
TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.1Slides by Wes J. Lloyd

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces:
Locks,

Lock Based Data Structures

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Quiz 2 – Scheduling Review

 Assignment 1 – MASH Shell

 Review: Proportional Share Scheduler – Ch. 9

 Review: Concurrency: Introduction – Ch. 26

 Review: Linux Thread API – Ch. 27

 Locks – Ch. 28

 Lock Based Data Structures – Ch. 29

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L5.2

OBJECTIVES



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.2Slides by Wes J. Lloyd

CHAPTER 28 –
LOCKS

April 23, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L5.3

 Ensure critical section(s) are executed atomically -as a unit
 Only one thread is allowed to execute a critical section at any given 

time

 Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.4

LOCKS



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.3Slides by Wes J. Lloyd

 Lock variables are called “MUTEX”

 Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

 Locked  (acquired or held)

 Unlocked (available or free)

 Only 1 thread can hold a lock

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.5

LOCKS - 2

 pthread_mutex_lock(&lock)

 Try to acquire lock

 If lock is free, calling thread will acquire the lock

 Thread with lock enters critical section
 Thread “owns” the lock

 No other thread can acquire the lock before the owner 
releases it.

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.6

LOCKS - 3



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.4Slides by Wes J. Lloyd

 Program can have many mutex (lock) variables to 
“serialize” many critical sections

 Locks are also used to protect data structures

 Prevent multiple threads from changing the same data 
simultaneously

 Programmer can make sections of code “granular”
 Fine grained – means just one grain of sand at a time through an 

hour glass

 Similar to relational database transactions
 DB transactions prevent multiple users from modifying a table, 

row, field

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.7

LOCKS - 4

 Is this code a good example of “f ine grained parallelism”?

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.8

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {

node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock); 



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.5Slides by Wes J. Lloyd

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.9

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b); 
pthread_mutex_unlock(&lock_a); 

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b); 

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d); 

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e); 

ListNode *node = mylist->head;
int i=0 . . .

 Correctness

 Does the lock work?  

 Are critical sections mutually exclusive?  
(atomic-as a unit?)

 Fairness

 Are threads competing for a lock have a fair chance of 
acquiring it?

 Overhead

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.10

EVALUATING LOCK IMPLEMENTATIONS



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.6Slides by Wes J. Lloyd

 Locks require hardware support

 To minimize overhead, ensure fairness and correctness

 Special “atomic-as a unit” instructions to support lock 
implementation

 Atomic-as a unit exchange instruction 
 XCHG

 Compare and exchange instruction
 CMPXCHG

 CMPXCHG8B

 CMPXCHG16B

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.11

BUILDING LOCKS

 To implement mutual exclusion
 Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt
 What if lock is never released?

 On a multiprocessor processor each CPU has its  own interrupts
 Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost
 If not queued…

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.12

HISTORICAL IMPLEMENTATION



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.7Slides by Wes J. Lloyd

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L7.13

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation:  Correct?  Fair?  Per formant?

 Correctness requires luck…  (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously 

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.14

DIY: CORRECT?



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.8Slides by Wes J. Lloyd

 What is wrong with while(<cond>);  ?

 Spin-waiting wastes t ime actively waiting for another thread

 while (1); will  “peg” a CPU core at 100%
 Continuously loops, and evaluates mutex->flag value…

 Generates heat…

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.15

DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}

 C implementation: not atomic
 Adds a simple check to basic spin lock

 One a single core CPU system with preemptive scheduler:

 Try this…

 lock() method checks that TestAndSet doesn’t return 1

 Comparison is in the caller

 Single core systems are becoming scarce

 Try on a one-core VM

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.16

TEST-AND-SET INSTRUCTION



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.9Slides by Wes J. Lloyd

 Requires a preemptive scheduler on single CPU core system

 Lock is never released without a context switch

 1-core VM: occasionally will  deadlock, doesn’t miscount

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.17

DIY: TEST-AND-SET - 2

 Correctness:
 Spin locks guarantee: critical sections won’t be executed 

simultaneously by (2) threads

 Fairness:
 No fairness guarantee.  Once a thread has a lock, nothing forces it to 

relinquish it…

 Performance:
 Spin locks perform “busy waiting”

 Spin locks are best for short periods of waiting

 Performance is slow when multiple threads share a CPU
 Especially for long periods 

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.18

SPIN LOCK EVALUATION



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.10Slides by Wes J. Lloyd

 Checks that the lock variable has the expected value FIRST, 
before changing its value
 If so, make assignment

 Return value at location

 Adds a comparison to TestAndSet

 Useful for wait-free synchronization
 Supports implementation of shared data structures which can be 

updated atomically (as a unit) using the HW support 
CompareAndSwap instruction

 Shared data structure updates become “wait-free” 

