TCSS 422 A — Spring 2018
Institute of Technology

Three Easy Pieces:
Locks,
Lock Based Data Structures

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

. TCS5422: Operating S [Spring 2018]
Gl Fi s (A2 5 e v g, U it G U T~ T

TCSS 422: OPERATING SYSTEMS
| |

‘/‘

CHAPTER 28 -
LOCKS

. TCSS422; Operating Systems [Spring 2016]
Tl 22 Institute of Technology, University of Washington - Tacoma

= Lock variables are called “MUTEX”
=Short for mutual exclusion (that’s what they guarantee)

= Lock variables store the state of the lock

= States
=Locked (acquired or held)
= Unlocked (available or free)

= Only 1 thread can hold a lock

TCS5422: Operating Systems [Spring 2018]
Bl Fii Institute o Technoloay)Universitylof Washington®Tacomal

4/24/2018

OBJECTIVES

® Quiz 2 - Scheduling Review
= Assignment 1 - MASH Shell

= Review: Proportional Share Scheduler - Ch. 9
= Review: Concurrency: Introduction - Ch. 26

= Review: Linux Thread API - Ch. 27

= Locks - Ch. 28

= Lock Based Data Structures - Ch. 29

Institute of Technology, University of Washington - Tacoma

Aol 23, 2018 TCSS422: Operating Systems [Spring 2018] | 52 |

= Ensure critical section(s) are executed atomically-as a unit

= Only one thread is allowed to execute a critical section at any given
time

= Ensures the code snippets are “mutually exclusive”

= Protect a global counter:

[balance = balance + 1;

= A “critical section”:

Institute of Technology, University of Washington - Tacoma

1 lock_t mutex; // some globally-allocated lock ‘mutex’
2
3 lock (&mutex) ;
4 balance = balance + 1;
5 unlock (smutex);
Aol 23, 2018 TCSS422: Operating Systems [Spring 2018] | e |

Slides by Wes J. Lloyd

"pthread mutex_lock (&lock)
=Try to acquire lock
= If lock is free, calling thread will acquire the lock

=Thread with lock enters critical section
= Thread “owns” the lock

= No other thread can acquire the lock before the owner
releases it.

Institute of Technology, University of Washington - Tacoma

Apeil 23, 2018 TCSS422: Operating Systems [Spring 2018] | e |

L5.1

TCSS 422 A — Spring 2018 4/24/2018
Institute of Technology

FINE GRAINED?

= Program can have many mutex (lock) variables to = |s this code a good example of “fine grained parallelism”?
“serialize” many critical sections pthread_mutex_Tlock (&1ock) ;
a = b++;
® Locks are also used to protect data structures 5d= a* Cl;)
=a+ b +c;
= Prevent multiple threads from changing the same data FILE * fp = fopen ("file.txt", “r");
. I | fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
simultaneous Yy ListNode *node = mylist->head;
= Programmer can make sections of code “granular” \,Ivﬂ%;:?node) {
Fine grained - means just one grain of sand at a time through an node->title = strl;
hour glass node->subheading = str2;
node->desc = str3;
N . . node->end = *e;
=Similar to relational database transactions node = node->next;
DB transactions prevent multiple users from modifying a table, 3 T+
row, field e=e - i
pthread_mutex_unlock(&lock) ;
April 23, 2018 TCSS422: Operating Systems [Spring 2018] | 7 ‘ April 23, 2018 TCSS422: Operating Systems [Spring 2018] | 8 |

Institute of Technology, University of Washington - Tacoma Institute of Technology, University of Washington - Tacoma

FINE GRAINED PARALLELISM EVALUATING LOCK IMPLEMENTATIONS

pthread_mutex_lock (&lock_a) ;
pthread_mutex_lock (&lock_b);

a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

= Correctness
=Does the lock work?

