TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Condition Variables,
Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

Rlavig2020 School of Engineering and Technology, University of Washington il Tacoma

OBJECTIVES - 5/7

® Questions from 4/30
® Quiz 2 (available until May 11, 11:59p AOE)
= Assignment 1 (May 7 2> May 10, 11:59p AOE)
= Assignment 2 (based on Ch. 30, posted ~May 11)
= Chapter 30: Condition Variables

= Producer/Consumetr

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 7, 2020

L10.2

Lioyd

5/7/2020

L10.1

TCSS 422 B — Spring 2020
School of Engineering and Technology

MATERIAL / PACE

® Please classify your perspective on material covered in
today’s class (43 respondents):

® 1-mostly review, 5-equal new/review, 10-mostly nhew
= Average - 6.27 (¥ from 7.30)

® Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.77 (from 5.92)

TCSS422: Operating Systems [Spring 2020]

Mayizz2020 School of Engineering and Technology, University of Washington - Tacoma

L10.3

FEEDBACK FROM 4/30

TCSS422: Operating Systems [Spring 2020]

Lk 7 2Py School of Engineering and Technology, University of Washington - Tacoma

L10.4

Slides by Wes J. Lloyd

5/7/2020

L10.2

TCSS 422 B — Spring 2020 5/7/2020
School of Engineering and Technology

OBJECTIVES - 5/7

® Questions from 4/30
® Quiz 2 (available until May 11, 11:59p AOE)
= Assignment 1 (May 7 > May 10, 11:59p AOE)
= Assighment 2 (based on Ch. 30, posted ~May 11)
= Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L105

May 7, 2020

OBJECTIVES - 5/7

® Questions from 4/30
® Quiz 2 (available until May 11, 11:59p AOE)
= Assignment 1 (May 7 2> May 10, 11:59p AOE)
= Assignment 2 (based on Ch. 30, posted ~May 11)
= Chapter 30: Condition Variables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma Li06

May 7, 2020

Slides by Wes J. Lloyd L10.3

TCSS 422 B — Spring 2020
School of Engineering and Technology

OBJECTIVES - 5/7

® Questions from 4/30
® Quiz 2 (available until May 11, 11:59p AOE)
= Assignment 1 (May 7 > May 10, 11:59p AOE)

= Assighment 2 (based on Ch. 30, posted ~May 11)

= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L10.7

May 7, 2020

CHAPTER 30 -

CONDITION VARIABLES

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd

5/7/2020

L10.4

TCSS 422 B — Spring 2020
School of Engineering and Technology

OBJECTIVES - 5/7

® Questions from 4/30

® Quiz 2 (available until May 11, 11:59p AOE)

= Assignment 1 (May 7 > May 10, 11:59p AOE)
= Assighment 2 (based on Ch. 30, posted ~May 11)

= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions

= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L10.9

execution

CONDITION VARIABLES

®"There are many cases where a thread wants to
wait for another thread before proceeding with

®m Consider when a precondition must be fulfilled
before it is meaningful to proceed ...

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.10

Slides by Wes J. Lloyd

5/7/2020

L10.5

TCSS 422 B - Spring 2020

School of Engineering and Technology

CONDITION VARIABLES - 2

® Support a signaling mechanism to alert ~
threads when preconditions have been satisfied

® Eliminate busy waiting

m Alert one or more threads to “consume” a result, or
respond to state changes in the application

m Signal: wakes one thread (thread waiting longest)
broadcast wakes all threads (ordering by the 0S)

m Threads are placed on (FIFO) queue to WAIT for signals

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.11

CONDITION VARIABLES - 3

® Condition variable

H pthread cond t c; |

= Requires initialization

® Condition API calls

pthread cond wait (pthread cond t *c, pthread mutex t *m); /7 wait ()
pthread cond signal(pthread cond t *c): // signal ()

= signal()

® wait() accepts a mutex parameter
= Releases lock, puts thread to sleep, thread added to FIFO queue

= Wakes up thread, awakening thread acquires lock

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.12

Slides by Wes J. Lloyd

5/7/2020

L10.6

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

CONDITION VARIABLES - QUESTIONS

= Why would we want to put waiting threads on a queue?
why not use a stack?
= Queue (FIFO), Stack (LIFO)

= Why do we want to not busily wait for the lock to become
available?

= Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

= A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?
= All threads woken up in FIFO order - based on when started to wait

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1113

May 7, 2020

MATRIX GENERATOR

Matrix generation example

Chapter 30
sighal.c

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1114

May 7, 2020

Lloyd

5/7/2020

L10.7

TCSS 422 B — Spring 2020 5/7/2020
School of Engineering and Technology

MATRIX GENERATOR

® The worker thread produces a matrix
= Matrix stored using shared global pointer
® The main thread consumes the matrix
= Calculates the average element
= Display the matrix

® What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

® Example program: “nosignal.c”

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1115

May 7, 2020

ATTEMPT TO USE CONDITION VARIABLE

WITHOUT A WHILE STATEMENT

void thr exit() { < Child calls
done = 1;
Pthread cond signal (&c);

}

void thr_join() { € Parent calls
if (done == 0)
Pthread cond wait(&c):;

WMo~ Gy W

}

® Subtle race condition introduced
= Parent thread calls thr_join() and executes comparison (line 7)
® Context switches to the child

= The child runs thr_exit() and signals the parent, but the parent
is not waiting yet. (parent has not reached line 8)

= The signal is lost !
® The parent deadlocks

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1116

May 7, 2020

Slides by Wes J. Lloyd L10.8

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

PRODUCER / CONSUMER

Work Queue

< il

TCSS422: Operating Systems [Spring 2020]

Mayiz;32020 School of Engineering and Technology, University of Washington - Tacoma

L11.17

PRODUCER / CONSUMER

= Producer
=" Produces items - e.g. child the makes matricies
= Places them in a buffer
Example: the buffer size is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer
= Qur example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
B Multithreaded web server example
= Http requests placed into work queue; threads process

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1118

May 7, 2020

Lloyd

5/7/2020

L10.9

TCSS 422 B - Spring 2020

School of Engineering and Technology

PRODUCER / CONSUMER - 2

® Producer / Consumer is also known as Bounded Buffer

® Bounded buffer

= Similar to piping output from one Linux process to another
= grep pthread signal.c | wc -I

= Synchronized access:
sends output from grep = wc as it is produced

= File stream

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.19

PUT/GET ROUTINES

®m Buffer is a one element shared data structure (int)
® Producer “puts” data, Consumer “gets” data
= “Bounded Buffer” shared data structure requires

School of Engineering and Technology, University of Washington - Tacoma

synchronization
1 int buffer;
2 int count = 0; // initially, empty
3
4 void put(int value) {
5 assert (count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert (count == 1);
12 count = 0;
13 return buffer;
14 }

May 7, 2020 TCSS422: Operating Systems [Spring 2020] 111.20

Slides by Wes J. Lloyd

5/7/2020

L10.10

TCSS 422 B - Spring 2020

School of Engineering and Technology

PRODUCER / CONSUMER - 3

® Producer adds data
®m Consumer removes data (busy waiting)
= Without synchronization:

1. Producer Function 2. Consumer Function

1 void *producer(void *arg) {
2 int 7
3 int loops = (int) arg:
4 for (1 = 0; 1 < loops: i++) {
5 put (1) ;5
6 }
1 }
8
9 void *consumer (void *arg) {
10 int i;
Tl while (1) {
12 int tmp = get():
13 printf ("$d\n", tmp);
14 }
15 }
May 7, 2020 TCSS422: Operating Systems [Spring 2020] 1121

School of Engineering and Technology, University of Washington - Tacoma

PRODUCER / CONSUMER - 3

® The shared data structure needs synchronization!

1 cond_t cond;

2 mutex t mutex;

3

4 void *producer (void *arg) {

5 int i;

[3 or (1 = 0; 1 < loops; i++) { Producer

T » Pthread mutex lock(&mutex): /7 pl

8 if (count == 1) // p2

9 Pthread cond wait (scond, &mutex); f{ip3

10 put(i); // pi

ki Pthread_cond signal (&cond) ; /4 p5

12 Pthread mutex_unlock(amutex); // pe

13 }

14 }

L

16 void *consumer (void *arg) {

17 int i

18 for (i = 0; i < loops; i++) {

19 » Pthread mutex lock(&amutex); i o
May 7, 2020 TCSS422: Operating Systems [Spring 2020] 11.22

