TCSS 422 B — Spring 2020
School of Engineering and Technology

Condition Variables,
Concurrency Problems

Wes J. Lloyd
School of Engineering and Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2020]

Sz 2020 School of Engineering and Technology, University of Washington fll Tacoma

TCSS 422: OPERATING SYSTEMS

OBJECTIVES - 5/7

| = Questions from 4/30 |
= Qulz 2 (avallable untll May 11, 11:59p AOE)
= Assignment 1 (May 7 > May 10, 11:59p AOE)
= Assignment 2 (based on Ch. 30, posted ~May 11)
= Chapter 30: Condltlon Varlables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Spring 2020]

L) Th A e T T T o ey A S T = TPy

1102

MATERIAL / PACE

today’s class (43 respondents):

= Average - 6.27 ({ from 7.30)

= Please rate the pace of today’s class:
= 1-slow, 5-just right, 10-fast
= Average - 5.77 ({ from 5.92)

= Please classify your perspective on material covered in

= 1-mostly review, 5-equal new/review, 10-mostly new

May 7, 2020 Tcsz:lzz; Operating Systems [Spring 2020]

Technology, ity ington - Tacoma

1103

FEEDBACK FROM 4/30

TCS5422: Operating Systems [Spring 2020]

L) Th Az Sehoollof Erineering andTech nolosyiUnversity oWashinstonkTeconta

L1104

OBJECTIVES - 5/7

= Questlons from 4/30
| = Qulz 2 (avallable untll May 11, 11:59p AOE) |

= Assignment 1 (May 7 > May 10, 11:59p AOE)
= Assignment 2 (based on Ch. 30, posted ~May 11)
= Chapter 30: Condltlon Varlables

= Producer/Consumer

= Covering Conditions
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

May 7, 2020

TCS5422: Operating Systems [Spring 2020]
0ol of Engineeri Technology, University i - Tacoma

105

OBJECTIVES - 5/7

= Questlons from 4/30
= Qulz 2 (avallable untll May 11, 11:59p AOE)
| = Assignment 1 (May 7 > May 10, 11:59p AOE) |
= Assignment 2 (based on Ch. 30, posted ~May 11)
= Chapter 30: Condltlon Varlables
= Producer/Consumer
= Covering Conditions
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

TCS5422: Operating Systems [Spring 2020]

L) Th e Sehoollof Ergineenng andTechnolosyjUniversity ofWashinaton Sk Tecoma

L1106

Slides by Wes J. Lloyd

5/7/2020

L10.1

TCSS 422 B - Spring 2020 5/7/2020
School of Engineering and Technology

OBJECTIVES - 5/7

= Questlons from 4/30
= Qulz 2 (avallable untll May 11, 11:59p AOE)
= Assignment 1 (May 7 > May 10, 11:59p AOE)
| = Assignment 2 (based on Ch. 30, posted ~May 11) |

= Chapter 30: Condltlon Varlables CHA PTER 30 =

= Producer/Consumer

= Covering Conditions CON DITION VARIABLES
= Chapter 32: Concurrency Problems

= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCSS422: Operating Systems [Spring 2020]

TC55422: Operating Systems [Spring 2020]
W 2 20D 100l of Engineeri i School of Engineering and Technology, University of Washington -

nology, ity ington - Tacoma

107

May 7, 2020

OBJECTIVES - 5/7 CONDITION VARIABLES

= Questlons from 4/30
= Qulz 2 (avallable until May 11, 11:59p AOE)
= Assignment 1 (May 7 > May 10, 11:59p AOE)

" There are many cases where a thread wants to
wait for another thread before proceeding with

execution
= Assighment 2 (based on Ch. 30, posted ~May 11)
= Chapter 30: Condltlon Varlables
= Producer/Consumer mConsider when a precondition must be fulfilled
= Covering Conditions before it is meaningful to proceed ...
= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

CONDITION VARIABLES - 2

CONDITION VARIABLES - 3

= Support a signaling mechanism to alert = Condition variable
threads when preconditions have been satisfied pthread cond t cf

Y o] = Requires initialization
= Eliminate busy waiting

« » = Condition API calls
= Alert one or more threads to “consume” a result, or

. . . pthread_cond_wait (pthread cond_t *c, pthread mutex_t *m); // wait(
respond to state changes in the application pthread_cond_signal (pthread_cond_t *c); /1 signal(
= Threads are placed on (FIFO) queue to WAIT for signals = wait() accepts a mutex parameter