= Are critical sections mutually exclusive?
(atomic-as a unit?)

pthread_mutex_lock (&lock_b);

=a*c;
pthread_mutex_unlock(&lock_b);
pthread_mutex_lock (&lock_d) ; = Fairness
*d=a+ b +c

pthread_mutex_unlock (&lock_d) ; = Are threads competing for a lock have a fair chance of

iri it?
FILE * fp = fopen ("file.txt", “r"); acquiring it?
pthread_mutex_lock (&lock_e);
fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);

pthread_mutex_unlock(&lock_e); = Overhead
ListNode *node = mylist->head;
int i=0 . .
TCS5422: Operating Systems [Spring 2018] TCS5422: Operating Systems [Spring 2018]
Bl Fi e Inttute of Technoloay)Universitylof Washinston=Tacomal 179 CINZES 0 [See et Techolo syl nersityofWashinstonSiecome! 1710

BUILDING LOCKS HISTORICAL IMPLEMENTATION

= Locks require hardware support = To implement mutual exclusion
O . = Disable interrupts upon entering critical sections
= To minimize overhead, ensure fairness and correctness

1 void lock() {
= Special “atomic-as a unit” instructions to support lock 5 o eEeueenE Ol
implementation 4 void unlock() {
5 EnableInterrupts () ;
6

= Atomic-as a unit exchange instruction
XCHG = Any thread could disable system-wide interrupt
= What if lock is never released?

. . .
Compare and exchange instruction = On a multiprocessor processor each CPU has its own interrupts

CMPXCHG = Do we disable interrupts for all cores simultaneously?
CMPXCHGS8B
. I A
CMPXCHG16B While interrupts are disabled, they could be lost
= If not queued...
TCSS422: Operating Systems [Spring 2018] TCS$422: Operating Systems [Spring 2018]
Bl Fii Institute o Technoloay)Universitylof Washington®Tacomal | RES ‘ G 20 [nsRueor TechnolosyUniversitylof WashinstonSiacoma! w2

Slides by Wes J. Lloyd L5.2

TCSS 422 A — Spring 2018
Institute of Technology

SPIN LOCK IMPLEMENTATION

= Operate without atomic-as a unit assembly instructions
= “Do-it-yourself” Locks
= |s this lock implementation: Correct? Fair? Performant?

1 typedef struct _ lock_t { int flagi } lock_t;
2

3 init(lock_t *mutex) {

4 2> k is available, = held

5 mutex->flag = 0;

6)

7

8 lock(lock_t *mutex) {

9 (mutex->f1

10 2)
11 mutex->flag
123 11
13
14 d unlock(lock_t *mutex) {
15 mutex->flag = 0;
16)
April 23, 2018 TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma | 1713 ‘

4/24/2018

DIY: CORRECT?

= Correctness requires luck... (e.g. DIY lock is incorrect)

Threadl Thread2

call 1ock ()

while (flag == 1)

interrupt: switch to Thread 2
call 1ock ()
while (flag == 1)
flag = 1;

interrupt: switch to Thread 1
flag = 1; // set flag to 1 (too!)

= Here both threads have “acquired” the lock simultaneously

April 23, 2018 TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma 1714

DIY: PERFORMANT?

void lock(lock_t *mutex)

// while lock is unavailable, wait..
mutex->flag = 1;

= What is wrong with while(<cond>); ?

= Spin-waiting wastes time actively waiting for another thread
= while (1); will “peg” a CPU core at 100%

= Continuously loops, and evaluates mutex->flag value...

= Generates heat...

TCS5422: Operating Systems [Spring 2018]
Bl Fi e Inttute of Technoloay)Universitylof Washinston=Tacomal 1715

TEST-AND-SET INS

= C implementation: not atomic
= Adds a simple check to basic spin lock
= One a single core CPU system with preemptive scheduler:
= Try this...

TestAndSet (int *ptr, in

int old = *ptr;

*ptr = new;
olds

o wn e

}

= lock() method checks that TestAndSet doesn’t return 1
= Comparison is in the caller

= Single core systems are becoming scarce

= Try on a one-core VM

TCS5422: Operating Systems [Spring 2018]
CINZES 0 [See et Techolo syl nersityofWashinstonSiecome!

17.16

DIY: TEST-AND-SET - 2

= Requires a preemptive scheduler on single CPU core system
= Lock is never released without a context switch
= 1-core VM: occasionally will deadlock, doesn’t miscount

1 _lock t |
2
3} lock t:
4
5 void init(lock_t *lock) {
6 / n that lock is ava
7 / 1 that eld
8 lock->flag
9 D
10
11 void lock(lock_t *lock) {
12 (Testandset (slock->flag, 1) == 1)
13 : // spin-wait
14}
15
16 void unlock(lock_t *lock) {
17 lock->flag = 0;
18)
April 23, 2018 TCSS422: Operating Systems [Spring 2018]

7.
Institute of Technology, University of Washington - Tacoma | L7 ‘

SPIN LOCK EVALUATION

= Correctness:

= Spin locks guarantee: critical sections won’t be executed
simultaneously by (2) threads

= Fairness:

= No fairness guarantee. Once a thread has a lock, nothing forces it to
relinquish it...