 Upcoming in Chapter 32

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.19

COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.20

COMPARE AND SWAP

1-core VM:
Count is correct, no deadlock



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.11Slides by Wes J. Lloyd

 Cooperative instructions used together to support 
synchronization on RISC systems

 No support on x86 processors
 Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)
 Loads value into register
 Same as typical load
 Used as a mechanism to track competition

 Store-conditional (SC)
 Performs “mutually exclusive” store
 Allows only one thread to store value

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.21

TWO MORE “LOCK BUILDING”
CPU INSTRUCTIONS

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

 C code is psuedo code

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.22

LL/SC LOCK



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.12Slides by Wes J. Lloyd

 Two instruction lock

April 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7.23

LL/SC LOCK - 2

 Simple, correct

 Slow

 With long locks, waiting threads spin for entire timeslice

 Repeat comparison continuously

 Busy waiting

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.24

HARDWARE SPIN LOCKS - SUMMARY

How To Avoid Spinning?
Need both HW & OS Support !



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.13Slides by Wes J. Lloyd

 HW CPU Instruction

 Increment counter atomically -as a unit in one instruction

 Fetch and return value

 Increment by 1

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.25

FETCH-AND-ADD

 Can build Ticket Lock using Fetch-and-Add

 Ensures progress of all  threads (fairness)

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.26

TICKET LOCK



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.14Slides by Wes J. Lloyd

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.27

TICKET LOCK - 2

TA myturn=0
ticket=1
turn=0

TA
while (0 != 0)
acquire lock

TB myturn=1
ticket=2
turn=0

TB
while (0 != 1)
spin

TA-unlock
myturn=0
ticket=2
turn=1

TB
while (1 != 1)
acquire lock

 Give up the CPU – instead of busy waiting…
 running ready

 Ready relinquishes the CPU for another thread (ctxt. switch)

 How does the thread get the CPU back?
 OS must opportunistically reschedule it: ready  running

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.28

YIELD() – SYSTEM CALL



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.15Slides by Wes J. Lloyd

 Don’t allow the OS to control your program
 Use internal Thread Queues

 Allows programmer to maintain control
 Ensure fairness, prevent starvation
 Better for synchronizing large #’s of threads

 Require OS support to add/remove threads to/from 
queue(s)

 Solaris API:
 park(): puts thread to sleep
 unpark(threadID): wakes specified thread

 Linux API: futex()

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.29

THREAD QUEUES

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.30

THREAD QUEUES - 2

lock unavailable; add thread to queue

Guard uses a spin-lock to protect the
critical sections in lock() and unlock()

Obtain guard lock

try to obtain actual lock

potential wakeup/waiting race



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.16Slides by Wes J. Lloyd

 Unlock

 Note: no change to m->flag if unparking a thread

 Lock is passed to the unparked thread “directly”

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.31

THREAD QUEUES - 3

Obtain guard lock (spin)

wake up thread from queue

release guard lock

 Thread B: context switch occurs immediately before call  to 
park()

 Thread A: releases lock, calls unpark, queue is empty

 Thread B: regains context, proceeds to lock itself forever

 Need new system call 
 setpark()- informs OS about soon to be parked thread

 Subsequent calls to unpark() are aware that ThreadB is about to park

 ThreadB’s call to park() immediately returns

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.32

WAKEUP/WAITING RACE



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.17Slides by Wes J. Lloyd

 Fast Userspace MuTEX

 Linux futex system calls similar to park() and unpark()

 Linux uses an in-kernel queue 

 Provides a futex() system call

 Provides atomic-as a unit compare-and-block operation

 Futex is a lower-level construct

 Used as building blocks for:
mutex, condition variables, semaphores

 Objective: reduce the number of system calls

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.33

FUTEX

 futex_wait(addr, expected)
 Put calling thread to sleep
 If value @ addr != expected  return immediately

 futex_wake(addr)
 Wake one thread that is waiting on the queue

 These are not exposed as C library calls  directly
 Call futex() with FUTEX_WAIT or FUTEX_WAKE

 Use a 32-bit integer
 The leftmost bit (the +/- sign) tracks the lock state
 0 – free
 1 – locked

 Remaining 31 bits: identifies thread

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.34

FUTEX: WRITE YOUR OWN MUTEX LOCK



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.18Slides by Wes J. Lloyd

 Hybrid between spin-locks and yielding

 Useful if lock is about to be released

 First phase – spin lock

 Spin for some time waiting for the lock to be released

 If lock is not acquired after time expires enter phase two.

 Second phase - yield

 Thread sleeps (yields)

 Is awoken when the lock becomes free

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.35

HYBRID - TWO PHASE LOCKS

CHAPTER 29 –
LOCK BASED

DATA STRUCTTURES

April 23, 2018
TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.36



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.19Slides by Wes J. Lloyd

 Concurrent Data Structures

 Performance

 Lock Granularity

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.37

OBJECTIVES

Adding locks to data structures make them 
thread safe.

