Performance: virtualization must be fast

Space
 Virtualization must not waste space
 Consider data structures for organizing memory
 Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluating memory
virtualization schemes

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.53

GOALS - 2

CHAPTER 14: THE
MEMORY API

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L12.54

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.10Slides by Wes J. Lloyd

 Questions from 5/7

 Midterm rev iew

 Assignment 2 (based on Ch . 30)

 Chapter 32: Concurrency Problems

 Deadlock causes

 Deadlock prevention

 Chapter 13: In troduction to memory v i rtualization

 The address space

 Goals of OS memory virtualization

 Chapter 14: Memory API

 Common memory errors

 Chapter 15: Address t ranslation

 Base and bounds

 HW and OS Support
May 12, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L12.55

OBJECTIVES – 5/12

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() often used to ask the system how large a given
datatype or struct is

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.56

MALLOC

 Not safe to assume
data type sizes using
different compilers,
systems

 Dynamic array of 10 ints

 Static array of 10 ints

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.57

SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.58

FREE()

59

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

60

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247;
return &a;

}

void set_magic_number_b()
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$./pointer_error
The magic number is=53247
The magic number is=11111

What will this code do?

We have not changed *x but
the value has changed!!

Why?

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.11Slides by Wes J. Lloyd

 Dangling pointers arise when a variable referred (a) goes
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location
of the deallocated memory (a),
which has now been reclaimed for (b).

DANGLING POINTER (1/2)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.61

Fortunately in the case, a compiler warning
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int*
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have
gone “out of scope”

DANGLING POINTER (2/2)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.62

 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…
 size_t num : number of blocks to allocate

 size_t size : size of each block(in bytes)

 Calloc() prevents…

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.63

CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address
 New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc,
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c
 EXAMPLE: nom.c

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.64

REALLOC()

 Can’t deallocate twice

 Second call core dumps

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.65

DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory
for a user program

 See man page

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.66

SYSTEM CALLS

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.12Slides by Wes J. Lloyd

CHAPTER 15: ADDRESS
TRANSLATION

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma L12.67

 Questions from 5/7

 Midterm rev iew

 Assignment 2 (based on Ch . 30)

 Chapter 32: Concurrency Problems

 Deadlock causes

 Deadlock prevention

 Chapter 13: In troduction to memory v i rtualization

 The address space

 Goals of OS memory virtualization

 Chapter 14: Memory API

 Common memory errors

 Chapter 15: Address t ranslation

 Base and bounds

 HW and OS Support
May 12, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma
L12.68

OBJECTIVES – 5/12

 Address translation

 Base and bounds

 HW and OS Support

 Memory segments

 Memory fragmentation

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.69

CH. 15: OBJECTIVES

 64KB
Address space
example

 Translation:
mapping
vir tual to
physical

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.70

ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register
 Stores size of program address space (16KB)

 OS verifies that every address:

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.71

BASE AND BOUNDS

0 ≤ 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr) ↑
 Phy addr = virt addr + base reg

 32896 = 128 + 32768 (base)

 Execute instruction
 Load from address (var x is @ 15kb=15360)

 48128 = 15360 + 32768 (base) -- found x…

 Bounds register: terminate process if
 ACCESS VIOLATION: Virtual address > bounds reg

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.72

INSTRUCTION EXAMPLE

Int x

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.13Slides by Wes J. Lloyd

 MMU
 Portion of the CPU dedicated to address translation

 Contains base & bounds registers

 Base & Bounds Example:
 Consider address translation

 4 KB (4096 bytes) address space, loaded at 16 KB physical location

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.73

MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.74

DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in
bounds

Translation circuitry, check limits

Privileged instruction(s) to
update base / bounds regs

Instructions for modifying base/bound
registers

Privileged instruction(s)
to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.

 For base and bounds OS support required

When process starts running
 Allocate address space in physical memory

When a process is terminated
 Reclaiming memory for use

When context switch occurs
 Saving and storing the base-bounds pair

 Exception handlers
 Function pointers set at OS boot time

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.75

OS SUPPORT FOR MEMORY
VIRTUALIZATION

 OS searches for free space for new process
 Free list: data structure that tracks available memory slots

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.76

OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.77

OS: WHEN PROCESS IS TERMINATED

 OS must save base and bounds registers
 Saved to the Process Control Block PCB (task_struct in Linux)

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.78

OS: WHEN CONTEXT SWITCH OCCURS

TCSS 422 B – Spring 2020
School of Engineering and Technology

5/14/2020

L12.14Slides by Wes J. Lloyd

 OS can move process data when not running

1. OS deschedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it was even moved!

May 12, 2020 TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L12.79

DYNAMIC RELOCATION QUESTIONS

TCSS 422
OFFICE HOURS

WILL RETURN IN A FEW
MINUTES