= Performance:
= Spin locks perform “busy waiting”
= Spin locks are best for short periods of waiting
= Performance is slow when multiple threads share a CPU
Especially for long periods

April 23, 2018 TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma 1718

Slides by Wes J. Lloyd

L5.3

TCSS 422 A — Spring 2018
Institute of Technology

4/24/2018

COMPARE AND SWAP

before changing its value
= |If so, make assignment
= Return value at location

= Adds a comparison to TestAndSet

= Useful for wait-free synchronization

updated atomically (as a unit) using the HW support
CompareAndSwap instruction

= Shared data structure updates become “wait-free”
= Upcoming in Chapter 32

= Checks that the lock variable has the expected value FIRST,

= Supports implementation of shared data structures which can be

TCS5422: Operating Systems [Spring 2018]

April 23, 2018 Institute of Technology, University of Washington - Tacoma

[oo]

COMPARE AND SWAP

= Compare and Swap

1 int CompareAndswap(int *ptr, int expected, int new) {
2 int actual = *ptr;

3 (actual == expected)

4 *ptr = new;

5 actuals

1-core VM:

= Spin loc .
Count is correct, no deadlock

3
4 b

= X86 provides “cmpxchgl” compare-and-exchange instruction
= cmpxchg8b
= cmpxchgléb

TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma 1720

April 23, 2018

TWO MORE “LOCK BUILDING”
CPU INSTRUCTIONS

= Cooperative instructions used together to support
synchronization on RISC systems

= No support on x86 processors
= Supported by RISC: Alpha, PowerPC, ARM

= Load-linked (LL)
= Loads value into register
=Same as typical load
= Used as a mechanism to track competition

= Store-conditional (SC)
= Performs “mutually exclusive” store
= Allows only one thread to store value

TCS5422: Operating Systems [Spring 2018]

[oa]

LL/SC LOCK

1 int LoadlLinked(int *ptr) {

2 *ptr;

3 }

4

5 int StoreConditional (int *ptr, int value) {
6 (no one has updated *ptr since the LoadLinked to this address) {
7 *ptr = value;

8 1; Succassl

9 } {

10 07 failed to update
11 }

12}

= LL instruction loads pointer value (ptr)
= SC only stores if the load link pointer has not changed
= Requires HW support

= C code is psuedo code

TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma 1722

April 23, 2018

Bl Fi e Inttute of Technoloay)Universitylof Washinston=Tacomal
1 void lock(lock_t *lock) {

2 @ 1

3 (LoadLinked (&lock->flag) == 1)
1 : // spin until it’s zero
L3 (storeConditional (&lock->flag, 1)
6 i o

g 5

8 b

9 1

10

1 d unlock(lock_t *lock) (

12 lock->flag = 0;

= Two instruction lock

TCS5422: Operating Systems [Spring 2018]

April 23, 2018 Institute of Technology, University of Washington - Tacoma

[o]

HARDWARE SPIN LOCKS - SUMMARY

= Simple, correct

= Slow

= With long locks, waiting threads spin for entire timeslice
= Repeat comparison continuously
= Busy waiting

HW & OS Support

TCSS422: Operating Systems [Winter 2018]

Instituteof Technology, University of Washington - Tacoma 1724

April 23, 2018

Slides by Wes J. Lloyd

L5.4

TCSS 422 A — Spring 2018
Institute of Technology

FETCH-AND-ADD

= HW CPU Instruction

= Increment counter atomically-as a unit in one instruction

int FetchAndAdd(int *ptr) {
int old = *ptr;
*ptr = old + 1;
old;

e

}

= Fetch and return value
=Increment by 1

TCS5422: Operating Systems [Winter 2018]

April 23, 2018 Institute of Technology, University of Washington - Tacoma

| 17.25

4/24/2018

TICKET LOCK

= Can build Ticket Lock using Fetch-and-Add
= Ensures progress of all threads (fairness)

1 —lock_t {

2

3

4

5

6 void lock_init(lock_t *lock) {

7 lock->ticket = 0;