Considerations:

Correctness 

Performance

Lock granularity

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.38

LOCK-BASED
CONCURRENT DATA STRUCTURES



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.20Slides by Wes J. Lloyd

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.39

COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe

 Add lock to the counter

 Require lock to change data

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.40

CONCURRENT COUNTER



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.21Slides by Wes J. Lloyd

 Decrease counter

 Get value

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.41

CONCURRENT COUNTER - 2

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.42

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.22Slides by Wes J. Lloyd

 Achieve (N) per formance gain with (N) additional resources

 Throughput:

 Transactions per second

 1 core

 N = 100 tps

 10 core 

 N = 1000 tps

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.43

PERFECT SCALING

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically 
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?  
Why do we want counters local to each CPU Core?

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.44

SLOPPY COUNTER



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.23Slides by Wes J. Lloyd

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.45

SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.46

THRESHOLD VALUE S



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.24Slides by Wes J. Lloyd

 Example implementation

 Also with CPU affinity

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.47

SLOPPY COUNTER - EXAMPLE

 Simplification - only basic l ist operations shown

 Structs and initialization:

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.48

CONCURRENT LINKED LIST - 1



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.25Slides by Wes J. Lloyd

 Insert – adds item to l ist

 Everything is critical!
 There are two unlocks

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.49

CONCURRENT LINKED LIST - 2

 Lookup – checks l ist for existence of item with key

 Once again everything is crit ical
 Note - there are also two unlocks 

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.50

CONCURRENT LINKED LIST - 3



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.26Slides by Wes J. Lloyd

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error 

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding 
practice

 There is nothing specifically wrong with this example however

 Second Implementation …

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.51

CONCURRENT LINKED LIST

 Init and Insert

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.52

CCL – SECOND IMPLEMENTATION



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.27Slides by Wes J. Lloyd

 Lookup

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.53

CCL – SECOND IMPLEMENTATION - 2

 Using a single lock for entire l ist is not very performant

 Users must “wait” in l ine for a single lock to access/modify 
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma L7.54

CONCURRENT LINKED LIST PERFORMANCE



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.28Slides by Wes J. Lloyd

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the 
same time

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.55

MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.56

CONCURRENT QUEUE



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.29Slides by Wes J. Lloyd

 Add to queue

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.57

CONCURRENT QUEUE - 2

Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list 

 One lock per hash (bucket)

 Hash bucket is a linked lists

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.58

CONCURRENT HASH TABLE



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.30Slides by Wes J. Lloyd

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.59

INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales 
magnificently.

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.60

CONCURRENT HASH TABLE



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.31Slides by Wes J. Lloyd

 Lock-free data structures in Java

 Java.util.concurrent.atomic package
 Classes:
 AtomicBoolean
 AtomicInteger
 AtomicIntegerArray
 AtomicIntegerFieldUpdater
 AtomicLong
 AtomicLongArray
 AtomicLongFieldUpdater
 AtomicReference

 See: https://docs.oracle.com/javase/7/docs/api/java 
/util/concurrent/atomic/package-summary.html

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.61

LOCK-FREE DATA STRUCTURES

QUESTIONS



TCSS 422 A – Spring 2018
Institute of Technology

4/24/2018

L5.32Slides by Wes J. Lloyd

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.63

FUTEX: MUTEX_LOCK PSUEDO CODE

Void mutex_lock(int *mutex) {
int v;
/* Bit 31 was clear, we got the mutex (this is a fast lock!)
if (atomic_bit_test_set (mutex, 31) == 0)

return;
// “adds” mutex to queue
atomic_increment (mutex);
while (1)  {

// is lock available?
if (atomic_bit_test_set (mutex, 31) ==0 {

// remove mutex from queue – it has the lock now
atomic_decrement (mutex);
return;

}
// Have to wait. Make sure futex value is locked (negative)
v = *mutex;
iv (v >= 0)
continue;

// wait to be woken up when lock is available
// this is not a spin lock… (signal)
futex_wait (mutex, v);

}
}

 Interesting note: Futex bug in Redhat Linux

 https://www.infoq.com/news/2015/05/redhat-futex

April 23, 2018 TCSS422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

L7.64

FUTEX: MUTEX UNLOCK PSUEDO CODE

Void mutex_unlock(int *mutex) {

// Adding 0x80000000 to counter results in 0 if and only if
// there are no other interested threads

if (atomic_add_zero (mutex, 0x80000000))
return;

// There are other threads waiting for this lock (mutex)
// wake one of them up..
// (e.g. dequeue it)
futex_wake (mutex);

}