= Releases lock, puts thread to sleep, thread added to FIFO queue

= Signal: wakes one thread (thread waiting longest)
broadcast wakes all threads (ordering by the 0S) = signal()

= Wakes up thread, awakening thread acquires lock

May 7, 2020 Tcsz:lzg; Operating Systems [Spring 2020]

R ity . F— [SEREY May 7, 2020 u12

TCS5422: Operating Systems [Spring 2020]
School of Engineeri Technology, University of Washi Tacoma

Slides by Wes J. Lloyd L10.2

TCSS 422 B — Spring 2020
School of Engineering and Technology

CONDITION VARIABLES - QUESTIONS

= Why would we want to put walting threads on a queue?
why not use a stack?
= Queue (FIFO), Stack (LIFO)

= Why do we want to not busily wait for the lock to become
available?
= Using condition variables eliminates busy waiting by putting threads
to “sleep” and yielding the CPU.

= A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?
= All threads woken up in FIFO order - based on when started to wait

May 7, 2020 TCS5422: Operating Systems [Spring 2020] 113

School of Engineering and Technology, University of Washington - Tacoma

MATRIX GENERATOR

Matrix generation example

Chapter 30
signal.c

TCS5422: Operating Systems [Spring 2020]

L) Th A o BT T T o e A S T e

utia

MATRIX GENERATOR

= The worker thread produces a matrix
= Matrix stored using shared global pointer
= The main thread consumes the matrix
= Calculates the average element
= Display the matrix

= What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

= Example program: “nosignal.c”

May 7, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma LS

ATTEMPT TO USE CONDITION VARIABLE
WITHOUT A WHILE STATEMENT

Pthread_cond_wait (sc) ;

0 void thr_exit() { € Child calls
2 done = 1;

3 Pthread_cond_signal (sc) ;

4 }

5

6 void thr_join() { € Parent calls
) if (done == 0)

8

9

}

= Subtle race condition introduced
= Parent thread calls thr_]JoIn() and executes comparison (line 7)
= Context switches to the child

= The child runs thr_exit() and signals the parent, but the parent
is not waiting yet. (parent has not reached line 8)

= The signal is lost !
= The parent deadlocks

TCS5422: Operating Systems [Spring 2020]

L) Th Az ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma

1116

PRODUCER / CONSUMER

Work Queue

T

TCSS422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma a7

May 7, 2020

PRODUCER / CONSUMER

= Producer
= Produces items - e.g. child the makes matricies
= Places them in a buffer
Example: the buffer size is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer
= Our example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
= Multithreaded web server example
= Http requests placed into work queue; threads process

TCS5422: Operating Systems [Spring 2020]

L) Th e ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma

1118

Slides by Wes J. Lloyd

5/7/2020

L10.3

TCSS 422 B — Spring 2020
School of Engineering and Technology

PRODUCER / CONSUMER - 2

= Producer / Consumer is also known as Bounded Buffer

= Bounded buffer
= Similar to piping output from one Linux process to another
= grep pthread signal.c | wec -1

= Synchronized access:
sends output from grep > wc as it is produced

= File stream

TCS5422: Operating Systems [Spring 2020]

W 2 20D AT o T B S oy ATt A T T

‘ 1119

PUT/GET ROUTINES

= Buffer is a one element shared data structure (int)
= Producer “puts” data, Consumer “gets” data
= “‘Bounded Buffer” shared data structure requires

synchronlzation
1 int buffer;
2 int count = 0;
3
4 put (int value) {
5 assert (count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert (count == 1);
12 count = 0;
13 buffer;
14 }

TCS5422: Operating Systems [Spring 2020]

L) Th A o BT T T o e A S T e

‘ 111.20 ‘

PRODUCER / CONSUMER - 3

= Producer adds data
= Consumer removes data (busy waiting)
= Without synchronization:

1. Producer Function 2. Consumer Function

1 void *producer (void *arg) (
2 int i
3 int loops = (int) arg:
4 for (i =07 i< loops: i+ (
5 put(i);
6 }
7 i
8
s
10
t b 3
12 int tmp = get();
13 printf ("sd\n", tmp);
14 }
15)
Ny 712020 TCS5422: Operating Systems [Spring 2020] ‘ o ‘

School of Engineering and Technology, University of Washington - Tacoma

PRODUCER / CONSUMER - 3

= The shared data structure needs synchronization!