8 lock->turn =

9 ¥

10

11 void lock(lock_t *lock) {

12 int myturn = FetchAndadd (slock->ticket) ;

13 (lock->turn != myturn)

14 5 // spin

15)

16 void unlock(lock_t *lock) {

17 FetchandAdd (slock->turn) ;

18}

TCSS422: Operating Systems [Winter 2018]

G2 0 Institute of ?Vechno?o; Unive[rsi(y of Wash]ingwn - Tacoma 1726

i truct lock t {
2 int ticket:
3 int turn; B
4 } lock t; while (11=1)
5 - e acquire lock
[void lock_init (lock t *lock) {
i, lock->ticket = 07 TB myturn=1
8 lock->turn = 0; ticket=2 TA myturn=0
9 } turn=0 ticket=1
10 turn=0
11 wvoid lock(lock_t *lock) {
12 int myturn = FetchAndpfid(slock->ticket) ; TA
13 (lock-»turn != myturn) €———— | while (01=0)
14 i // spin quire lock
15 B TA-unlock
16 void unlock(lock t *lock) { hile (0 1= 1 myturn=0
17 FetchAndAdd (slock->turn) ; while (01=1) || i\ et=0
< spin
18 F turn=1
TCS5422: Operating Systems [Winter 2018]
Bl Fi e Institute of Technology, University of Washington - Tacoma | 727

YIELD() - SYSTEM

1 void init() {

2 flag = 0;

3 ¥

4

5 void lock() {

6 (Testandset (sflag, 1)
7 yield(); give up the
8 1}

9

10 void unlock() {

11 flag = 0;

12

= Give up the CPU - instead of busy waiting...

= running >ready
= Ready relinquishes the CPU for another thread (ctxt. switch)
= How does the thread get the CPU back?

= 0S must opportunistically reschedule it: ready = running

TCSS422: Operating Systems [Winter 2018]

CINZES 0 Institute of Technology, University of Washington - Tacoma

17.28

THREAD QUEUES

= Don’t allow the OS to control your program
= Use internal Thread Queues

= Allows programmer to maintain control
= Ensure fairness, prevent starvation
= Better for synchronizing large #'s of threads

queue(s)

= Solaris API:

= park(): puts thread to sleep

= unpark(threadID): wakes specified thread
= Linux API: futex()

= Require OS support to add/remove threads to/from

TCSS422: Operating Systems [Winter 2018]

April 23, 2018 Institute of Technology, University of Washington - Tacoma

| 17.29

THREAD QUEUES - 2

1 truct _lock_t { int flag; int guard; queue_t *q; } lock t;
2

3 i lock_init (lock_t *m) {

4 m->flag = 0;

5 m->guard 7)

6 queue_init (m->q) ; Guard uses a spin-lock to protect the
T @) critical sections in lock() and unlock()
8

& lock(lock_t *m) {

10 TestAndSet (&m-: iy By - .

11 e j ‘r'"fg‘far B)47 Obtain guard lock

12

as

try to obtain actual lock

15 {
16 * queue_add (m->q, gettid()); lock unavailable; add thread to queue

17 m->guard = 0; . o
18 p“ﬁ“ ¥ potential wakeup/waiting race
19 }
20}
21
TCSS422: Operating Systems [Winter 2018]
G 20 [nstueor TechnolosyUniversitylofWashinstonSTacoma! 1730

Slides by Wes J. Lloyd

L5.5

TCSS 422 A — Spring 2018 4/24/2018
Institute of Technology

THREAD QUEUES - 3 WAKEUP/WAITING RACE

= Unlock = Thread B: context switch occurs immediately before call to
park()
22 yoid unlock(lock_t *m) { = Thread A: releases lock, calls unpark, queue is empty
2 (TestAndSet (&m->guard, 1 . . R R
24 i e st) SR i, Obtain guard lock (spin) = Thread B: regains context, proceeds to lock itself forever
25 (queue_empty (m->q))
26 m->flag = 0; / let go of lock; no one wants it
27 wake up thread from queue
28 » unpark (queue_remove (m->q)) ; ,1)1‘{ lock (for :':/‘L thread!) = Need new system call

29 » m->guard = 07 Lojeace guard lock = setpark()- informs OS about soon to be parked thread
= Subsequent calls to unpark() are aware that ThreadB is about to park
= ThreadB’s call to park() immediately returns

