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® Concurrency: Introduction - Ch. 26
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CHAPTER 26 -
CONCURRENCY:
AN INTRODUCTION
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OBJECTIVES

® |ntroduction to threads
® Race condition
m Critical section

® Thread API
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Process State: PC,
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©Alfred Park, http://randu.org/tutorials/threads
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THREADS - 2

® Enables a single process (program) to have multiple “workers”

® Supports independent path(s) of execution within a program

with shared memory ...

® Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

®m Code segment, memory, and heap are shared
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PROCESS AND THREAD METADATA

® Thread Control Block vs. Process Control Block

Thread identification
Thread state
CPU information:
Program counter
Register contents
Thread priority
Pointer to process that created this thread
Pointers to all other threads created by this thread

Process identification
Process status
Process state:
Process status word
Register contents
Main memory
Resources
Process priority
Accounting
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SHARED ADDRESS SPACE

® Every thread has it’s own stack / PC

OKB The code segment: OKB
Program Code where instructions live Program Code
1KB s ; 1KB
e heap segment:
e contains malloc'd data KB Heap
2KB dynamic data structures
(it grows downward)
(free)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
15KB contains local variables 15KB
Stack 1) arguments to routines, Stack )
16KB return values, etc. 16KB
A Single-Threaded Two threaded
Address Space Address Space
. TCSS422: Operating Systems [Spring 2018]
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}

int

THREAD CREATION EXAMPLE

tinclude <stdie.h>
#include <assert.h>
#include <pthread.h>

void smythread(void +arg) {
printf ("$s\n", (char «) arg);
return NULL;

main(int argc, char *argv[]) {
pthread t pl, p2;
int rc;
printf ("main: begin\n"];

= pthread create(&pl, NULL, mythread, "A"); assert(rc == 0);
hread create(&p2, NULL, mythread, "B"); assert(rc == 0);
join waits for the threads to finish

= pthread join(pl, NULL); assert(rc == 0);

= pthread Jjoin(p2, NULL); assert(rc == ();

printf("main: end\n");
return 0;
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Starts running
Prints ‘main: begin’

»Creates Thread 1
Creates Thread 2
Waits for T1

» Waits for T2

» Prints ‘main: end’

POSSIBLE ORDERINGS OF EVENTS

Runs

» Prints ‘A’

Returns

Runs
Prints ‘B’

Returns
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Starts running
Prints ‘main: begin’

Creates Thread 1

-= Creates Thread 2

Waits for T1

Waits for T2

Prints ‘main: end’

Runs
Prints ‘A’

Returns

Returns immediately

POSSIBLE ORDERINGS OF EVENTS - 2

Runs
Prints ‘B’

Returns

Returns immediately
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Starts running
Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

—

Waits for T2

Prints ‘main: end’

Runs

Prints ‘A’

Returns

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
g events in the program matters?

Immediately returns
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COUNTER EXAMPLE

® Counter example

= A+ B: ordering
® Counter: incrementing global variable by two threads
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PROCESSES VS. THREADS

® What’s the difference between forks and threads?

= Forks: duplicate a process

= Think of CLONING - There will be two identical processes at the end
= Threads: no duplicate of code/heap, lightweight execution threads

Process

Process State: PC,
registers, SP, etc...
’ Co e

Data Segment

Process

Process State: PC,
registers, 5P, etc...

Data Segment

| coda |
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code | data || files |

1
rngsh'rm| | stack

theoad ——
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singl-hreaded procass
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RACE CONDITION

® What is happening with our counter?

= When counter=50, consider code: counter = counter + 1

= |f synchronized, counter will = 52
(after instruction)
0s Threadl Thread?2 PC %eax counter
before critical section 100 0 50
mov 0x804%zalc, %eax 105 50 50
add $0x1l, %eax 108 51 50
save T1l's state
restore T2's state 100 0 50
mov 0x804%alc, %eax 105 50 50
add £0x1, %eax 108 51 50
mov %eax, 0x804%alc 153 L% 51
save T2's state
restore T1l's state 108 51 50
mov %eax, 0x8049%alc 113 51

-
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CRITICAL SECTION

® Code that accesses a shared variable must not be

concurrently executed by more than one thread

® Multiple active threads inside a critical section produce a

race condition.

m Atomic execution (all code executed as a unit) must be

ensured in critical sections
= These sections must be mutually exclusive
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LOCKS

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock_t mutex;

lock (smutex) :
balance = balance + 1; Critical section
unlock (&mutex) ;

(S IR VYR S I

® Counter example revisited
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