School of Engineering and Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

5/7/2020

L10.11

TCSS 422 B — Spring 2020
School of Engineering and Technology

PRODUCER/CONSUMER

if (count == 0)

Pthread_cond_wait (&cond, é&mutex);

int tmp = get();
Pthread cond signal (&cond) ;

Pthread mutex_unlock (émutex) ;
printf ("$d\n", tmp);

Consumer

® This code as-is works with just:
(1) Producer
(1) Consumer

® PROBLEM: no while. If thread wakes up it MUST execute
® |f we scale to (2+) consumer’s it fails
= How can it be fixed ?

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.23

® Two threads

Legend
c1/p1-lock

c2/p2- check var
c3/p3- wait

c4- put()

p4- get()

c5/p5- signal
c6/p6- unlock

EXECUTION TRACE:

NO WHILE, 1 PRODUCER, 2 CONSUMERS

T. State Te2 State T, State Count Comment
cl Running Ready Ready 0
c2 Running Ready Ready 0
» c3 Sleep Ready Ready 0 Nothing to get
Sleep Ready pl Running 0
Sleep Ready p2 Running 0
Sleep Read pd Running 1: Buffer now full
Ready Ready p5 Running 1 T4 awoken
Ready Ready p6 Running 1
Ready Ready pl Running ik
Ready Ready p2 Running 1
Ready Read p3 Sleep 1: Buffer full; sleep
Ready| el Running Sleep 1 T, sneaks in ...
Ready c2 Running Sleep 1
Ready c4 Running Sleep 0 ... and grabs data
Ready 5 Running Ready 0 T, awoken
Ready] c6 Running Ready 0
» cd Running Ready Ready 0 Oh oh! No data

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.24

Slides by Wes J. Lloyd

5/7/2020

L10.12

TCSS 422 B — Spring 2020
School of Engineering and Technology

PRODUCER/CONSUMER

SYNCHRONIZATION

= T, needs to wake T, to T,

= When producer threads awake, they do not check if there is
any data in the buffer...

= Need “while” statement, “if” statement is insufficient ...

= What if T, puts a value, wakes T,; whom consumes the value

= Then T, has a value to put, but T;,'s signal on &cond wakes T,
® There is nothing for T,, consume, so T, sleeps
" T.4, Teo, and T, all sleep forever

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.25

EXECUTION TRACE:

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS
Ty State T2 State T State Count Comment
cl Running Ready Ready 0
2 Running Ready Ready 0
c3 Sleep Ready Ready 0 Nothing to get
Legend Sleep cl Running Ready 0
C1 /p1 - IOCk Sleep c2 Running Ready 0
02/p2_ Check var Sleep c3 Sleep Ready 0 Nothing to get
C3/p3' Wa|t Sleep Sleep pl Running 0
04_ put() Sleep Sleep p2 Runn!ng 0
Sleep Sleep pd Running i Buffer now full
p4- get() * Ready Sleep p5 Running 1 T, awoken
C5/p5- Slgnal Ready Sleep p6 Running il
06/p6' UnIOCk Ready Sleep pl Running il
Ready Sleep p2 Running 1
Ready Sleep p3 Sleep i Must sleep (full)
» c2 Running Sleep Sleep 1 Recheck condition
c4 Running Sleep Sleep 0 T,; grabs data
» c5 Running Ready Sleep 0 Oops! Woke T,
Lk 7 2Py ;Er?iilzif gr?;i;ac::e':'ignzy:;edm‘lig‘:\!ggi? fJ(r)l]iversity of Washington - Tacoma L11.26

Slides by Wes J. Lloyd

5/7/2020

L10.13

TCSS 422 B — Spring 2020 5/7/2020
School of Engineering and Technology

EXECUTION TRACE - 2

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

= T., runs, no data to consume

T State T2 State T, State Count Comment

L_ege_nd (cont)
C1/p1 - IOCk 6 Running Ready Sleep 0
02/p2' CheCk var cl Running Ready Sleep 0
C3/p3- Walt c? Running Ready Sleep 0
c4- put() c3 Sleep Ready Sleep 0 Nothing to get
p4_ get() Sleep c2 Running Sleep 0
CS/pS' Slg nal Sleep £3 Sleep Sleep 0 Everyone asleep ...
c6/p6- unlock