= Note: no change to m->flag if unparking a thread
= Lock is passed to the unparked thread “directly”

TCSS422: Of ting Syste [Winter 2018] TCSS422: O ting Systs [Winter 2018]
Bl P Institute of’?zz.r'ﬁu,!; Srr::iemlz: of ‘Washington - Tacoma | L3t ‘ GRS e Institute of ’;:2:\;:?0;;, G'ﬂim.f; of Washington - Tacoma 1732
FUTEX o FUTEX: WRITE YOUR OWN MUTEX LOCK
MUTEX |

= Fast Userspace MuTEX = futex_wait(addr, expected)
= Linux futex system calls similar to park() and unpark() - (P callmg tiead i dbep _ ‘

. . = If value @ addr != expected - return immediately
= Linux uses an in-kernel queue u futex_wake(addr)
= Provides a futex() system call = Wake one thread that is waiting on the queue
= Provides atomic-as a unit compare-and-block operation ® These are not exposed as C library calls directly

= Call futex() with FUTEX_WAIT or FUTEX_WAKE
= Futex Is a lower-level construct
. . bt
= Used as building blocks for: Us:ha ?ftb't 't";igz: oo) s (e (s
s . - e leftmos’ e - sign) tracks e lock state
mutex, condition variables, phores I3 (e 7= egi)
0 - free
1 - locked
= Objective: reduce the number of system calls * Remaining 31 bits: identifies thread
TCSS422: Of ting Syste [Winter 2018] TCSS422: O ting Systs [Winter 2018]
Bl Fi e Institute of?r:fr‘ul\ﬁugys, Srr:::ersll'.: of ‘Washington - Tacoma | 1733 ‘ GRS e Institute of $:;:\rl|:?o§ G'ﬂim.f; of Washington - Tacoma 1734

HYBRID - TWO PHASE LOCKS

= Hybrid between spin-locks and yielding
= Useful if lock is about to be released

= First phase - spin lock CHAPTER 29 =

= Spin for some time waiting for the lock to be released
= If lock is not acquired after time expires enter phase two.

LOCK BASED
DATA STRUCTTURES

= Second phase - yield
=Thread sleeps (yields)
= |s awoken when the lock becomes free

TCSS422: Operating Systems [Winter 2018] , . TCSS422: Operating Systems [Winter 2018]
Bl Fii Institute of Technology, University of Washington - Tacoma 1735 Aerize 201 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L5.6

TCSS 422 A — Spring 2018
Institute of Technology

OBJECTIVES

= Concurrent Data Structures
= Performance

= Lock Granularity

4/24/2018

TCS5422: Operating Systems [Winter 2018]
Bl P e e T e G T e

| 1737

LOCK-BASED

CONCURRENT DATA STRUCTURES

mAdding locks to data structures make them
thread safe.

= Considerations:
=Correctness
=Performance
=Lock granularity

April 23, 2018 TCS$422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma 1738

= Synchronization weary --- not thread safe
1 typedef ct _ counter_t {
2 value;
3 } counter_t;
4
5 void init (counter_t *c) {
6 c->value = 0;
7 }
8
9 void increment (counter_t *c) {
10 c->value++;
11 }
12
13 void decrement (counter_t *c) {
14 c->value--;
15 }
16
17 int get(counter_t *c) {
18 eturn c->value;
19 }
TCSS422: Operating Systems [Winter 2018]
Bl Fi e \nsﬁluleoV?fechnu?ugyy,Unive[rsilyofWasP]inglonrTacuma | 1739

CONCURRENT COUNTER

1 ruct __counter_t {

2 int value;

3 pthread lock t lock:

4 } counter_t;

5

3 void init (counter_t *c) {

7 c->value = 0;

8 Pthread mutex_init(sc->lock, NULL);
9 i

10

11 void increment (counter_t *c) {

12 Pthread_mutex_lock(&c->lock);
13 c->valuet+;

14 Pthread mutex_unlock(sc->lock) ;
15) - -

16

= Add lock to the counter
= Require lock to change data

TCSS422: Operating Systems [Winter 2018]
CINZES 0 [See et Techolo syl niersity o Washinstoniecome!

