TCSS 422 A — Spring 2018
Institute of Technology

4/14/2018

TCSS 422: OPERATING SYSTEMS
||
g

Three Easy Pieces:
Ch. 26: Concurrency Introduction

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2018]

Bl oty P Institute of Technology, University of Washington - Tacoma

OBJECTIVES

= Concurrency: Introduction - Ch. 26

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

April 16, 2018 16b.2

CHAPTER 26 -
CONCURRENCY:
AN INTRODUCTION

. TCSS422; Operating Systems [Spring 2016]
Tl e Institute of Technology, University of Washington - Tacoma

OBJECTIVES

® Introduction to threads
= Race condition
= Critical section

= Thread API

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

April 16, 2018 L16b.4

THREADS

Process Multithreaded Process

Process State: PC,
SP, etc...

Single
Trreaded
"'°°»°ss Fep

i g 00
T (.)

2 SHARED oWy A
. I Process

P

®Alfred Park, http:/randu.org/tutorials/threads

TCSS422: Operating Systems [Spring 2018] | b5

| L, 2L Institute of Technology, University of Washington - Tacoma

THREADS - 2

= Enables a single process (program) to have multiple “workers”

= Supports independent path(s) of execution within a program
with shared memory ...

= Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

= Code segment, memory, and heap are shared

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

April 16, 2018 16b.6

Slides by Wes J. Lloyd

L6b.1

TCSS 422 A — Spring 2018
Institute of Technology

PROCESS AND THREAD META

= Thread Control Block vs. Process Control Block

Thread identification Process identification

Thread state Process status

CPU information: Process state:
Program counter Focasizid word
Register contents CAgStET COmtEpEs
y Main memory

Thread priority Resources

Pointer to process that created this thread Process priority

Pointers to all other threads created by this thread Accounting

April 16, 2018 TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma

| 16b.7 ‘

#include <stdie.h>
tinclude <assert.h»
tinclude <pthread.h>

void smythread(void sarg) (
printf ("
return NUL

ad_t pl, p2;

pthread_create (&p2,
waits for the thr
hread_join(pl, NU
hread_join (p2

s\n", (char «) arg);

THREAD CREATION EXAMPLE

"A"); assert (rc == 0);

mythread, "B"); assert (rc == 0);
to finish
i assert(rc == 0);
assert (rc == 0);

printf("main: end\n");
return 0;
April 16, 2018 TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma

| 16b.9 ‘

Starts running
Prints ‘main: begin’

["Creates Thread 1

~= Creates Thread 2

Waits for T1
Waits for T2

Prints ‘main: end’

POSSIBLE ORDERINGS OF EVENTS - 2

Runs
Prints ‘A"
Returns
-
Runs
Prints ‘B
Returns

Returns immediately

Returns immediately

4/14/2018

= Every thread has it’s own stack / PC
0KB The code segment: OKB
Program Code | where instructions fve Program Code
1KB A x 1KB
e heap segment:
biesp contains mallocd data S Hesp
2kB dynamic data structures
(it grows downward)
(free)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
15k8 contains local variables 158
Stack (1) arguments to routines, Stack (1)
16k8 return values, etc. 16K8
A single-Threaded Two threaded
Address Space Address Space
TCS$422: Operating Systems [Spring 2018]
CIIEG e S 1 T, Pt G o e TP Leb8

POSSIBLE ORDERINGS OF EVENTS

Starts running
Prints ‘main: begin’
»Crea!es Thread 1
Creates Thread 2
Waits for TL
Runs

» Prints ‘A"
Returns
» Waits for T2
Runs
Prints ‘B

Returns

* Prints ‘main: end’

TCS5422: Operating Systems [Spring 2018]

‘ RRULIC 20 8 [See et Techolo syl nersityofWashinstonSiecome! L6b:10

TCS5422: Operating Systems [Spring 2018]
Bty i Institute o Technoloay)Universitylof Washington®Tacomal

L6b.11

Slides by Wes J. Lloyd

POSSIBLE ORDERINGS OF EVENTS - 3

Starts running
Prints ‘main: begin’
[Creates Thread 1

Creates Thread 2

What if execution order of
s cvents in the program matters?

Institute of Technology, University of Washington - Tacoma

Runs.
Prints ‘A’
L Retums
Waits for T2 Immediately returns
Prints ‘main: end"
April 16, 2018 TCSS422: Operating Systems [Spring 2018] 612 |

L6b.2

TCSS 422 A — Spring 2018
Institute of Technology

4/14/2018

COUNTER EXAMPLE

= Counter example

= A + B: ordering

= Counter: incrementing global variable by two threads

PROCESSES VS. THREADS

= What's the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplicate of code/heap, lightweight execution threads

Process Process

rogtorssgatorsagetor|

ElEa e

muttithioadad prozoss

singla-throaded procoss

TCS5422: Operating Systems [Spring 2018]

Bl oty P T e e ol 2 U nvers o Washin tonsrace el

L6b.13

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma Leb.14

April 16, 2018

RACE CONDITION

= What is happening with our counter?
= When counter=50, consider code: counter = counter + 1

mov %eax, 0x804%alc 113 51

restore Tl's state 108 51
mov %eax, 0x8049alc 13 51

{ saqve 27s state

= If synchronized, counter will = 52
(after instruction)
os Thread1 Thread2 eax counter
before critical section 100 o 50
mov 0x8049%alc, %eax 105 50 50
add $0x1, %eax 108 51 50
save T1’s state
restore T2's state 100 0 50
mov 0x8049%alc, %eax 105 50 50
add $0x1, %eax 108 51 50

CRITICAL SECTION

= Code that accesses a shared variable must not be
concurrently executed by more than one thread

= Multiple active threads inside a critical section produce a
race condition.

= Atomlic executlon (all code executed as a unit) must be
ensured in critical sections
= These sections must be mutually exclusive

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

April 16, 2018

L6b.15

TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma Leb.

April 16, 2018

LOCKS

lock_t mutex;

lbalance = balance + 1; |
unlock (smutex) i

1

2 P

3 lock (gmntex):
4

5

= Counter example revisited

= To demonstrate how critical section(s) can be executed
“atomically-as a unit” Chapter 27 & beyond introduce locks

Critical section

TCS5422: Operating Systems [Spring 2018]

Bty i Institute o Technoloay)Universitylof Washington®Tacomal

L6b.17

QUESTIONS

Slides by Wes J. Lloyd

L6b.3

