TCSS 422 A — Spring 2018
Institute of Technology

TCSS 422: OPERATING SYSTEMS

Three Easy Pieces: N
Ch. 26: Concurrency Introduction %
[\

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2018]

prliel2028 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

® Concurrency: Introduction - Ch. 26

TCSS422: Operating Systems [Spring 2018]

April 16, 2018 Institute of Technology, University of Washington - Tacoma

L6b.2

Slides by Wes J. Lloyd

4/14/2018

L6b.1

TCSS 422 A — Spring 2018
Institute of Technology

CHAPTER 26 -
CONCURRENCY:
AN INTRODUCTION

TCSS422: Operating Systems [Spring 2018]

Aprili1612018 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

® |ntroduction to threads
® Race condition
m Critical section

® Thread API

TCSS422: Operating Systems [Spring 2018]

April 16, 2018 Institute of Technology, University of Washington - Tacoma

Léb.4

Slides by Wes J. Lloyd

4/14/2018

L6b.2

TCSS 422 A — Spring 2018
Institute of Technology

Single
Threaded
Process

=

THREADS

Process

Process State: PC,
registers, SP, etc...

Multithreaded Process

Thread
State

Thread
State

Thread
State

&

Process State: PC,
registers, 5P, etc...

HARED WY

©Alfred Park, http://randu.org/tutorials/threads

Multiple
Threaded
Process

April 16, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6b.5

Slides by Wes J.

THREADS - 2

® Enables a single process (program) to have multiple “workers”

® Supports independent path(s) of execution within a program

with shared memory ...

® Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

®m Code segment, memory, and heap are shared

April 16, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6b.6

Lloyd

4/14/2018

L6b.3

TCSS 422 A — Spring 2018
Institute of Technology

PROCESS AND THREAD METADATA

® Thread Control Block vs. Process Control Block

Thread identification
Thread state
CPU information:
Program counter
Register contents
Thread priority
Pointer to process that created this thread
Pointers to all other threads created by this thread

Process identification
Process status
Process state:
Process status word
Register contents
Main memory
Resources
Process priority
Accounting

April 16, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6b.7

SHARED ADDRESS SPACE

® Every thread has it’s own stack / PC

OKB The code segment: OKB
Program Code where instructions live Program Code
1KB s ; 1KB
e heap segment:
e contains malloc'd data KB Heap
2KB dynamic data structures
(it grows downward)
(free)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
15KB contains local variables 15KB
Stack 1) arguments to routines, Stack)
16KB return values, etc. 16KB
A Single-Threaded Two threaded
Address Space Address Space
. TCSS422: Operating Systems [Spring 2018]
April 16, 2018 Institute of Technology, University of Washington - Tacoma Leb8

Slides by Wes J. Lloyd

4/14/2018

L6b.4

TCSS 422 A — Spring 2018
Institute of Technology

}

int

THREAD CREATION EXAMPLE

tinclude <stdie.h>
#include <assert.h>
#include <pthread.h>

void smythread(void +arg) {
printf ("$s\n", (char «) arg);
return NULL;

main(int argc, char *argv[]) {
pthread t pl, p2;
int rc;
printf ("main: begin\n"];

= pthread create(&pl, NULL, mythread, "A"); assert(rc == 0);
hread create(&p2, NULL, mythread, "B"); assert(rc == 0);
join waits for the threads to finish

= pthread join(pl, NULL); assert(rc == 0);

= pthread Jjoin(p2, NULL); assert(rc == ();

printf("main: end\n");
return 0;

April 16, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6b.9

Starts running
Prints ‘main: begin’

»Creates Thread 1
Creates Thread 2
Waits for T1

» Waits for T2

» Prints ‘main: end’

POSSIBLE ORDERINGS OF EVENTS

Runs

» Prints ‘A’

Returns

Runs
Prints ‘B’

Returns

April 16, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6b.10

Slides by Wes J. Lloyd

4/14/2018

L6b.5

TCSS 422 A — Spring 2018
Institute of Technology

Starts running
Prints ‘main: begin’

Creates Thread 1

-= Creates Thread 2

Waits for T1

Waits for T2

Prints ‘main: end’

Runs
Prints ‘A’

Returns

Returns immediately

POSSIBLE ORDERINGS OF EVENTS - 2

Runs
Prints ‘B’

Returns

Returns immediately

April 16, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6b.11

Starts running
Prints ‘main: begin’
Creates Thread 1

Creates Thread 2

—

Waits for T2

Prints ‘main: end’

Runs

Prints ‘A’

Returns

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
g events in the program matters?

Immediately returns

April 16, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6b.12

Slides by Wes J. Lloyd

4/14/2018

L6b.6

TCSS 422 A — Spring 2018

Institute of Technology

COUNTER EXAMPLE

® Counter example

= A+ B: ordering
® Counter: incrementing global variable by two threads

April 16, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6b.13

PROCESSES VS. THREADS

® What’s the difference between forks and threads?

= Forks: duplicate a process

= Think of CLONING - There will be two identical processes at the end
= Threads: no duplicate of code/heap, lightweight execution threads

Process

Process State: PC,
registers, SP, etc...
’ Co e

Data Segment

Process

Process State: PC,
registers, 5P, etc...

Data Segment

| coda |

data || fies |

code | data || files |

1
rngsh'rm| | stack

theoad ——

aVa¥a

singl-hreaded procass

; : -
Ee;.slms | registars ||| rog sMM|

muitithreadad process

April 16, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6b.14

Slides by Wes J. Lloyd

4/14/2018

L6b.7

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

RACE CONDITION

® What is happening with our counter?

= When counter=50, consider code: counter = counter + 1

= |f synchronized, counter will = 52
(after instruction)
0s Threadl Thread?2 PC %eax counter
before critical section 100 0 50
mov 0x804%zalc, %eax 105 50 50
add $0x1l, %eax 108 51 50
save T1l's state
restore T2's state 100 0 50
mov 0x804%alc, %eax 105 50 50
add £0x1, %eax 108 51 50
mov %eax, 0x804%alc 153 L% 51
save T2's state
restore T1l's state 108 51 50
mov %eax, 0x8049%alc 113 51

-

April 16, 2018 TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma

L6b.15

CRITICAL SECTION

® Code that accesses a shared variable must not be

concurrently executed by more than one thread

® Multiple active threads inside a critical section produce a

race condition.

m Atomic execution (all code executed as a unit) must be

ensured in critical sections
= These sections must be mutually exclusive

April 16, 2018 TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma

L6b.16

Lloyd

4/14/2018

L6b.8

TCSS 422 A — Spring 2018
Institute of Technology

LOCKS

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

lock_t mutex;

lock (smutex) :
balance = balance + 1; Critical section
unlock (&mutex) ;

(S IR VYR S I

® Counter example revisited

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

April 16, 2018

L6b.17

QUESTIONS

Slides by Wes J. Lloyd

4/14/2018

L6b.9