17.40

CONCURRENT COUNTER - 2

= Decrease counter
= Get value

(Cont.)
17 void decrement (counter_t *c) {
18 Pthread mutex_lock (sc->1lock) i
19 c->value--;
20 Pthread mutex_unlock (sc->lock) 7
21)
22
23 int get(counter_t *c) {
24 pthread mutex_lock (&c->lock) 7
25 int rc = c->value;
26 Pthread_mutex_unlock (&c->lock) ;
27 return rc;
28)

April 23, 2018 TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

[oa]

Slides by Wes J. Lloyd

CONCURRENT COUNTERS - PERFORMANCE

= iMac: four core Intel 2.7 GHz i5 CPU
= Each thread increments counter 1,000,000 times

15
X Precise
3 Sioppy
B0
8
8
H
E 5
Traditional vs. sloppy counter
1 2 3 4

Sloppy Threshold (S) = 1024
Threads

scales poorly

TCS5422: Operating Systems [Winter 2018]
Institute of Technology, University of Washington - Tacoma

‘ April 23,2018 17.42

L5.7

TCSS 422 A — Spring 2018
Institute of Technology

PERFECT SCALING

= Throughput:
= Transactions per second

= 1 core
= N =100 tps

= 10 core
= N =1000 tps

= Achieve (N) performance gain with (N) additional resources

TCS5422: Operating Systems [Winter 2018]
Bl P e e T e G T e

[oo]

4/24/2018

SLOPPY COUNTER

= Provides single logical shared counter
= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically
Global counter has lock to protect global counter value
Sloppiness threshold (S):
Update threshold of global counter with local values
Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
= Why this implementation?
Why do we want counters local to each CPU Core?

April 23, 2018 TCS$422: Operating Systems [Winter 2018]

4
Institute of Technology, University of Washington - Tacoma 1744

SLOPPY COUNTER - 2

= Update threshold (S) = 5
= Synchronized across four CPU cores
= Threads update local CPU counters

Institute of Technology, University of Washington - Tacoma

Time ‘ Ly ‘ Ly ‘ Ly Ly G
() 0) o () ()
1 0 () 1 1 ()
2 1 [¢) 2 1 ()
3 2 o 3 1 ()
4 3 0 3 2 [
5 4 1 3 3 ()
6 5>0 1 3 4 5 (from L,)
7 0 2 4 530 10 (from Ly)

April 23, 2018 TC55422: Operating Systems [Winter 2018] | as ‘

THRESHOLD VALUE S

= Consider 4 threads increment a counter 1000000 times each
= Low S > What is the consequence?
= High S > What is the consequence?

15
410
2
5
8
8
@
o
Es
=
OF—T— T T T e —%
1 2 4 8 16 32 64 1282565121024
Sloppiness
TC55422: Operating Systems [Winter 2018]
CINZES 0 [See et Techolo syl niersity o Washinstoniecome! 1746

SLOPPY COUNTER - EXAMPLE

= Example implementation

= Also with CPU affinity

TCSS422: Operating Systems [Winter 2018]
Bl Fii Institute o Technoloay)Universitylof Washington®Tacomal

[oo]

CONCURRENT LINKED LIST - 1

= Simplification - only basic list operations shown
= Structs and initialization:

3 s e
2 ty node_t {
3 key:
4 struct _ node_t *next;
5 } node_t;
6
7 /7 st structure (one used per lis
8 ty) struct _ list_t {
9 node_t *head;
10 pthread mutex_t lock;
11 } list_t;
12
13 void List_Init(List_t *L) (
14 I->head = NULL;
15 pthread mutex_init (sL->lock, NULL):
16)
17
(cont.)

TC55422: Operating Systems [Winter 2018
G 20 Institute of ?rechno?o;, Univs[rsi(y of Wash]ing(on - Tacoma 1748

Slides by Wes J. Lloyd

L5.8

TCSS 422 A — Spring 2018
Institute of Technology

CONCURRENT LINKED LIST - 2

= Insert - adds item to list
= Everything is critical!
= There are two unlocks

(Cont.)
18 int List_Insert(list_t *IL, int key) {
19 pthread_mutex_lock (§L->lock) ;
20 node_t *new = malloc(sizeof (node_t));
21 if (new == NULL) {
22 perror ("malloc”) ;
23 pthread mutex_unlock (sL->lock) 7
24 return -1; // fa
26 new->key = key:
27 new->next = L->head:
28 L->head = new;
29 pthread_mutex_unlock(&L->1ock) ;
30 return 0; // succes
31
(Cont.)
April 23, 2018 TC55422: Operating Systems [Winter 2018] | 4o ‘