T cond_t cond;

2 mutex_t mutex;

3

4 void *producer(void *arg) {

= int 13

6 for (i = 0; i < loops; i++) { Producer
g * Pthread_mutex_lock (amutex) ; 1
8 if (count == 1)

9 Pthread_cond wait(&cond, smutex);

10 put (i) D

11 Pthread_cond_signal (scond) ;

12 Pthread mutex_unlock (smutex);

13)

14 i

15

16 void *consumer(void *arg) {

13 int i;

18 for (i = 0; i < loops; i++) {

19 9 Pthread_mutex_lock (smutex) ; c1

TCS5422: Operating Systems [Spring 2020]

L) Th Az ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma

‘ 1122 ‘

PRODUCER/CONSUMER - 4

EXECUTION TRACE:
NO WHILE, 1 PRODUCER, 2 CONSUMERS

20 (count == 0)

21 Pthread_cond_wait (&cond, &mutex);

22 int tmp = get();

23 Pthread_cond_signal (&cond) ;

24 Pthread mutex_unlock (&mutex) ;

25 printf("sd\n", tmp);

26 } Consumer
27 i

= This code as-is works with just:
(1) Producer
(1) Consumer

= PROBLEM: no while. If thread wakes up it MUST execute
= |f we scale to (2+) consumer’s it fails
= How can it be fixed ?

TCS5422: Operating Systems [Spring 2020]

e Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms

‘ 11123

Slides by Wes J. Lloyd

T, | State |T,| State [T, | State |Count Comment
= Two threads <1 | Running Ready Ready 0
2 | Running Ready Ready 0
* 3| Sleep Ready Ready 0 Nothing to get
Legend Sleep Ready | pl | Rumning 0
c1/p1 - lock Sleep Ready p2 | Running 0
¢2/p2- check var Sleep Read! p4 | Running 1 Buffer now full
¢3/p3- wait §eajy §eajy pz :unnmg 1 7, awoken
eady eady | p unning
c4- put() Ready Ready | pl | Running 1
p4- get() Ready Ready | p2 | Rumning 1
c5/p5- signal Ready Read, p3 Sleep 1 Buffer full; sleep
c6/p6- unlock Reacy[lPcl | Running Sleep 1 T,q sneaks in ..
Ready | <2 | Running Sleep 1
Ready[l@Pc4 | Running Sleep 0 ..and grabs data
Ready | <5 | Running Ready 0 7, awoken
Ready[lliP<6 | Running Ready 0
* 4 | Running Ready Ready 0 Oh oh! No data

TCS5422: Operating Systems [Spring 2020]

L) Th e ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma

‘ 1124 ‘

5/7/2020

L10.4

TCSS 422 B — Spring 2020
School of Engineering and Technology

PRODUCER/CONSUMER

SYNCHRONIZATION

= When producer threads awake, they do not check if there is

any data in the buffer...

= Need “while” statement, “if” statement is Insufficlent ...

= What if T, puts a value, wakes T,; whom consumes the value
® Then T, has a value to put, but T.,’s signal on &cond wakes T,

= There is nothing for T, consume, so T, sleeps

" Te4, Teo, and T, all sleep forever

= T., needs to wake T, to T,

May 7, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

‘ 11125 ‘

EXECUTION TRACE:

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS
Ty | state |r,| state |7, | state [Count| Comment
<1 | Running Ready Ready 0
2 | Running Ready Ready 0
3 Sleep Ready Ready 0 Nothing to get
Legend Sleep | c1 | Running Ready 0
c1 /p1 - lock Sleep 2 | Running Ready 0
¢2/p2- check var Sleep | 3 Sleep Ready 0 Nothing to get
03/p3- Wait z:eep z:eep p; Zunmng (O)
eep eep | unning
c4- put() Sleep Sleep p4 | Running 1 Buffer now full
p4- get() * Ready Sleep 5 | Running 1 T,y awoken
c5/p5- signal Ready Sleep | p6 | Running 1
c6/p6- unlock Ready Sleep | pl | Running 1
Ready Sleep p2 | Running 1
Ready Sleep | p3 | Sleep 1 Must sleep (full)
<2 | Running Sleep Sleep 1 Recheck condition
4 | Running Sleep Sleep 0 T,, grabs data
* 5 | Running Ready Sleep 0 Oops! Woke T,
Moy | [OS2 T [i |