TCSS422: Operating Systems [Spring 2020]

Mayizz2020 School of Engineering and Technology, University of Washington - Tacoma

L11.27

TWO CONDITIONS

® Required w/ multiple producer and consumer threads
® Use two condition variables: empty & full

= One condition handles the producer

= the other the consumer

full;
1
2 mutex t mutex;
3
4 void *producer (void *arg) {
5 int i;
6 for (1 = 0; 1 < loops; i++) {
7 Pthread mutex lock (&mutex) ;
8 while (count == 1)
9 Pthread cond wait (&empty, &mutex);
10 put (i) &full);
11 Pthread cond signal (&«r1i1);
12 Pthread mutex unlock (&mutex) ;
13 }
14 }
15
TCSS422: Operating Systems [Spring 2020
Lk 7 2Py School of Er?gineerigngyand Teih?mloggy, Un]iversity of Washington - Tacoma L11.28

Slides by Wes J. Lloyd L10.14

TCSS 422 B — Spring 2020 5/7/2020
School of Engineering and Technology

FINAL PRODUCER/CONSUMER

® Change buffer from int, to int buffer[MAX]
= Add indexing variables
® >> Becomes BOUNDED BUFFER, can store multiple matricies

s int buffer[MAX];

2 int fill = 0;

3 int use = 0;

4 int count = 0;

5

& void put (int value) {

) buffer[fill] = value;

8 £i11 = (£ill + 1) % MAX:

9 count++;

10 }

1%

12 int get() {

13 int tmp = buffer[use];

14 use = (use + 1) % MAX;

15 count--;

16 return tmp;

k) }

TCSS422: Operating Systems [Spring 2020

Mayizz2020 School of Er:)gineerigngyand Te£h?10|oggy, Un]iversity of Washington - Tacoma t11.29

L
2 mutex t mutex;
3
4 void *producer(wvoid *arg) {
5 int i;
& for (i = 0; i < loops:; i++) {
7 Pthread mutex lock(smutex); /7 pl
8 while (count == MAX) // p2
9 Pthread cond wait (sempty, smutex); ffp3
10 put (i) s // pé
il Pthread_cond_signal (&full); £ 'p5
12 Pthread mutex unlock(smutex); /! pe
13 }
14 }
15
16 void *consumer(void *arg) {
17 AN i
18 for (i = 0; i < loops; i++) {
19 Pthread mutex lock(amutex); gt el
20 while (count == 0) // c2
21 Pthread cond wait(sfull, &mutex):; Ff e3
22 int tmp = get (): ’ /7 el
TCSS422: Operating Systems [Spring 2020
MaviZa2020 School of Er?gineerigngyand Teih?mloggy, Un]iversity of Washington - Tacoma 111.30

Slides by Wes J. Lloyd L10.15

TCSS 422 B — Spring 2020 5/7/2020
School of Engineering and Technology

FINAL P/C - 3

(Cont.)

23 Pthread cond signal (semptv); ch
24 Pthread mutex unlock(&mutex); cé
25 printf ("%d\n", tmp);

26 }

27 1

® Producer: only sleeps when buffer is full
®m Consumer: only sleeps if buffers are empty

TCSS422: Operating Systems [Spring 2020]

Mayizz2020 School of Engineering and Technology, University of Washington - Tacoma

L11.31

Using one condition variable, and no while loop is
sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Slides by Wes J. Lloyd L10.16

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

| ||
. Using one condition variable, with a while loop is .

sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pallev.com/app ..

| ||
“ Using two condition variables, and a while loop is "

sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

Lloyd

5/7/2020

L10.17

TCSS 422 B — Spring 2020
School of Engineering and Technology

scarce

COVERING CONDITIONS

® A condition that covers all cases (conditions):
® Excellent use case for pthread_cond_broadcast

® Consider memory allocation:

= When a program deals with huge memory
allocation/deallocation on the heap

= Access to the heap must be managed when memory is

PREVENT: Out of memory:
- queue requests until memory is free

= Which thread should be woken up?

