TCSS 422 A — Spring 2018 4/26/2018

Institute of Technology

TCSS 422: OPERATING SYSTEMS
| |

Three Easy Pieces:
Lock Based Data Structures,
Condition Variables

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2018]

Gtk P Institute of Technology, University of Washington - Tacoma

OBJECTIVES

= Assignment 1 - MASH Shell
= Lock Based Data Structures - Ch. 29
= Condition Variables - Ch. 30

" Quiz 3 - Lock-Based Data Structure Coding Activity

ol 25, 2018 TCSS422: Operating Systems [Spring 2018] | o |

Institute of Technology, University of Washington - Tacoma

FEEDBACK - 4/23

= Do we have to know all the variations of Spin Locks?
= Ch. 28 is just too much

= Basic spin lock
= Polling / busy-waiting
= When is it apprioriate?
= Test-and-set spin lock
= Compare-and-swap spin lock
= |t Is good to know what each successive version adds

= Can you give us more practice questions on calculating
the average response and turnaround time

= Practice midterm next Monday 4/30

April 25, 2018

TCS5422: Operating Systems [Spring 2018] 83
Institute of Technology, University of Washington - Tacoma i

FEEDBACK - HW1

We don't understand:

“While writing your MASH program using processes, consider why it
is non-trival to simply redirect the output stream of each fork
command to a stream and use the C sscanf() function to
consolidate/aggregate the output at the end...”

Comment Is amblguous

In C (and Java) you could open arbitrary input and output streams

that are not assoclated with a file on the disk. It would then be

possible to redirect each exec command's output stream to streams

not assoclated with flles.

= |dea Is to have "temporary In-memory buffers", In place of sending
output to temporary files on the disk.

= | did not try this.

= For this assignment, It Is easy enough to follow the example code
and redirect exec output to temporary files:

http://faculty.washington.edu/wlloyd/courses/tcss422/examples/exec2.c

TCS5422: Operating Systems [Spring 2018] | 84

CINS e Institute of Technology, University of Washington - Tacoma

HW1 - 2

= We are executing commands fine and writing
output. However, when it comes to the final process of
displaying the output files in the correct order, it seems
intuitive to use the Linux system() command.

= |s this acceptable?

= This solution works, but it shouldn't be difficult to write a C
routine that opens a flle, reads It Iine-by-line, and displays
output.

= This could be a generic, standalone routine.

= Example C should exIst online by searching via Google to
support accomplishing this.

TCS5422: Operating Systems [Spring 2018] | 185 ‘

April 25, 2018 Institute of Technology, University of Washington - Tacoma

HW1 -3

= For notification of process completion, the assignment states:
First process finished...
Second process finished...
Third process finished...

= Should it always be that order? Or could it be:
Third process finished...
First process finished...
Second process finished...

= Reporting the order In which speclific processes end Is not
required. Just report that processes *ARE* ending !

= There Is no requirement to say which chlld process/PID
finishes In what order, etc.

= FEATURE: Provides a notiflcatlon message stating processes
are finishing and work Is proceeding.

April 25, 2018 TCS5422: Operating Systems [Spring 2018] | 186

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L8.1

TCSS 422 A — Spring 2018
Institute of Technology

CHAPTER 29 -

LOCK BASED
DATA STRUCTURES

TCSS422: Operating Systems [Spring 2018]

Ll 2 Institute of Technology, University of Washington - Tacoma

4/26/2018

LOCK-BASED

CONCURRENT DATA STRUCTURES

mAdding locks to data structures make them
thread safe.

= Considerations:
=Correctness
=Performance
=Lock granularity

TCS5422: Operating Systems [Spring 2018]

GRS Institute of Technology, University of Washington - Tacoma

CONCURRENT COUNTERS - PERFORMANCE

= iMac: four core Intel 2.7 GHz i5 CPU
= Each thread increments counter 1,000,000 times

15
X Procise
© Sioppy.

Time (seconds)
3

«

0 Traditional vs. sloppy counter
1 2 3 4 Sloppy Threshold (S) = 1024

Threads

scales poorly

TCS5422: Operating Systems [Spring 2018] | 189 ‘

Btk Fi s Inttute of Technoloay)Universitylof Washinston=Tacomal

PERFECT SCALING

= Achieve (N) performance gain with (N) additional resources

= Throughput:
= Transactions per second

= 1 thread/core
= N =100 tps

= 10 threads/cores
= N =1000 tps

TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma | t8.10

April 25, 2018

SLOPPY COUNTER

= Provides single logical shared counter
= Implemented using local counters for each ~CPU core
= 4 CPU cores = 4 local counters & 1 global counter
= Local counters are synchronized via local locks
= Global counter is updated periodically
= Global counter has lock to protect global counter value

= Sloppiness threshold (S):
Update threshold of global counter with local values

= Small (S): more updates, more overhead
= Large (S): fewer updates, more performant, less synchronized
= Why this implementation?
Why do we want counters local to each CPU Core?