EXECUTION TRACE - 2

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

= T, runs, no data to consume

Ta| state |r,| state |7, | state |cCount| Comment
Legend o] | = | o= | oty

c1/p1-lock 6 | Running Ready Sleep 0
c2/p2- check var cl | Running Ready Sleep 0
c3/p3- wait <2 | Running Ready Sleep 0
c4- put() =] Sleep Ready Sleep 0 Nothing to get
p4_ get() S:eep <2 | Running Sleep 0
05/p5— signal Sleep 3 Sleep Sleep 0 Everyone asleep ...
c6/p6- unlock

May 7, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma

‘ 127 ‘

TWO CONDITIONS

= Required w/ multiple producer and consumer threads

= Use two condition variables: empty & full
= One condition handles the producer
= the other the consumer

1

2 mutex_t mutex;

3

4 *producer (void *arg) {

5 int i;

6 (i =0; i < loops; it++) {

7 Pthread_mutex_lock (&mutex) ;
8 (count)

9 Pthread _cond_wait (sempty, &mutex);
10 put (i); &full);
11 Pthread_cond_signal(&till);
12 Pthread mutex unlock (&mutex);
13 }

14 }

15

TCS5422: Operating Systems [Spring 2020]

FINAL PRODUCER/CONSUMER

= Change buffer from int, to int buffer[MAX]
= Add indexing variables

= >> Becomes BOUNDED BUFFER, can store multiple matricies

1
2
3
4
B
6 i put (int value) {
7 buffer[fill] = value;
8 £i11 = (£i11 + 1) % MAX:
8 count++;
10 }
1
12 et (
13 tmp = buffer[use];
14 = (use + 1) % MAX;
15 count--7
16 rn tmps
17 }
Ny 712020 TCSS422: Operating Systems [Spring 2020] ‘ 12 ‘

School of Engineering and Technology, University of Washington - Tacoma

School of Engineering and Technology, University of Washington - Tacoma

L) Th Az ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma ‘ 1128 ‘
!
2 nutex_E mutes
. -
4 void *producer(void *arg) {
5 int
6 £ ;i< loops: it+) {
7 Pthread_mutex_lock (smutex) ; pl
8 while (count == MAX) p2
9 Pthread_cond_wait (sempty, smutex); p3
10 put (i); p4
1 Pthread_cond_signal (&full); ps
12 Pthread_mutex_unlock (smutex) ; pé
13)
14)
15
16 void *consumer(void *arg) {
17 i
18 Zor (i =07 i< loops; i++) {
19 Pthread_mutex_lock (smutex) ; c
20 while (Count = 0) c
21 Pthread_cond_wait(sfull, &mutex); c
22 int tmp = get();) ca
May 72020 TCSS422: Operating Systems [Spring 2020] ‘ 1130 ‘

Slides by Wes J. Lloyd

5/7/2020

L10.5

TCSS 422 B — Spring 2020
School of Engineering and Technology

(cont.)

23 Pthread_cond_signal (sempty) ;
24 Pthread_mutex_unlock (smutex);
25 printf("sd\n", tmp);

26)

27)

= Producer: only sleeps when buffer is full
= Consumer: only sleeps if buffers are empty

May 7, 2020 TCS5422: Operating Systems [Spring 2020]
dth School of Engineering and Technology, University of Washington - Tacoma

11131

sufficient to synchronize access to a bounded buffer
shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

|
* Using one condition variable, and no while loop is *

shared by:

1 Producer, 1
Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

None of the above

|
* Using one condition variable, with a while loop is "
sufficient to synchronize access to a bounded buffer

sufficient to synchronize access to a bounded buffer
shared by:
1 Producer, 1

Consumer Thread

2 Consumers, 1
Producer Thread

2+ Producers, 2+
Consumer Threads

All of the above

None of the above

|
* Using two condition variables, and a while loop is *

COVERING CONDITIONS

= A condition that covers all cases (conditions):
= Excellent use case for pthread_cond_broadcast

= Consider memory allocation:

=When a program deals with huge memory
allocation/deallocation on the heap

scarce

PREVENT: Out of memory:
- queue requests until memory is free

= Which thread should be woken up?