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.35

COVERING CONDITIONS - 2

@~ U W N

// how many bytes of the heap are free?

int bytesLeft = MAX HEAP SIZE;

// need lock and condition too
cond_t c;
mutex t m;

void *

allocate(int size) {

Pthread _mutex_ lock (&m) ;
»while (bytesLeft < size)

Pthread_cond_wait(&c, &m):

Check available memory

void: *pEri= .ped // get mem from heap
bytesLeft -= size;

Pthread mutex unlock(am);

return ptr;

}

void free(void *ptr, int size) {
Pthread_mutex_lock(&m);

bytesLeft += size;
//| Broadcast
Pthread mutex unlock(&m):

}

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.36

Slides by Wes J. Lloyd

5/7/2020

L10.18

TCSS 422 B - Spring 2020 5/7/2020
School of Engineering and Technology

COVER CONDITIONS - 3

= Broadcast awakens all blocked threads requesting memory

®m Each thread evaluates if there’s enough memory: (bytesLeft <
size)
= Reject: requests that cannot be fulfilled- go back to sleep
= Insufficient memory
= Run: requests which can be fulfilled
= with newly available memory!

® Another use case: coordinate a group of busy threads to
gracefully end, to EXIT the program

= Overhead
= Many threads may be awoken which can’t execute

TCSS422: Operating Systems [Spring 2020]

L11.37
School of Engineering and Technology, University of Washington - Tacoma

May 7, 2020

TCSS 422 WILL RETURN

AT ~2:40PM

TCSS422: Operating Systems [Spring 2020]

Magaaz School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd L10.19

TCSS 422 B - Spring 2020 5/7/2020
School of Engineering and Technology

CHAPTER 31: SEMAPHORES

= Offers a combined C language construct that can assume the
role of a lock or a condition variable depending on usage

= Allows fewer concurrency related variables in your code
= Potentially makes code more ambiguous

= For this reason, with limited time in a
10-week quarter, we do not cover

= Ch. 31.6 - Dining Philosophers Problem

= Classic computer science problem about \ s//
sharing eating utensils
= Each philosopher tries to obtain two forks Y i

in order to eat /
= Mimics deadlock as there are not enough forks
= Solution is to have one left-handed philosopher @ f g
that grabs forks in opposite order

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 7, 2020 111.39

CHAPTER 32 -

CONCURRENCY
PROBLEMS

TCSS422: Operating Systems [Spring 2020]

Magaaz School of Engineering and Technology, University of Washington -

Slides by Wes J. Lloyd L10.20

TCSS 422 B - Spring 2020 5/7/2020

School of Engineering and Technology

OBJECTIVES - 5/7

® Questions from 4/30
® Quiz 2 (available until May 11, 11:59p AOE)
= Assignment 1 (May 7 > May 10, 11:59p AOE)
= Assighment 2 (based on Ch. 30, posted ~May 11)
= Chapter 30: Condition Variables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1041

May 7, 2020

CONCURRENCY BUGS IN

OPEN SOURCE SOFTWARE

m “Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”

=Shan Lu et al.

= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16

Open Office Office Suite 6 2

Total 74 31

May 7, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

L11.42

Slides by Wes J. Lloyd

L10.21

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

=Order violation: failure to initialize lock/condition
before use

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 7, 2020

L11.43

ATOMICITY VIOLATION - MYSQL

= Two threads access the proc_info field in struct thd

ENULLisOinC

B Mutually exclusive access to shared memory among
separate threads is not enforced (e.g. non-atomic)

= Simple example: proc_info deleted

1 Threadl::
2
3
. 4 fputs (thd->proc_info , ..):

Programmer intended 5 -

variable to be accessed BE) |5 |

atomically... 7
8 L
5 Ithd—>proc_info = N‘ULL;I

TCSS422: Operating Systems [Spring 2020]
Lk 7 2Py School of Engineering and Technology, University of Washington - Tacoma L1144

Lloyd

5/7/2020

L10.22

TCSS 422 B - Spring 2020

School of Engineering and Technology

ATOMICITY VIOLATION - SOLUTION

= Add locks for all uses of: thd->proc_info

1 pthread mutex t lock = PTHREARD MUTEX INITIALIZER;
2
3 Threadl: :
4 pthread mutex lock(&lock);
5 if (thd->proc_info) {
6
i fputs (thd->proc info , ..)i
8
2
10 pthread mutex unlock(&lock);
4l
12 Thread2::
13 pthread mutex lock(&lock):
14 thd-»proc_info = NULL;
15 pthread mutex unlock (&lock);
TCSS422: ratin, tem ring 202
May7, 2020 Sclfzol of g’\)geineerignzy::d ‘I:“eg?wologgy,ou?'n]iversity of Washington - Tacoma L11.45

