
TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7b.1Slides by Wes J. Lloyd

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces:
Ch. 28 - Locks

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Locks – Ch. 28

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.2

OBJECTIVES

CHAPTER 28 –
LOCKS

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma L7b.3

 Ensure critical section(s) are executed atomically -as a unit
 Only one thread is allowed to execute a critical section at any given

time

 Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.4

LOCKS

 Lock variables are called “MUTEX”

 Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

 Locked (acquired or held)

 Unlocked (available or free)

 Only 1 thread can hold a lock

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.5

LOCKS - 2

 pthread_mutex_lock(&lock)

 Try to acquire lock

 If lock is free, calling thread will acquire the lock

 Thread with lock enters critical section
 Thread “owns” the lock

 No other thread can acquire the lock before the owner
releases it.

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.6

LOCKS - 3

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7b.2Slides by Wes J. Lloyd

 Program can have many mutex (lock) variables to
“serialize” many critical sections

 Locks are also used to protect data structures

 Prevent multiple threads from changing the same data
simultaneously

 Programmer can make sections of code “granular”
 Fine grained – means just one grain of sand at a time through an

hour glass

 Similar to relational database transactions
 DB transactions prevent multiple users from modifying a table,

row, field

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.7

LOCKS - 4

 Is this code a good example of “fine grained parallelism”?

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.8

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock);

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.9

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

 Correctness

 Does the lock work?

 Are critical sections mutually exclusive?
(atomic-as a unit?)

 Fairness

 Do threads competing for a lock have a fair chance of
acquiring it?

 Overhead

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.10

EVALUATING LOCK IMPLEMENTATIONS

 Locks require hardware support

 To minimize overhead, ensure fairness and correctness

 Special “atomic-as a unit” instructions to support lock
implementation

 Atomic-as a unit exchange instruction
 XCHG

 Compare and exchange instruction
 CMPXCHG

 CMPXCHG8B

 CMPXCHG16B

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.11

BUILDING LOCKS

 To implement mutual exclusion
 Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt
 What if lock is never released?

 On a multiprocessor processor each CPU has its own interrupts
 Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost
 If not queued…

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.12

HISTORICAL IMPLEMENTATION

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7b.3Slides by Wes J. Lloyd

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma L7b.13

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation: Correct? Fair? Performant?

 Correctness requires luck… (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.14

DIY: CORRECT?

 What is wrong with while(<cond>); ?

 Spin-waiting wastes time actively waiting for another thread

 while (1); will “peg” a CPU core at 100%
 Continuously loops, and evaluates mutex->flag value…

 Generates heat…

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.15

DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}

 C implementation: not atomic
 Adds a simple check to basic spin lock

 One a single core CPU system with preemptive scheduler:

 Try this…

 lock() method checks that TestAndSet doesn’t return 1

 Comparison is in the caller

 Single core systems are becoming scarce

 Try on a one-core VM

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.16

TEST-AND-SET INSTRUCTION

 Requires a preemptive scheduler on single CPU core system

 Lock is never released without a context switch

 1-core VM: occasionally will deadlock, doesn’t miscount

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.17

DIY: TEST-AND-SET - 2

 Correctness:
 Spin locks guarantee: critical sections won’t be executed

simultaneously by (2) threads

 Fairness:
 No fairness guarantee. Once a thread has a lock, nothing forces it to

relinquish it…

 Performance:
 Spin locks perform “busy waiting”

 Spin locks are best for short periods of waiting

 Performance is slow when multiple threads share a CPU
 Especially for long periods

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.18

SPIN LOCK EVALUATION

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7b.4Slides by Wes J. Lloyd

 Checks that the lock variable has the expected value FIRST,
before changing its value
 If so, make assignment

 Return value at location

 Adds a comparison to TestAndSet

 Useful for wait-free synchronization
 Supports implementation of shared data structures which can be

updated atomically (as a unit) using the HW support
CompareAndSwap instruction

 Shared data structure updates become “wait-free”

 Upcoming in Chapter 32

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.19

COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.20

COMPARE AND SWAP

1-core VM:
Count is correct, no deadlock

 Cooperative instructions used together to support
synchronization on RISC systems

 No support on x86 processors
 Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)
 Loads value into register
 Same as typical load
 Used as a mechanism to track competition

 Store-conditional (SC)
 Performs “mutually exclusive” store
 Allows only one thread to store value

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.21

TWO MORE “LOCK BUILDING”
CPU INSTRUCTIONS

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

 C code is psuedo code

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.22

LL/SC LOCK

 Two instruction lock

Chapter 28 TCSS422: Operating Systems
Institute of Technology, University of Washington - Tacoma

L7b.23

LL/SC LOCK - 2 QUESTIONS