= Access to the heap must be managed when memory is

May 7, 2020 TCS5422: Operating Systems [Spring 2020]
Ut School of Engineering and Technology, University of Washington - Tacoma

11135

Slides by Wes J. Lloyd

COVERING CONDITI

1 iany byte he heap are free?

2 int bytesLeft = MAX HEAP SIZE;

.

4 eed lock and condition

5 cond t c7

6 mutex_t m;

>

8 void *

5 allocate (int size) {

10 pthread mutex_lock(&m);

u ‘ Ty s Check available memory
12 Pthread_cond_wait(sc, &m);

13 void *ptr = ...; / get mem from heaj
14 bytesLeft -= size;

15 Pthread_mutex_unlock (&m);

16 return ptr;

1 i

18

19 void free(void *ptr, int size) {

20 Pthread mutex_lock (sm) 7

21 bytesLeft += size;

2
23 Pthread_mutex_unlock (&m) ;

24 }

TCS5422: Operating Systems [Spring 2020]

L) Th e ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma

11136

5/7/2020

L10.6

TCSS 422 B — Spring 2020
School of Engineering and Technology

COVER CONDITIONS - 3

= Broadcast awakens all blocked threads requesting memory

= Each thread evaluates if there's enough memory: (bytesLeft <
size)
= Reject: requests that cannot be fulfilled- go back to sleep
= Insufficient memory
= Run: requests which can be fulfilled
= with newly available memory!

= Another use case: coordinate a group of busy threads to
gracefully end, to EXIT the program

= Overhead
= Many threads may be awoken which can’t execute

May 7, 2020 11137

TCS5422: Operating Systems [Spring 2020]
0ol of Engineeri nology, University i Tacoma

TCSS 422 WILL RETURN

AT ~2:40PM

TCSS422: Operating Systems [Spring 2020]

Mayizo2 School of Engineering and Technology, University of Washington -

CHAPTER 31: SEMAPHORES

= Offers a combined C language construct that can assume the
role of a lock or a condition variable depending on usage
= Allows fewer concurrency related variables in your code
= Potentially makes code more ambiguous
= For this reason, with limited time in a
10-week quarter, we do not cover

= Each philosopher tries to obtain two forks
in order to eat

= Mimics deadlock as there are not enough forks

= Solution is to have one left-handed philosopher
that grabs forks in opposite order

= Ch. 31.6 - DIning Phllosophers Problem ‘
= Classic computer science problem about \ 4 /
sharing eating utensils g Z 9
A 2

May 7, 2020 Tcsizfg; Operating Systems [Spring 2020]

nology, ity ington - Tacoma

CHAPTER 32 -

CONCURRENCY
PROBLEMS

TCSS422: Operating Systems [Spring 2020]

Mayzo2 School of Engineering and Technology, University of Washington -

OBJECTIVES - 5/7

= Questlons from 4/30
= Qulz 2 (avallable untll May 11, 11:59p AOE)
= Assignment 1 (May 7 > May 10, 11:59p AOE)
= Assignment 2 (based on Ch. 30, posted ~May 11)
= Chapter 30: Condltlon Varlables
= Producer/Consumer
= Covering Conditions

= Chapter 32: Concurrency Problems
= Non-deadlock concurrency bugs
= Deadlock causes
= Deadlock prevention

May 7, 2020

TCSS422: Operating Systems [Spring 2020] L1041
100l of Engineeri i -

nology, ity ington - Tacoma

Slides by Wes J. Lloyd

CONCURRENCY BUGS IN

OPEN SOURCE SOFTWARE

= ‘“Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”

=Shan Lu et al.

= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16

Open Office Office Suite 6 2

Total 74 31

May 7, 2020 nss«uz; Operating Systems [Spring 2020]

School o Technology, ity i Tacoma

1142

5/7/2020

L10.7

TCSS 422 B — Spring 2020
School of Engineering and Technology

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

before use

=Qrder violation: failure to initialize lock/condition

TCS5422: Operating Systems [Spring 2020]

W 2 20D AT o T B S oy ATt A T T

11143

ATOMICITY VIOLATION - MY

= Two threads access the proc_info field in struct thd
" NULLis 0in C

= Mutually exclusive access to shared memory among
separate threads is not enforced (e.g. non-atomic)

= Simple example: proc_Info deleted

1 Threadl::
:
3
. 4 fputs (thd->proc_info , .);

Programmer intended 5

variable to be accessed # 6 }

atomically... 7
g =
9 Ithd»>proc71nfo = N'JLLII

TCSS422: Operating Systems [Spring 2020]
L) Th A o BT T T o e A S T e 144

® Add locks for all uses of: thd->proc_info

ATOMICITY VIOLATION - SOLUTION

pthread mutex_t lock = PTHREAD MUTEX_INITTALIZER;

3
2
3 Threadi::
4 pthread mutex_lock(slock);
5 if(thd->proc_info) {

6

7

fputs (thd->proc_info , ..);
9 }
10 pthread mutex_unlock (slock);
11

12 Thread2::
13 pthread mutex_lock(slock);
14 thd->proc_info = NULL;

15 pthread mutex_unlock (slock);

TCS5422: Operating Systems [Spring 2020]

Wi 2 20D e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome

L1145

ORDER VIOLATION BUGS

= Desired order between memory accesses is flipped
mE.g. something is checked before it is set
= Example:

Threadl: :
void init () {

mThread = PR_CreateThread (mMain, ..);
b

i
2
3
4
5
6 Thread2::
7 void mMain(..) {

8 mState = mThread->State
9

}

= What if mThread is not initialized?

TCS5422: Operating Systems [Spring 2020]

B
School of Engineering and Technology, University of Washington - Tacoma tde

May 7, 2020

= Use condition & signal to enforce order
1 pthread _mutex_t mtLock = PTHREAD_MUTEX_INITIALIZER;
2 pthread _cond t mtCond = PTHREAD_COND_INITIALIZER;
X int mtInit = 0;
4
= Thread 1::
6 0id init () {
7
8 mThread = PR_CreateThread (mMain,..) ;
-]
10 // sig at the thread has been
11 pthread mutex_lock (smtLock) ;
12 mtInit = 1;
13 IEthread cond signal(&mtcond);l
14 pthread_mutex_unlock (smtLock) ;
15
16 }
17
18 Thread2::
19 void mMain(.){
20
TCSS422: Operating Systems [Spring 2020]
e School of Engineering and Tec[hzolctggy, Ur\!versi(yuVWashing(un—Ta:oma Li47 ‘

ORDER VIOLATION - SOLUTION - 2

= Use condition & signal to enforce order

21 // wa to be initialize
22 pthread mutex_lock (smtLock) 7
23 while (mtIpit == _0)
24 | pthread_cond_wait (smtCond, &mtLock); |
25 pthread MUCEX UHTOCK (SMCLOCRT T
26
27 mState = mThread->State;
28
29)
TC55422: Operating Systems [Spring 2020)
2 e AP e ta

Slides by Wes J. Lloyd

5/7/2020

L10.8

TCSS 422 B — Spring 2020 5/7/2020
School of Engineering and Technology

NON-DEADLOCK BUGS - 1 NON-DEADLOCK BUGS - 2
2 97% of Non-Deadlock Bugs were = Atomicity
= Atomicity =How can we tell if a given variable is shared?
=Order violations Can search the code for uses

=How do we know if all instances of its use are shared?
Can some non-synchronized, non-atomic uses be legal?
= Legal uses: before threads are created, after threads exit
Must verify the scope

= Consider what is involved in “spotting” these
bugs in code

= >> no use of locking constructs to search for . .
= Order violation

= Must consider all variable accesses

= Desire for automated tool support (IDE) o [Do Gl (relen

May 7, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1149

May 7, 2020 TCSS422: Operating Systems [Spring 2020]
57t School of Engineering and Technology, University of Washington - Tacoma

11150

DEADLOCK BUGS e ”;'I REASONS FOR DEADLOCKS
= Presence of a cycle in code = Complex code
= Thread 1 acquires lock L1, waits for lock L2 = Must avoid circular dependencies - can be hard to find...
= Thread 2 acquires lock L2, waits for lock L1 = Encapsulation hides potential locking conflicts
= Easy-to-use APIs embed locks inside
Thread 1: Thread 2:
Holds = Programmer doesn’t know they are there
lock(L1); lock (L2):
= Consider the Java Vector class:
lock (L2); lock(L1):