ORDER VIOLATION BUGS

Threadl: :
void init(){

mThread = PR_CreateThread(mMain, ..):
}

Thread2: :
vold mMain(.) {
mState = mThread->State

W @ U WM

}

®mWhat if mThread is not initialized?

®m Desired order between memory accesses is flipped
mE.g. something is checked before it is set
= Example:

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.46

Slides by Wes J. Lloyd

5/7/2020

L10.23

TCSS 422 B - Spring 2020

School of Engineering and Technology

ORDER VIOLATION - SOLUTION

® Use condition & signal to enforce order

1 pthread mutex t mtLock = PTHREAD MUTEX INITIALIZER;
2 pthread cond t mtCond = PTHREAD COND INITIALIZER;
3 int mtInit = 0;
4
5 Thread 1::
3 void init () {
1
8 mThread = PR_CreateThread(mMain,..):
9
10 // signal that the thread has been created.
11 pthread mutex lock(&mtLock) ;
12 mtInit = 1;
13 IEthread cond signal (&mtCond) ;I
14 pthread mutex unlock(&mtLock);
15
le }
17
18 Thread2::
19 wvoid mMain{..){
20
TCSS422: Operating Systems [Spring 2020
MSVEZI2020 School of Er:)gineerigngyand Te£h?10|oggy, Un]iversity of Washington - Tacoma t1L.47

ORDER VIOLATION - SOLUTION - 2

= Use condition & signal to enforce order

21 // wait for the thread to be ini

22 pthread mutex lock(&mtLock) ?

23 while (mtIgit ==_0}

24 Ipthreadﬁcondﬁwait (&mtCond, &mtLock) ;I
25 pthread MUCEX UNTOCKTICLOCETY

26

27 mState = mThread->State;

28

29 }

TCSS422: Operating Systems [Spring 2020]

Lk 7 2Py School of Engineering and Technology, University of Washington - Tacoma

L11.48

Slides by Wes J. Lloyd

5/7/2020

L10.24

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

NON-DEADLOCK BUGS - 1

m97% of Non-Deadlock Bugs were
= Atomicity
=Order violations

= Consider what is involved in “spotting” these
bugs in code
= >> no use of locking constructs to search for

m Desire for automated tool support (IDE)

TCSS422: Operating Systems [Spring 2020]

Mayizz2020 School of Engineering and Technology, University of Washington - Tacoma

L11.49

NON-DEADLOCK BUGS - 2

= Atomicity
= How can we tell if a given variable is shared?
Can search the code for uses
= How do we know if all instances of its use are shared?
Can some non-synchronized, non-atomic uses be legal?
= Legal uses: before threads are created, after threads exit
Must verify the scope

®m Order violation
= Must consider all variable accesses
= Must know desired order

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

May 7, 2020

L11.50

Lloyd

5/7/2020

L10.25

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

DEADLOCK BUGS

® Presence of a cycle in code
® Thread 1 acquires lock L1, waits for lock L2
® Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2:

Holds
lock (L1); lock (L2); _—
lock (L2); lock(Ll);

2
m Both threads can block, unless ?g
one manages to acquire both locks 2
Lock L2
Holds

Lock L1

Aq pajuepy

May 7, 2020 TCSS422: Operating Systems [Spring 2020]
Y7 School of Engineering and Technology, University of Washington - Tacoma

L11.51

REASONS FOR DEADLOCKS

® Complex code

= Must avoid circular dependencies - can be hard to find...
® Encapsulation hides potential locking conflicts

= Easy-to-use APIs embed locks inside

= Programmer doesn’t know they are there
= Consider the Java Vector class:

aE Vector v1,v2;

2 v1.Addall (v2);

= Vector is thread safe (synchronized) by design

= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

May 7, 2020 TCSS422: Operating Systems [Spring 2020]
Y7 School of Engineering and Technology, University of Washington - Tacoma

