
TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7b.1Slides by Wes J. Lloyd

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces:
Ch. 28 - Locks

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Locks – Ch. 28

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.2

OBJECTIVES

CHAPTER 28 –
LOCKS

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma L7b.3

 Ensure critical section(s) are executed atomically -as a unit
 Only one thread is allowed to execute a critical section at any given

time

 Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.4

LOCKS

 Lock variables are called “MUTEX”

 Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

 Locked (acquired or held)

 Unlocked (available or free)

 Only 1 thread can hold a lock

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.5

LOCKS - 2

 pthread_mutex_lock(&lock)

 Try to acquire lock

 If lock is free, calling thread will acquire the lock

 Thread with lock enters critical section
 Thread “owns” the lock

 No other thread can acquire the lock before the owner
releases it.

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.6

LOCKS - 3

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7b.2Slides by Wes J. Lloyd

 Program can have many mutex (lock) variables to
“serialize” many critical sections

 Locks are also used to protect data structures

 Prevent multiple threads from changing the same data
simultaneously

 Programmer can make sections of code “granular”
 Fine grained – means just one grain of sand at a time through an

hour glass

 Similar to relational database transactions
 DB transactions prevent multiple users from modifying a table,

row, field

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.7

LOCKS - 4

 Is this code a good example of “fine grained parallelism”?

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.8

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock);

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.9

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

 Correctness

 Does the lock work?

 Are critical sections mutually exclusive?
(atomic-as a unit?)

 Fairness

 Do threads competing for a lock have a fair chance of
acquiring it?

 Overhead

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.10

EVALUATING LOCK IMPLEMENTATIONS

 Locks require hardware support

 To minimize overhead, ensure fairness and correctness

 Special “atomic-as a unit” instructions to support lock
implementation

 Atomic-as a unit exchange instruction
 XCHG

 Compare and exchange instruction
 CMPXCHG

 CMPXCHG8B

 CMPXCHG16B

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.11

BUILDING LOCKS

 To implement mutual exclusion
 Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt
 What if lock is never released?

 On a multiprocessor processor each CPU has its own interrupts
 Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost
 If not queued…

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.12

HISTORICAL IMPLEMENTATION

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7b.3Slides by Wes J. Lloyd

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma L7b.13

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation: Correct? Fair? Performant?

 Correctness requires luck… (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.14

DIY: CORRECT?

 What is wrong with while(<cond>); ?

 Spin-waiting wastes time actively waiting for another thread

 while (1); will “peg” a CPU core at 100%
 Continuously loops, and evaluates mutex->flag value…

 Generates heat…

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.15

DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}

 C implementation: not atomic
 Adds a simple check to basic spin lock

 One a single core CPU system with preemptive scheduler:

 Try this…

 lock() method checks that TestAndSet doesn’t return 1

 Comparison is in the caller

 Single core systems are becoming scarce

 Try on a one-core VM

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.16

TEST-AND-SET INSTRUCTION

 Requires a preemptive scheduler on single CPU core system

 Lock is never released without a context switch

 1-core VM: occasionally will deadlock, doesn’t miscount

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.17

DIY: TEST-AND-SET - 2

 Correctness:
 Spin locks guarantee: critical sections won’t be executed

simultaneously by (2) threads

 Fairness:
 No fairness guarantee. Once a thread has a lock, nothing forces it to

relinquish it…

 Performance:
 Spin locks perform “busy waiting”

 Spin locks are best for short periods of waiting

 Performance is slow when multiple threads share a CPU
 Especially for long periods

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.18

SPIN LOCK EVALUATION

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7b.4Slides by Wes J. Lloyd

 Checks that the lock variable has the expected value FIRST,
before changing its value
 If so, make assignment

 Return value at location

 Adds a comparison to TestAndSet

 Useful for wait-free synchronization
 Supports implementation of shared data structures which can be

updated atomically (as a unit) using the HW support
CompareAndSwap instruction

 Shared data structure updates become “wait-free”

 Upcoming in Chapter 32

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.19

COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.20

COMPARE AND SWAP

1-core VM:
Count is correct, no deadlock

 Cooperative instructions used together to support
synchronization on RISC systems

 No support on x86 processors
 Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)
 Loads value into register
 Same as typical load
 Used as a mechanism to track competition

 Store-conditional (SC)
 Performs “mutually exclusive” store
 Allows only one thread to store value

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.21

TWO MORE “LOCK BUILDING”
CPU INSTRUCTIONS

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

 C code is psuedo code

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.22

LL/SC LOCK

 Two instruction lock

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.23

LL/SC LOCK - 2 QUESTIONS