2 g 1 Vector vi,v2; ‘
= Both threads can block, unless Tg 3; 2 v1.addall(v2);
one manages to acquire both locks - g
= Vector is thread safe (synchronized) by design
Lock L2

< Holds = If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

May 7, 2020 TCS5422: Operating Systems [Spring 2020]
Jth School of Engineering and Technology, University of Washington - Tacoma

1151

TCS5422: Operating Systems [Spring 2020]
L) Th Az ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma

u1s2 ‘

CONDITIONS FOR DEADLOCK PREVENTION - MUTUAL EXCLUSION
= Four conditions are required for dead lock to occur = Build wait-free data structures
= Eliminate locks altogether

Condition = = Build structures using CompareAndSwap atomic CPU (HW)
) ’ ;] instruction
Mutual Exclusion | Threads claim exclusive control of resources that they require.
. Threads hold resources allocated to them while waiting for additional
Hold-and-wait | """ = C pseudo code for CompareAndSwap
- o o
No preemption | Resources cannot be forcibly removed from threads that are holding them. Hardware executes this code atomically
’ . There exists a circular chain of threads such that each thread holds one more Gl S Dl G e e L
Cireular wait 4 3 3 2 if (*address == expected) {
resources that are being requested by the next thread in the chain 3 *Saress =ihes
4 return 1; succe
5 |}
6 eturn 0
7 }
TCS5422: Operating Systems [Spring 2020] TCS5422: Operating Systems [Spring 2020]
e Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms L3 L) Th e ISehool of Ergineerng andTech noloayjUniersity ot Washinaton S Tacoma nee ‘

Slides by Wes J. Lloyd L10.9

TCSS 422 B — Spring 2020
School of Engineering and Technology

PREVENTION - MUTUAL EXCLUSION - 2

= Recall atomic increment

void AtomicIncrement (int *value, int amount)

int old = *value;
}while (CompareAndswap (value, old, old+amount)==0);

o wn e

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
= When it runs it is ALWAYS atomic (at HW level)

TCS5422: Operating Systems [Spring 2020]

W 2 20D AT o T B S oy ATt A T T

L1155

MUTUAL EXCLUSION: LIST INSERTION

® Consider list insertion

d insert(int value){
node t * n = malloc(sizeof (node_t)):
assert(n != NULL);
n->value = value ;
n->next = head;
head =n;

Some wo e

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1156

May 7, 2020

MUTUAL EXCLUSION - LIST INSERTION - 2

= Lock based implementation

1 void insert(int value){

2 node_t * n = malloc(sizeof (node_t));
3 assert(n != NULL);

4 n->value = value
5 lock(1listlock) 7
6

i

8

9

n->next = head;
head =n;
unlock(listlock) ;

TCS5422: Operating Systems [Spring 2020]

Wi 2 20D e oolol Enpinearns rdiTechnolor Il nve ity liNes hinetonETecome

L1157

MUTUAL EXCLUSION - LIST INSERTION - 3

= Wait free (no lock) implementation

void insert(int value) {
node_t *n = malloc(sizeof (node_t));
assert (n != NULL);

n->value = value;
{
n->next = head;
} (CompareAndSwap (shead, n->next, n));

©ao e wn e

b

= Assign &head to n (new node ptr)
= 0nly when head = n->next

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1158

May 7, 2020

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

. Threads hold resources allocated to them while waiting for additional
Hold-and-wait
resources

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireular wait 4 3 3
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2020]
e Seoo[of Enginearing andilechnolosyilnversity e hingtonETecoms L1159

PREVENTION LOCK - HOLD AND WAIT

= Problem: acquire all locks atomically
= Solution: use a “lock” “lock”... (like a guard lock)

1 lock(prevention);

2 lock(1l):

3 lock(L2):

4

5 unlock(prevention);

= Effective solution - guarantees no race conditions while
acquiring L1, L2, etc.

= Order doesn’t matter for L1, L2

= Prevention (GLOBAL) lock decreases concurrency of code
= Acts Lowers lock granularity

= Encapsulation: consider the Java Vector class...

TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1160

May 7, 2020

Slides by Wes J. Lloyd

5/7/2020

L10.10

TCSS 422 B — Spring 2020
School of Engineering and Technology

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

»No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireular wait resources that are being requested by the next thread in the chain

May 7, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1161

NO PREEMPTION - LIVELOCKS PROBLEM

= Can lead to livelock

top:

lock(L1)

if (tryLock(L2) == -1){
unlock(Ll) ;
goto tops

s

}

= Two threads execute code in parallel >
always fail to obtain both locks

= Fix: add random delay

=Allows one thread to win the
livelock race!

May 7, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1163

PREVENTION - NO PREEMPTION

®When acquiring locks, don’t BLOCK forever if
unavailable...

mpthread_mutex_trylock() - try once
mpthread_mutex_timedlock() - try and wait awhile

1 top:
L T——— NO
P STOPPING
ANY
= Eliminates deadlocks TIME
May7,2020 TCS5422: Operating Systems [Spring 2020] 1162

School of Engineering and Technology, University of Washington - Tacoma

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Condition Descrip

n

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

*C\'r:u\arwa\'t

There exists a circular chain of threads such that each thread holds one more
resources that are being requested by the next thread in the chain

TCS5422: Operating Systems [Spring 2020]

‘ L) Th Az ISehool of Erpineering andTech nolosyjUniversity ofWashinaton S Tacoma

164

PREVENTION - CIRCULAR WAIT

=Provide total ordering of lock acquisition
throughout code
=Always acquire locks in same order
=L1,L2,L3, ..
=Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2....

®Must carry out same ordering through entire
program

L1165

May 7, 2020 TCS5422: Operating Systems [Spring 2020]
Ut School of Engineering and Technology, University of Washington - Tacoma

CONDITIONS FOR DEADLOCK

= |f any of the following conditions DOES NOT
EXSIST, describe why deadlock can not occur?

Condition Description

Slides by Wes J. Lloyd

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Circular wait resources that are being requested by the next thread in the chain

May 7, 2020 TCS5422: Operating Systems [Spring 2020]

School of Engineering and Technology, University of Washington - Tacoma L1166

5/7/2020

L10.11

TCSS 422 B — Spring 2020
School of Engineering and Technology

" The dining philosophers problem where 5

philosophers compete for 5 forks, and where a
philosopher must hold two forks to eat involves
which deadlock condition(s)?

Mutual Exclusion
Hold-and-wait
No preemption
Circular wait

All of the above

DEADLOCK AVOIDANCE

VIA INTELLIGENT SCHEDULING

EmConsider a smart scheduler
=Scheduler knows which locks threads use

® Consider this scenario:
=4 Threads (T1, T2, T3, T4)
=2 Locks (L1, L2)

® Lock requirements of threads:

L yes yes no no
[[yes | yves | yes | mo |
TCSS422: Operating Systems [Spring 2020]
(SEhEED e BT T e Uy f T L1168

INTELLIGENT SCHEDULING - 2

mScheduler produces schedule:

cru1 RS

= No deadlock can occur

= Consider:

L1 yes yes yes no

o [e [v | ye [o |

May 7, 2020

TCS5422: Operating Systems [Spring 2020]
0ol of Engineeri hnology, University i Tacoma

INTELLIGENT SCHEDULING - 3

= Scheduler produces schedule

= Scheduler must be conservative and not take risks
= Slows down execution - many threads

= There has been limited use of these approaches given the

difficulty having intimate lock knowledge about every

thread

11169

TCSS422: Operating Systems [Spring 2020]
L) Th Az Sehosl o Ergineering andTechnolosyjUniversity ot Washi Tecoma

1170

DETECT AND RECOVER

= Allow deadlock to occasionally occur and then take some
action.

= Example: When OS freezes, reboot...

= How often is this acceptable?
= Once per year
= Once per month
= Once per day
= Consider the effort tradeoff of finding every deadlock bug

= Many database systems employ deadlock detection and
recovery techniques.

May 7, 2020 Tcsz:lzg; Operating Systems [Spring 2020]

7
Technology, ity i Tacoma Ltz

Slides by Wes J. Lloyd

QUESTIONS

5/7/2020

L10.12

TCSS 422 B — Spring 2020
School of Engineering and Technology

MINUTES |

WILL RETURN IN A FEW - f-'/

Slides by Wes J. Lloyd

5/7/2020

L10.13