Institute of Technology, University of Washington - Tacoma

4/24/2018

CONCURRENT LINKED LIST - 3

= Lookup - checks list for existence of item with key
= Once again everything is critical
= Note - there are also two unlocks

(Cont.)
32
32 int List_Lookup(list_t *L, int key) {
33 pthread mutex_lock(sL->lock);
34 node_t *curr = L->head;
35 while (curr) {
36 if (curr->key == key)
37 pthread mutex_unlock (sL->lock) ;
38 return 0; suc S
39)
10 curr = curr->next;
a1
12 pthread_mutex_unlock(&L->lock) ;
43 return -1; failure
1)
TCS5422: Operating Systems [Winter 2018]
G2 0 Institute of ';echno?o; Unive[rsi(y of Wash]ing(on - Tacoma 1750

CONCURRENT LINKED LIST

= First Implementation:
= Lock everythIng inside Insert() and Lookup()
= If malloc() fails lock must be released

Research has shown “exception-based control flow” to be error
prone

40% of Linux OS bugs occur in rarely taken code paths

Unlocking in an exception handler is considered a poor coding
practice

There is nothing specifically wrong with this example however

= Second Implementation ...

TCS5422: Operating Systems [Winter 2018]

April 23, 2018 Institute of Technology, University of Washington - Tacoma

[os]

CCL - SECOND IMPLEMENTATION

® |nit and Insert

1 void List_Init(list_t *L) {
2 L->head = NULL;
3 pthread mutex_init(sL->lock, NULL);
4)
=
6 void List_Insert(list_t *I, int key) {
3 n i ot d
8 malloc (sizeof (node_t));
9 if (new == NULL) {
10 perror ("malloc") ;
11 return;
12 }
13 new->key = key:
14
15 // just lock
16 pthread_mutex_lo
17 new->next = L->head;
18 L->head = new;
19 pthread_mutex_unlock(sL->lock);
20)
- |
TCSS422: Operating Systems [Winter 2018]
CINZES 0 [See et Techolo syl niersity o Washinstoniecome! 1752

CCL - SECOND IMPLEMENTATION - 2

= Lookup
(cont.)
22 int List_lookup (list_t *IL, int key) {
23 Tint rv = -1;
24 pthread_mutex_lock (§L->lock) ;
25 node_t *curr = L->head;
26 whils (curr) |
27 if (curr->key == key) {
28 v = 0;
29 break;
30 }
31 curr = curr->next;
32
33 pthread_mutex_unlock(&L->10ck) ;
34 return rv; // now both success and failure
35)
April 23, 2018 TCS5422: Operating Systems [Winter 2018] | 53 ‘

Institute of Technology, University of Washington - Tacoma

CONCURRENT LINKED LIST PERFORMANCE

= Using a single lock for entire list is not very performant

= Users must “wait” in line for a single lock to access/modify
any item

= Hand-over-hand-locking (lock coupling)
= Introduce a lock for each node of a list

= Traversal involves handing over previous node’s lock,
acquiring the next node’s lock...

= Improves lock granularity
= Degrades traversal performance

= Consider hybrid approach
= Fewer locks, but more than 1
= Best lock-to-node distribution?

TCSS422: Operating Systems [Winter 2018]

G| 25 2 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L5.9

TCSS 422 A — Spring 2018
Institute of Technology

= Two locks:
= One for the head of the queue
= One for the tall
= Synchronize enqueue and dequeue operations

= Add a dummy node

= Allocated in the queue initialization routine
= Supports separation of head and tail operations

same time

= Improvement beyond a single master lock for a queue (FIFO)

= [tems can be added and removed by separate threads at the

MICHAEL AND SCOTT CONCURRENT QUEUES

TCS5422: Operating Systems [Winter 2018]

April 23, 2018 Institute of Technology, University of Washington - Tacoma

| L7.55

4/24/2018

CONCURRENT QUEUE

= Remove from queue

1
2
3
1
5
3 struct _queue t {
7 node_t *head;
8 node_t *tail;
9 pthread mutex_t headLock:
10 pthread mutex_t tailLock;
11 } queue_t;
12
13 void Queue_Init(queue_t *q) {
14 node_t *tmp = malloc(sizeof (node_t));
15 tmp->next = NULL;
16 q->head = g->tail = tmp;
17 pthread mutex_init (sq->headLock, NULL);
18 pthread_mutex_init (sq->taillock, NULL):
19 i
20
(Cont.)