April 25, 2018 TCS5422: Operating Systems [Spring 2018] | 511 ‘

Institute of Technology, University of Washington - Tacoma

SLOPPY COUNTER - 2

= Update threshold (S) =5
= Synchronized across four CPU cores
= Threads update local CPU counters

mime | 1 | L | 1 Ly G
0 [¢] 0 [¢] 0 0
1 0 0 1 1 0
2 1, 0 2 1 0
3 2 0 3 1 0
4 3 0 3 2 0
5 4 1 3 3 0
6 5>0 1 3 4 5 (from L,)
7 0 53 4 530 10 (from Ly)

April 25, 2018 TCS$422: Operating Systems [Spring 2018] | 812

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L8.2

TCSS 422 A — Spring 2018
Institute of Technology

THRESHOLD VALUE S

= Consider 4 threads increment a counter 1000000 times each
= Low S »> What is the consequence?
= High S > What is the consequence?

15

s

Time (seconds)

— T T T ———
1 2 4 8 16 32 64 128 256 5121024
Sloppiness

TCS5422: Operating Systems [Spring 2018]

April 25, 2018 Institute of Technology, University of Washington - Tacoma

| 1813 ‘

4/26/2018

SLOPPY COUNTER - EXAMPLE

= Example implementation

= Also with CPU affinity

TCSS422: Operating Systems [Spring 2018]
CINS 2 S 1 T, Pt G o e TP

| 18.14

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
= Structs and initialization:

1
2
3
4 struct _ node_t *next;
5 } node_t;
6
0 structure (one used per list)
8 _list_t {
9 node_t *head:
10 pthread_mutex_t lock:
1 } List_t;
12
13 void List_Init(list_t *L) (
14 I->head = NULL;
15 pthread_mutex_init (sL->lock, NU
16 }
17
(cont.)
April 25, 2018 TCSS422: Operating Systems [Spring 2018] | 815 ‘

Institute of Technology, University of Washington - Tacoma

CONCURRENT LINKED LIST - 2

® Insert - adds item to list
= Everything is critical!
= There are two unlocks

Institute of Technology, University of Washington - Tacoma

(Cont.)
18 int List_Insert(list_t *L, int key) {
19 pthread mutex_lock (&L->lock) ;
20 node_t *new = malloc(sizeof (node_t));
21 if (new == NULL) {
22 perror ("malloc”) ;
23 pthread mutex_unlock(sL->lock) ;
24 return -1; // fa
26 new->key = key:
27 new->next = L->head;
28 L->head = new;
29 pthread mutex_unlock (&L->lock) 7
30 return 0; success
31
(cont.)
April 25, 2018 TCS5422: Operating Systems [Spring 2018] | 1816

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
= Once again everything is critical
= Note - there are also two unlocks

(Cont.)
32
32 int List_Lookup(list_t *L, int key) {
33 pthread mutex_lock (sL->lock) ;
34 node_t *curr = L->head;
35 while (curr) {
36 if (curr->key == key) {
37 pthread mutex_unlock (&L->lock) ;
38 eturn 0; // success
39 }
40 curr = curr->next;
a1
12 pthread mutex_unlock (sL->lock) ;
13 return -1; failure
14)
April 25, 2018 TCSS422: Operating Systems [Spring 2018] | 817 ‘

Institute of Technology, University of Washington - Tacoma

CONCURRENT LINKED LIST

= First Implementation:
= Lock everything inside Insert() and Lookup()
= If malloc() fails lock must be released

Research has shown “exception-based control flow” to be error

prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding

practice

There is nothing specifically wrong with this example however

= Second Implementation ...

TCS5422: Operating Systems [Spring 2018]
G 0 [nsRueor TechnolosyUniversitylof WashinstonSiacoma!

| 18.18

Slides by Wes J. Lloyd

L8.3

TCSS 422 A — Spring 2018
Institute of Technology

4/26/2018

CCL - SECOND IMPLEMENTATION

CCL - SECOND IMPLEMENTATION - 2

= |nit and Insert

Institute of Technology, University of Washington - Tacoma

i 0id List_Init(list_t *L) {
2 L->head = NULL;
3 pthread_mutex_init(&L->lock, NULL);
4 }
5
6 void Dist_Insert(list_t *L, xey) (
g r t i
8 node_t *new = malloc(sizeof (node_t));
8 if (new == NULL) {
10 perror ("malloc™) ;
1 eturns
12 }
13 new->key = key:
14
15 / just lock criti n
16 pthread_mutex_lock (sL->lock) ;
17 new->next = L->heads
18 L>head = new;
19 pthread mutex_unlock(sL->lock);
20 i
21
April 25, 2018 TCS5422: Operating Systems [Spring 2018] | 810 ‘