L11.52

Lloyd

5/7/2020

L10.26

TCSS 422 B — Spring 2020 5/7/2020
School of Engineering and Technology

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait : ; :
resources that are being requested by the next thread in the chain
TCSS422: Operating Systems [Spring 2020]
Mayizz2020 School of Engineering and Technology, University of Washington - Tacoma L11.53

PREVENTION - MUTUAL EXCLUSION

® Build wait-free data structures
= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

m C pseudo code for CompareAndSwap
® Hardware executes this code atomically

1 int CompareAndSwap(int *address, int expected, int new){
2 if(*address == expected){

3 *address = new;

4 return 1: // sHccess

3 }

4]

7

return 0;

TCSS422: Operating Systems [Spring 2020]

Lk 7 2Py School of Engineering and Technology, University of Washington - Tacoma

L11.54

Slides by Wes J. Lloyd L10.27

TCSS 422 B — Spring 2020
School of Engineering and Technology

® Recall atomic increment

void AtomicIncrement (int *value, int amount) {
do{
int old = *value:;
twhile(CompareAndsSwap(value, old, old+amount)==0);

[S =S UV SR

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
®" When it runs it is ALWAYS atomic (at HW level)

PREVENTION - MUTUAL EXCLUSION - 2

TCSS422: Operating Systems [Spring 2020]

Mayizz2020 School of Engineering and Technology, University of Washington - Tacoma

L11.55

MUTUAL EXCLUSION: LIST INSERTION

®m Consider list insertion

void insert(int value){
node_ t * n = malloc(sizeof(node t));
assert(n != NULL);
n->value = value ;
n->next = head;
head = n:

PR NS RSV SR

TCSS422: Operating Systems [Spring 2020]

Lk 7 2Py School of Engineering and Technology, University of Washington - Tacoma

L11.56

Slides by Wes J. Lloyd

5/7/2020

L10.28

TCSS 422 B - Spring 2020

School of Engineering and Technology

= | ock based implementation

WO - oy s W

void insert (int wvalue) {
node £t * n = malloc(sizeof(node t));
assert(n != NULL);
n->value = value ;

lock(listlock); // begin critical section
n->next = head;

head = n;

unlock(listlock) ; //end critical section

MUTUAL EXCLUSION - LIST INSERTION - 2

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.57

= Wait free (no lock) implementation

O J o) Ul WM

void insert (int wvalue) {

node t *n = malloc(sizeof(node t));

assert (n != NULL);

n->value = value;

do {

n->next = head;

} while (CompareAndSwap (&head, n->next, n));

}

= Assign &head to n (nhew node ptr)
= Only when head = n->next

MUTUAL EXCLUSION - LIST INSERTION - 3

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.58

Slides by Wes J. Lloyd

5/7/2020

L10.29

TCSS 422 B - Spring 2020

School of Engineering and

Technology

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

resources

. Threads hold resources allocated to them while waiting for additional
Hold-and-wait

No preemption

Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait : ; :
resources that are being requested by the next thread in the chain
TCSS422: Operating Systems [Spring 2020]
Mayizz2020 School of Engineering and Technology, University of Washington - Tacoma L11.59

PREVENTION LOCK - HOLD AND WAIT

Problem: acquire all locks atomically
Solution: use a “lock” “lock”... (like a guard lock)

lock (prevention) ;
lock (L1);
lock (L2) ;

[E - UV SR

unlock (prevention):;

Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

Order doesn’t matter for L1, L2

Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

Encapsulation: consider the Java Vector class...

TCSS422: Operating Systems [Spring 2020]

Lk 7 2Py School of Engineering and Technology, University of Washington - Tacoma

L11.60

Slides by Wes J. Lloyd

5/7/2020

L10.30

TCSS 422 B - Spring 2020

School of Engineering and Technology

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Mutual Exclusion

Condition Description

Threads claim exclusive control of resources that they require.

Hold-and-wait

Threads hold resources allocated to them while waiting for additional
resources

*No preemption

Resources cannot be forcibly removed from threads that are holding them.

Circular wait

There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

May 7, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1161

oy
s B NO

= e STOPPING
ANY
= Eliminates deadlocks TIME

PREVENTION - NO PREEMPTION

=" When acquiring locks, don’t BLOCK forever if
unavailable...