April 23, 2018 TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

1756

CONCURRENT QUEUE - 2

= Add to queue

(Cont.)
21 void Queue Enqueue(queue_t *q, int value) {
22 node_t *tmp = malloc(sizeof (node_t));
23 assert (tmp != NULL);
24
25 tmp->value = value;
26 tmp->next = NULL;
27
28 pthread mutex_lock (sq->tailLock) ;
29 g->tail->next = tmp;
30 g->tail = tmp;
31 pthread mutex_unlock (sq->tailLock) ;
32 }
(Cont.)

April 23, 2018 TCS5422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

| 1757

CONCURRENT HASH TABLE

®Consider a simple hash table
=Fixed (static) size
=Hash maps to a bucket
Bucket is implemented using a concurrent linked list
One lock per hash (bucket)
Hash bucket is a linked lists

TCSS422: Operating Systems [Winter 2018]

CINZES 0 Institute of Technology, University of Washington - Tacoma

1758 |

INSERT PERFORMANCE -

CONCURRENT HASH TABLE

= Four threads - 10,000 to 50,000 inserts
= iMac with four-core Intel 2.7 GHz CPU

O Simple Concurrent List
X Concurrent Hash Table

o
c10
s
8
k3
o
Es
=
0 * * * F
0 10 20 30 40

Inserts (Thousands)

scales

1759

CONCURRENT HASH TABLE

1 #define BUCKETS (101)
2
3 typede t __hash_t {
4 list_t 1ists[BUCKETS];
5 } hash_t; -
3
7 d Hash_Init(hash_t *H) {
8 nt i;
9 for (i = 07 i < BUCKETS; i++) {
10 List_Init (sH->lists[i]);
11 }
12 }
13
14 int Hash_Insert (hash_t *H, int key) {
15 i bucket = key % BUCKETS;
16 n List_Insert(sH->lists([bucket], key);
17)
18
19 int Hash_Lookup (hash_t *H, int key) {
20 “int bucket = key % BUCKETS;
21 return List_Lookup (sH->lists[bucket], key):
22)
April 23, 2018 TCS$422: Operating Systems [Winter 2018]

Institute of Technology, University of Washington - Tacoma

17.60

Slides by Wes J. Lloyd

L5.10

TCSS 422 A — Spring 2018 4/24/2018
Institute of Technology

LOCK-FREE DATA STRUCTURES

QUESTIONS

= Lock-free data structures in Java

= Java.util.concurrent.atomic package
= Classes:

= AtomicBoolean

= Atomicinteger

= AtomiclntegerArray

= AtomiclntegerFieldUpdater

= AtomiclLong

= AtomicLongArray

= AtomicLongFieldUpdater

= AtomicReference

= See: https://docs.oracle.com/javase/7/docs/api/java
/util/concurrent/atomic/package-summary.html

TCS5422: Operating Systems [Winter 2018] el
Institute of Technology, University of Washington - Tacoma i

April 23, 2018

FUTEX: MUTEX_LOCK PSUEDO CODE FUTEX: MUTEX UNLOCK PSUEDO CODE

void mutex_lock(int *mutex) {

int v
void mutex_unlock(int *mutex) {
if (atomic_bit_test_set (mutex, 31) == 0)
return;
atomic_increment (mutex);
while (1) { if (atomic_add_zero (mutex, 0x80000000))

/ ck av return;
if (atomic_bit_test_set (mutex, 31) ==0 {

atomic_decrement (mutex);

return;

3 futex_wake (mutex);
v = *mutex;
iv (v >= 0) }

continue;

= Interesting note: Futex bug in Redhat Linux
futex_wait (mutex, v); = https://www.infoq.com/news/2015/05/redhat-futex
}
}
TCSS422: Operating Systems [Winter 2018] TCSS422: Operating Systems [Winter 2018]
Bl Fi e Inttute of Technoloay)Universitylor Washington=Tacomal | 1763 GRS e [See et Techolo syl niersity o Washinstoniecome! 1764

Slides by Wes J. Lloyd L5.11

