
TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L6a.1Slides by Wes J. Lloyd

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces:
April 16, 2018:

Proportional Share Scheduler

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Proportional Share Scheduler – Ch. 9

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.2

OBJECTIVES

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L6a.2Slides by Wes J. Lloyd

APRIL 16, 2018 -
PROPORTIONAL SHARE

SCHEDULER

April 16, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L6a.3

 Preallocate a certain amount of CPU time to each process

 Each job has a scheduling weight

 Similar to scheduling priority

 Jobs receive a share of the available CPU resources
relative to this “job scheduling weight”

 Users assign or influence the assignment of job
scheduling weight

 Weight does not DIRECTLY map to CPU time

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.4

PROPORTIONAL SHARE SCHEDULERS

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L6a.3Slides by Wes J. Lloyd

 Also called fair-share scheduler

 Guarantees each job receives some percentage of CPU
time based on share of “tickets”

 Each job receives an allotment of tickets

% of tickets corresponds to potential share of a resource

 Can conceptually schedule any resource this way
 CPU, disk I/O, memory

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.5

LOTTERY SCHEDULER

 Simple implementation

 Just need a random number generator
 Picks the winning ticket

Maintain a data structure of jobs and tickets (list)

 Traverse list to find the owner of the ticket

 Consider sorting the list for speed

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.6

LOTTERY SCHEDULER

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L6a.4Slides by Wes J. Lloyd

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.7

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;
3
4 // winner: use some call to a random number generator to
5 // get a value, between 0 and the total # of tickets
6 int winner = getrandom(0, totaltickets);
7
8 // current: use this to walk through the list of jobs
9 node_t *current = head;
10
11 // loop until the sum of ticket values is > the winner
12 while (current) {
13 counter = counter + current->tickets;
14 if (counter > winner)
15 break; // found the winner
16 current = current->next;
17 }
18 // ’current’ is the winner: schedule it...

 Ticket currency / exchange

 User allocates tickets in any desired way

 OS converts user currency into global currency

 Example:

 There are 200 global tickets assigned by the OS

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.8

TICKET MECHANISMS

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L6a.5Slides by Wes J. Lloyd

 Ticket transfer

 Temporarily hand off tickets to another process

 Ticket inflation

 Process can temporarily raise or lower the number of
tickets it owns

 If a process needs more CPU time, it can boost tickets.

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.9

TICKET MECHANISMS - 2

 Scheduler picks a winning ticket

 Load the job with the winning ticket and run it

 Example:

 Given 100 tickets in the pool
 Job A has 75 tickets: 0 - 74

 Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.10

LOTTERY SCHEDULING

Scheduled job:

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L6a.6Slides by Wes J. Lloyd

 Equality of distribution (fairness) requires a lot of fl ips!

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.11

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.12

LOTTERY FAIRNESS

 With two jobs
 Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L6a.7Slides by Wes J. Lloyd

 What is the best approach to assign tickets to jobs?

 Typical approach is to assume users know best

 Users are provided with tickets, which they allocate as
desired

 How should the OS automatically distribute tickets upon
job arrival?

What do we know about incoming jobs a priori ?

 Ticket assignment is really an open problem…

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.13

LOTTERY SCHEDULING CHALLENGES

Addresses statistical probability issues with
lottery scheduling

 Instead of guessing a random number to select a
job, simply count…

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.14

STRIDE SCHEDULER

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L6a.8Slides by Wes J. Lloyd

 Jobs have a “stride” value
 A stride value describes the counter pace when the job should

give up the CPU

 Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

 Total system tickets = 10,000
 Job A has 100 tickets  Astride = 10000/100 = 100 stride

 Job B has 50 tickets  Bstride = 10000/50 = 200 stride

 Job C has 250 tickets  Cstride = 10000/250 = 40 stride

 Stride scheduler tracks “pass” values for each job (A, B, C)

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.15

STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running the job for the current time slice

3. Stride scheduler increments a system counter

4. After scheduling quantum, scheduler returns to #1

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.16

STRIDE SCHEDULER - 3

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L6a.9Slides by Wes J. Lloyd

 Stride scheduler always runs job(s) with the lowest pass
value(s)

 KEY: Jobs having low “PASS” values are scheduled more
often because their pass values increase more slowly
than others…

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.17

STRIDE SCHEDULER - 4

Stride values

Tickets = priority to select job

Stride is inverse to tickets

Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.18

STRIDE SCHEDULER - EXAMPLE

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L6a.10Slides by Wes J. Lloyd

 Three-way tie: randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment sys counter by A’s stride. counter  100

 Pick a new job: two-way tie

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.19

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

Pass
Values

 We set A’s counter (pass value) to A’s stride = 100

 Next scheduling decision between B (pass=0) and C (pass=0)

 Randomly choose B

 C has the lowest counter for next 3 rounds

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.20

STRIDE SCHEDULER EXAMPLE - 3

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and is selected to run
more often …

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L6a.11Slides by Wes J. Lloyd

 Job counters support determining which job to run next

 Over t ime jobs are scheduled to run based on their
priority represented as their share of t ickets…

 Tickets are analogous to job priority

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.21

STRIDE SCHEDULER EXAMPLE - 4

Tickets
C = 250
A = 100
B = 50

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi-Tasking System
 In perfect system every process of the same priority receives

exactly 1/n th of the CPU time

 Scheduling classes (runqueues)
 Each has specific priority: default, real-time
 Scheduler picks highest priority task in highest scheduling

class
 Time quantum based on proportion of CPU time (%), not fixed

time allotments
 Quantum calculated using NICE value

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.22

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L6a.12Slides by Wes J. Lloyd

 Time slice: Linux “Nice value”
 Nice value predates the CFS scheduler
 Top shows nice values
 Process command (nice & priority):
ps ax -o pid,ni,cmd,%cpu, pri

 Nice Values: from -20 to 19
 Lower is higher priority, default is 0
 Scheduling quantum is calculated using nice value
 Target latency:
 Interval during which task should run at least once
 Automatically increases as number of jobs increases

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.23

COMPLETELY FAIR SCHEDULER - 2

 Challenge:
 How do we map a nice value to an actual CPU timeslice

(ms)?

What is the best mapping?

 O(1) scheduler (< 2.6.23)
- tried to map nice value to timeslice (fixed allotment)

 Linux completely fair scheduler
- maps nice value based on time proportion
- with fewer jobs in a runqueue, the time proportion is
larger

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.24

COMPLETELY FAIR SCHEDULER - 3

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L6a.13Slides by Wes J. Lloyd

 Nice values become relative for determining time slices

 Proportion of CPU time to allocate is relative to other
queued tasks

 Scheduler tracks virtual run time in vruntime variable

 The task on a given runqueue (nice value) with the lowest
vruntime is scheduled next

 struct sched_entity contains vruntime parameter

 Describes process execution time in nanoseconds

 Perfect scheduler 
achieve equal vruntime for all processes of same priority

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.25

COMPLETELY FAIR SCHEDULER - 4

 CFS uses weighted fair queueing

 Runqueues are stored using a linux rbtree

 Self balancing binary search tree
 The leftmost node will have the lowest vruntime

Walking the tree to find the left most node is only O(log N)
for N nodes

 If tree is balanced, left most node can be cached

 Key takeaway
identifying the next job to schedule is really fast!

April 16, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L6a.26

COMPLETELY FAIR SCHEDULER - 5

TCSS 422 A – Spring 2018
Institute of Technology

4/14/2018

L6a.14Slides by Wes J. Lloyd

QUESTIONS

