
TCSS 422 A – Spring 2018
Institute of Technology

4/26/2018

L8.1Slides by Wes J. Lloyd

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces:
Lock Based Data Structures,

Condition Variables

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment 1 – MASH Shell

 Lock Based Data Structures – Ch. 29

 Condition Variables – Ch. 30

 Quiz 3 – Lock-Based Data Structure Coding Activity

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.2

OBJECTIVES

 Do we have to know all the variations of Spin Locks?
 Ch. 28 is just too much

 Basic spin lock
 Polling / busy-waiting
 When is it apprioriate?

 Test-and-set spin lock
 Compare-and-swap spin lock
 It is good to know what each successive version adds

 Can you give us more practice questions on calculating
the average response and turnaround time
 Practice midterm next Monday 4/30

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.3

FEEDBACK – 4/23

 We don't understand:
“While writ ing your MASH program using processes, consider why it
is non-trival to simply redirect the output stream of each fork
command to a stream and use the C sscanf() function to
consolidate/aggregate the output at the end.. . ”

 Comment is ambiguous
 In C (and Java) you could open arb itrary input and output st reams

that are not associated with a f i le on the disk . I t would then be
possible to redirect each exec command's output st ream to streams
not associated with f i les.

 Idea is to have "temporary in-memory buf fers", in p lace of sending
output to temporary f i les on the disk .

 I d id not t r y this.

 For this assignment, i t is easy enough to fo llow the example code
and redirect exec output to temporary f i les:

h t tp://faculty.washington.edu/wlloyd/courses/tcss422/examples/exec2.c

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.4

FEEDBACK – HW1

 We are executing commands fine and writing
output. However, when it comes to the final process of
displaying the output files in the correct order, it seems
intuitive to use the Linux system() command.

 Is this acceptable?

 This solution works, but it shouldn't be dif f icult to write a C
routine that opens a f i le, reads it l ine-by-l ine, and displays
output.

 This could be a generic, standalone routine.

 Example C should exist onl ine by searching via Google to
support accomplishing this.

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.5

HW1 - 2

 For notification of process completion, the assignment states:
First process finished.. .
Second process finished.. .
Third process fin ished...

 Should it always be that order? Or could it be:
Third process fin ished...
First process finished.. .
Second process finished.. .

 Reporting the order in which specif ic processes end is not
required. Just report that processes *ARE* ending !

 There is no requirement to say which child process/PID
f inishes in what order, etc.

 FEATURE: Provides a notif ication message stating processes
are finishing and work is proceeding.

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.6

HW1 - 3

TCSS 422 A – Spring 2018
Institute of Technology

4/26/2018

L8.2Slides by Wes J. Lloyd

CHAPTER 29 –
LOCK BASED

DATA STRUCTURES

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L8.7

Adding locks to data structures make them
thread safe.

Considerations:

Correctness

Performance

Lock granularity

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.8

LOCK-BASED
CONCURRENT DATA STRUCTURES

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.9

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Achieve (N) performance gain with (N) additional resources

 Throughput:

 Transactions per second

 1 thread/core

 N = 100 tps

 10 threads/cores

 N = 1000 tps

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.10

PERFECT SCALING

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?
Why do we want counters local to each CPU Core?

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.11

SLOPPY COUNTER

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.12

SLOPPY COUNTER - 2

TCSS 422 A – Spring 2018
Institute of Technology

4/26/2018

L8.3Slides by Wes J. Lloyd

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.13

THRESHOLD VALUE S

 Example implementation

 Also with CPU affinity

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.14

SLOPPY COUNTER - EXAMPLE

 Simplification - only basic list operations shown

 Structs and initialization:

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.15

CONCURRENT LINKED LIST - 1

 Insert – adds item to list

 Everything is critical!
 There are two unlocks

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.16

CONCURRENT LINKED LIST - 2

 Lookup – checks list for existence of item with key

 Once again everything is critical
 Note - there are also two unlocks

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.17

CONCURRENT LINKED LIST - 3

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding
practice

 There is nothing specifically wrong with this example however

 Second Implementation …

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.18

CONCURRENT LINKED LIST

TCSS 422 A – Spring 2018
Institute of Technology

4/26/2018

L8.4Slides by Wes J. Lloyd

 Init and Insert

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.19

CCL – SECOND IMPLEMENTATION

 Lookup

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.20

CCL – SECOND IMPLEMENTATION - 2

 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.21

CONCURRENT LINKED LIST PERFORMANCE

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the
same time

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.22

MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.23

CONCURRENT QUEUE

 Add to queue

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.24

CONCURRENT QUEUE - 2

TCSS 422 A – Spring 2018
Institute of Technology

4/26/2018

L8.5Slides by Wes J. Lloyd

Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list

 One lock per hash (bucket)

 Hash bucket is a linked lists

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.25

CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.26

INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales
magnificently.

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.27

CONCURRENT HASH TABLE

 Lock-free data structures in Java

 Java.util.concurrent.atomic package
 Classes:
 AtomicBoolean
 AtomicInteger
 AtomicIntegerArray
 AtomicIntegerFieldUpdater
 AtomicLong
 AtomicLongArray
 AtomicLongFieldUpdater
 AtomicReference

 See: https://docs.oracle.com/javase/7/docs/api/java
/uti l/concurrent/atomic/package-summary.html

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.28

LOCK-FREE DATA STRUCTURES

CHAPTER 30 –
CONDITION VARIABLES

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L8.29

 There are many cases where a thread wants to
wait for another thread before proceeding with
execution

Consider when a precondition must be fulfilled
before it is meaningful to proceed …

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.30

CONDITION VARIABLES

TCSS 422 A – Spring 2018
Institute of Technology

4/26/2018

L8.6Slides by Wes J. Lloyd

QUESTIONS