®mpthread_mutex_trylock() - try once
®mpthread_mutex_timedlock() - try and wait awhile

May 7, 2020

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1162

Slides by Wes J. Lloyd

5/7/2020

L10.31

TCSS 422 B - Spring 2020

School of Engineering and Technology

= Fix: add random delay

=Allows one thread to win the
livelock race! " /

®Can lead to livelock

top:
lock(Ll):
if(tryLock(n2) == -1){
unlock(Ll1);
goto top;

oy o W

}

" Two threads execute code in parallel 2>
always fail to obtain both locks

NO PREEMPTION - LIVELOCKS PROBLEM

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.63

CONDITIONS FOR DEADLOCK

Condition

Mutual Exclusion

Description

Threads claim exclusive control of resources that they require.

= Four conditions are required for dead lock to occur

Hold-and-wait

Threads hold resources allocated to them while waiting for additional
resources

No preemption

Resources cannot be forcibly removed from threads that are holding them.

*Circularwait

There exists a circular chain of threads such that each thread holds one more

resources that are being requested by the next thread in the chain

May 7, 2020

TCSS422: Operating Systems [Spring 2020]
School of Engineering and Technology, University of Washington - Tacoma

L11.64

Slides by Wes J. Lloyd

5/7/2020

L10.32

TCSS 422 B — Spring 2020 5/7/2020
School of Engineering and Technology

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code

= Always acquire locks in same order
“lL1,L2,L3, ..
=Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2...

" Must carry out same ordering through entire
program

May 7, 2020 TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L11.65

CONDITIONS FOR DEADLOCK

® |f any of the following conditions DOES NOT
EXSIST, describe why deadlock can not occur?

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait : ; :
resources that are being requested by the next thread in the chain
TCSS422: Operating Systems [Spring 2020]
Lk 7 2Py School of Engineering and Technology, University of Washington - Tacoma L11.66

Slides by Wes J. Lloyd L10.33

TCSS 422 B — Spring 2020
School of Engineering and Technology

“n

The dining philosophers problem where 5
philosophers compete for 5 forks, and where a
philosopher must hold two forks to eat involves
which deadlock condition(s)?

Mutual Exclusion
Hold-and-wait
No preemption

Circular wait

All of the above

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

®Consider a smart scheduler
=Scheduler knows which locks threads use

m Consider this scenario:
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2)

®m Lock requirements of threads:

T1 T2 T3 T4
L1 yes yes no no
L2 yes yes yes no

TCSS422: Operating Systems [Spring 2020]

Lk 7 2Py School of Engineering and Technology, University of Washington - Tacoma

L11.68

Slides by Wes J. Lloyd

5/7/2020

L10.34

TCSS 422 B — Spring 2020
School of Engineering and Technology

Slides by Wes J.

INTELLIGENT SCHEDULING - 2

mScheduler produces schedule:

CPU 1

CPU 2

®ENo deadlock can occur

= Consider:
T1 T2 T3 T4
L1 yes yes yes no
L2 yes yes yes no
TCSS422: Operating Systems [Spring 2020]
Mavizazoa0 School of Engineering and Technology, University of Washington - Tacoma L1169

INTELLIGENT SCHEDULING - 3

®m Scheduler produces schedule

® Scheduler must be conservative and not take risks
® Slows down execution - many threads

® There has been limited use of these approaches given the
difficulty having intimate lock knowledge about every
thread

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L11.70

May 7, 2020

Lloyd

5/7/2020

L10.35

TCSS 422 B - Spring 2020 5/7/2020
School of Engineering and Technology

DETECT AND RECOVER

= Allow deadlock to occasionally occur and then take some
action.

= Example: When OS freezes, reboot...

® How often is this acceptable?
= Once per year
= Once per month
= Once per day
= Consider the effort tradeoff of finding every deadlock bug

® Many database systems employ deadlock detection and
recovery techniques.

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L7

May 7, 2020

QUESTIONS

Slides by Wes J. Lloyd L10.36

TCSS 422 B — Spring 2020

School of Engineering and Technology

WILL RETURN IN A FEW

MINUTES

Slides by Wes J. Lloyd

5/7/2020

L10.37