= Lookup
(cont.)
22 int List_Lookup(list_t *L, int key) {
23 Tint rv = -1
24 pthread mutex_lock(sL->lock);
25 node_t *curr = L->head;
26 while (curr) {
27 if (curr->key == key) {
28 rv = 0;
29 break;
30 }
31 curr = curr->next;
32
33 pthread_mutex_unlock (&L->lock) ;
34 return Tv; // n th success ar
35)
April 25, 2018 TCS5422: Operating Systems [Spring 2018] | 1820

Institute of Technology, University of Washington - Tacoma

CONCURRENT LINKED LIST PERFORMANCE

MICHAEL AND SCOTT CONCURRENT QUEUES

= Using a single lock for entire list is not very performant
= Users must “wait” in line for a single lock to access/modify
any item
= Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list
= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...
= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Spring 2018]

G|, 2 Institute of Technology, University of Washington - Tacoma

= Improvement beyond a single master lock for a queue (FIFO)
= Two locks:

= One for the head of the queue

= One for the tall
= Synchronize enqueue and dequeue operations

= Add a dummy node
= Allocated in the queue initialization routine
= Supports separation of head and tail operations

= |[tems can be added and removed by separate threads at the
same time

April 25, 2018 TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma | 18.22

CONCURRENT QUEUE

CONCURRENT QUEUE - 2

= Remove from queue

1 ruct _ node_t {
2 nt value;
3 struct _ node_t *next;
1 } node_t;
5
6 typ struct _ queue_t {
. node_t *head:
8 node_t *tail;
o pthread_mutex_t headLock;
10 pthread mutex_t tailLocks
11) queue_t;:
12
13 void Queue_Tnit (queue_t *q) {
14 node_t *tmp = malloc(sizeof (node_t));
15 mp->next = NULL;
16 g->head = g->tail = tmp;
17 pthread mutex_init (sg->headLock, NULL);
18 pthread_mutex_init (sq->taillock, NULL):
19)
20
(Cont.)

April 25, 2018 TCSS422: Operating Systems [Spring 2018] | 823 ‘

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

= Add to queue

(Cont.)
21 void Queue_Enqueue (queue_t *q, int value) {
22 node_t *tmp = malloc(sizeof (node_t));
23 assert (tmp != NULL);
24
25 tmp->value = value;
26 tmp->next = NULL;
27
28 pthread mutex_lock(sq->tailLock);
29 g->tail->next = tmp;
30 g->tail = tmp;
31 pthread mutex_unlock (sq->tailLock);
32)
(Cont.)
April 25, 2018 TCS5422: Operating Systems [Spring 2018] | 1824

Institute of Technology, University of Washington - Tacoma

TCSS 422 A — Spring 2018
Institute of Technology

CONCURRENT HASH TABLE

= Consider a simple hash table
=Fixed (static) size
=Hash maps to a bucket

= One lock per hash (bucket)
= Hash bucket is a linked lists

= Bucket is implemented using a concurrent linked list

4/26/2018

TCS5422: Operating Systems [Spring 2018]

Bk, P T e e ol 2 U nvers o Washin tonsrace el

| 1825

INSERT PERFORMANCE
CONCURRENT HASH TABLE

®= Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU

15
o Simple Concurrent List
X Concurrent Hash Table
o
©10
s
8
2
R
o
E 5
£
0 F ol ¥ ol
0 10 20 30 40

Inserts (Thousands)

scales

April 25, 2018

1 define BUCKETS (101)
2
3 typedef struct _ hash_t {
4 list_t lists[BUCKETS]:
5 } hash_t;
6
7 void Hash_Init(hash t *H) {
8 int iz
9 for (i = 0; i < BUCKETS; i++) {
10 List_Init (sH->lists[i]);
11 }
12)
13
14 int Hash_Insert (hash_t *H, int key) {
15 int bucket = key % BUCKETS;
16 return List_Insert (sH->lists[bucket], key);
17)
18
19 int Hash_Lookup (hash_t *H, int key) {
20 Tint bucket = key % BUCKETS;
21 return List_Lookup (sH->lists[bucket], key):
22 }
TCS5422: Operating Systems [Spring 2018]
Btk Fi s Institute of?rechno?ugyy, Unive[rs?ly ffWasr]ﬂngmn - Tacoma

| 1827

LOCK-FREE DATA STRUCTURES

= Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomiclnteger

= AtomiclntegerArray

= AtomicintegerFieldUpdater

= AtomicLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: https://docs.oracle.com/javase/7/docs/api/java
/util/concurrent/atomic/package-summary.html

April 25, 2018 TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma | 18.28

i ?

CHAPTER 30 -
CONDITION VARIABLES

. TCSS422; Operating Systems [Spring 2016]
Ll 2 2 Institute of Technology, University of Washington - Tacoma

CONDITION VARIABLES

=There are many cases where a thread wants to
wait for another thread before proceeding with
execution

®Consider when a precondition must be fulfilled
before it is meaningful to proceed ...

April 25, 2018 TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma | 1830

Slides by Wes J. Lloyd

L8.5

TCSS 422 A — Spring 2018 4/26/2018
Institute of Technology

QUESTIONS

Slides by Wes J. Lloyd L8.6

