
TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7a.1Slides by Wes J. Lloyd

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces:
Thread API

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Linux Thread API – Ch. 27

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.2

OBJECTIVES

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7a.2Slides by Wes J. Lloyd

CHAPTER 27 -
LINUX

THREAD API

April 18, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L7a.3

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority… (optional)

 star t_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.4

THREAD CREATION

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7a.3Slides by Wes J. Lloyd

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.5

PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L7a.6

PASSING A SINGLE VALUE

Using this approach on your Ubuntu VM,
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7a.4Slides by Wes J. Lloyd

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

 May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.7

WAITING FOR THREADS TO FINISH

April 18, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L7a.8

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7a.5Slides by Wes J. Lloyd

April 18, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L7a.9

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{

struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{

pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

 Casting

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.10

ADDING CASTS

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7a.6Slides by Wes J. Lloyd

 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.11

ADDING CASTS - 2

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.12

LOCKS

// Global Address Space
static volatile int counter = 0;
pthread_mutex_t lock;

void *worker(void *arg)
{

int i;
for (i=0;i<10000000;i++) {
int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7a.7Slides by Wes J. Lloyd

 Ensure critical sections are executed atomically -as a unit
 Provides implementation of “Mutual Exclusion”

 API

 Example w/o init ialization & error checking

 Blocks forever until lock can be obtained

 Enters critical section once lock is obtained
 Releases lock

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.13

LOCKS - 2

 Assigning the constant

 API call :

 Init ializes mutex with attributes specified by 2nd argument

 If NULL, then default attr ibutes are used

 Upon initial ization, the mutex is initialized and unlocked

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.14

LOCK INITIALIZATION

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7a.8Slides by Wes J. Lloyd

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.15

LOCKS - 3

 Condition variables support “signaling”
between threads

 pthread_cond_t datatype

 pthread_cond_wait()
 Puts thread to “sleep” (waits) (THREAD is BLOCKED)
 Threads added to FIFO queue, lock is released
 Waits (l istens) for a “signal” (NON-BUSY WAITING, no polling)
 When signal occurs, interrupt fires, wakes up first thread,

(THREAD is RUNNING), lock is provided to thread

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.16

CONDITIONS AND SIGNALS

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7a.9Slides by Wes J. Lloyd

 pthread_cond_signal()

 Called to send a “signal” to wake-up first thread in FIFO “wait” queue
 The goal is to unblock a thread to respond to the signal

 pthread_cond_broadcast()

 Unblocks all threads in FIFO “wait” queue, currently blocked on the
specified condition variable

 Broadcast is used when all threads should wake-up for the signal

 Which thread is unblocked first?
 Determined by OS scheduler (based on priority)
 Thread(s) awoken based on placement order in FIFO wait queue
 When awoken threads acquire lock as in pthread_mutex_lock()

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.17

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example:

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (but then released by this code)

 When initialized, another thread signals

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.18

CONDITIONS AND SIGNALS - 3

State variable set,
Enables other thread(s)

to proceed above.

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7a.10Slides by Wes J. Lloyd

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

pthread_mutex_lock(&lock);
while (initialized == 0)

pthread_cond_wait(&cond, &lock);
// Perform work that requires lock
a = a + b;
pthread_mutex_unlock(&lock);

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked
 A signal is raised, but the pre-conditions required to proceed may

have not been met. **MUST CHECK STATE VARIABLE**

 Without checking the state variable the thread may proceed to
execute when it should not. (e.g. too early)

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.19

CONDITION AND SIGNALS - 4

 Compilation
 gcc –pthread pthread.c –o pthread

 Requires explicitly linking the library with compiler flag

 Use makefile to provide compiler arguments

 List of pthread manpages
 man –k pthread

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.20

PTHREADS LIBRARY

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L7a.11Slides by Wes J. Lloyd

 Example builds multiple single file programs
 All target

 pthread_mult
 Example if multiple source files should produce a single executable

 clean target

April 18, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L7a.21

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

QUESTIONS

