
TCSS 422 A – Spring 2018
Institute of Technology

4/26/2018

L8.1Slides by Wes J. Lloyd

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces:
Lock Based Data Structures,

Condition Variables

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment 1 – MASH Shell

 Lock Based Data Structures – Ch. 29

 Condition Variables – Ch. 30

 Quiz 3 – Lock-Based Data Structure Coding Activity

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.2

OBJECTIVES

 Do we have to know all the variations of Spin Locks?
 Ch. 28 is just too much

 Basic spin lock
 Polling / busy-waiting
 When is it apprioriate?

 Test-and-set spin lock
 Compare-and-swap spin lock
 It is good to know what each successive version adds

 Can you give us more practice questions on calculating
the average response and turnaround time
 Practice midterm next Monday 4/30

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.3

FEEDBACK – 4/23

 We don't understand:
“While writ ing your MASH program using processes, consider why it
is non-trival to simply redirect the output stream of each fork
command to a stream and use the C sscanf() function to
consolidate/aggregate the output at the end.. . ”

 Comment is ambiguous
 In C (and Java) you could open arb itrary input and output st reams

that are not associated with a f i le on the disk . I t would then be
possible to redirect each exec command's output st ream to streams
not associated with f i les.

 Idea is to have "temporary in-memory buf fers", in p lace of sending
output to temporary f i les on the disk .

 I d id not t r y this.

 For this assignment, i t is easy enough to fo llow the example code
and redirect exec output to temporary f i les:

h t tp://faculty.washington.edu/wlloyd/courses/tcss422/examples/exec2.c

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.4

FEEDBACK – HW1

 We are executing commands fine and writing
output. However, when it comes to the final process of
displaying the output files in the correct order, it seems
intuitive to use the Linux system() command.

 Is this acceptable?

 This solution works, but it shouldn't be dif f icult to write a C
routine that opens a f i le, reads it l ine-by-l ine, and displays
output.

 This could be a generic, standalone routine.

 Example C should exist onl ine by searching via Google to
support accomplishing this.

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.5

HW1 - 2

 For notification of process completion, the assignment states:
First process finished.. .
Second process finished.. .
Third process fin ished...

 Should it always be that order? Or could it be:
Third process fin ished...
First process finished.. .
Second process finished.. .

 Reporting the order in which specif ic processes end is not
required. Just report that processes *ARE* ending !

 There is no requirement to say which child process/PID
f inishes in what order, etc.

 FEATURE: Provides a notif ication message stating processes
are finishing and work is proceeding.

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.6

HW1 - 3

TCSS 422 A – Spring 2018
Institute of Technology

4/26/2018

L8.2Slides by Wes J. Lloyd

CHAPTER 29 –
LOCK BASED

DATA STRUCTURES

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L8.7

Adding locks to data structures make them
thread safe.

Considerations:

Correctness

Performance

Lock granularity

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.8

LOCK-BASED
CONCURRENT DATA STRUCTURES

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.9

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Achieve (N) performance gain with (N) additional resources

 Throughput:

 Transactions per second

 1 thread/core

 N = 100 tps

 10 threads/cores

 N = 1000 tps

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.10

PERFECT SCALING

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?
Why do we want counters local to each CPU Core?

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.11

SLOPPY COUNTER

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.12

SLOPPY COUNTER - 2

TCSS 422 A – Spring 2018
Institute of Technology

4/26/2018

L8.3Slides by Wes J. Lloyd

 Consider 4 threads increment a counter 1000000 times each

 Low S What is the consequence?

 High S What is the consequence?

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.13

THRESHOLD VALUE S

 Example implementation

 Also with CPU affinity

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.14

SLOPPY COUNTER - EXAMPLE

 Simplification - only basic list operations shown

 Structs and initialization:

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.15

CONCURRENT LINKED LIST - 1

 Insert – adds item to list

 Everything is critical!
 There are two unlocks

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.16

CONCURRENT LINKED LIST - 2

 Lookup – checks list for existence of item with key

 Once again everything is critical
 Note - there are also two unlocks

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.17

CONCURRENT LINKED LIST - 3

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding
practice

 There is nothing specifically wrong with this example however

 Second Implementation …

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.18

CONCURRENT LINKED LIST

TCSS 422 A – Spring 2018
Institute of Technology

4/26/2018

L8.4Slides by Wes J. Lloyd

 Init and Insert

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.19

CCL – SECOND IMPLEMENTATION

 Lookup

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.20

CCL – SECOND IMPLEMENTATION - 2

 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.21

CONCURRENT LINKED LIST PERFORMANCE

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the
same time

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.22

MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.23

CONCURRENT QUEUE

 Add to queue

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.24

CONCURRENT QUEUE - 2

TCSS 422 A – Spring 2018
Institute of Technology

4/26/2018

L8.5Slides by Wes J. Lloyd

Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list

 One lock per hash (bucket)

 Hash bucket is a linked lists

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.25

CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.26

INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales
magnificently.

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.27

CONCURRENT HASH TABLE

 Lock-free data structures in Java

 Java.util.concurrent.atomic package
 Classes:
 AtomicBoolean
 AtomicInteger
 AtomicIntegerArray
 AtomicIntegerFieldUpdater
 AtomicLong
 AtomicLongArray
 AtomicLongFieldUpdater
 AtomicReference

 See: https://docs.oracle.com/javase/7/docs/api/java
/uti l/concurrent/atomic/package-summary.html

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.28

LOCK-FREE DATA STRUCTURES

CHAPTER 30 –
CONDITION VARIABLES

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L8.29

 There are many cases where a thread wants to
wait for another thread before proceeding with
execution

Consider when a precondition must be fulfilled
before it is meaningful to proceed …

April 25, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L8.30

CONDITION VARIABLES

TCSS 422 A – Spring 2018
Institute of Technology

4/26/2018

L8.6Slides by Wes J. Lloyd

QUESTIONS

