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Three Easy Pieces:
Ch. 26: Concurrency Introduction

Wes J. Lloyd
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TCSS 422: OPERATING SYSTEMS

 Concurrency: Introduction – Ch. 26
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OBJECTIVES

CHAPTER 26 -
CONCURRENCY:

AN INTRODUCTION
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 Introduction to threads

 Race condition

 Critical section

 Thread API
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OBJECTIVES
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THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 Enables a single process (program) to have multiple “workers”

 Supports independent path(s) of execution within a program
with shared memory …

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Code segment, memory, and heap are shared
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THREADS - 2
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 Thread Control Block vs. Process Control Block
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PROCESS AND THREAD METADATA
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SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC
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THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 2

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’
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POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?
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 Counter example

 A + B : ordering

 Counter: incrementing global variable by two threads
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COUNTER EXAMPLE

 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplicate of code/heap, lightweight execution threads
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PROCESSES VS. THREADS

 What is happening with our counter? 
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52
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RACE CONDITION

 Code that accesses a shared variable must not be 
concurrently executed by more than one thread

 Multiple active threads inside a cr it ical  section produce a 
race condition .

 Atomic execution (all code executed as a unit) must be 
ensured in cr itical sections
 These sections must be mutually exclusive
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CRITICAL SECTION

 To demonstrate how critical section(s) can be executed 
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited
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LOCKS QUESTIONS


