TCSS 422 A — Spring 2018
Institute of Technology

TCSS 422: OPERATING SYSTEMS
| |
T

Three Easy Pieces
Process API,
Limited Direct Execution,
Scheduling Introduction

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2018]

EERiZ Institute of Technology, University of Washington - Tacoma

OBJECTIVES

= Assignment O - Introduction to Linux
= Active Reading Quiz - Chapter 7
= Feedback from 3/28

= Processes - Ch. 4
® C Linux Process APl - Ch. 5
= Limited Direct Execution - Ch. 6
= Virtualizing the CPU
® |Introduction to Scheduling - Ch. 7
® Multi-level Feedback Queue Scheduler - Ch. 8

TCS5422: Operating Systems [Spring 2018]

Bl 200 S 1 T, Pt G o e TP

132 |

VIRTUAL MACHINE SURVEY

= Please complete the Virtual Machine Survey is wanting
an Institute of Technology hosted Ubuntu 16.04 VM

"https: 00.gl/forms/wOVWqkX756yXBUBt1

ESubmitting results today...

TCS5422: Operating Systems [Spring 2018]

ERIZ 0 Institute of Technology, University of Washington - Tacoma

| 33 ‘

SELECTED FEEDBACK FROM 3/28

= What is context switching?

= Most bash scripts | have seen begin with
#!/bin/bash

=You did not include this in your sample, yet it still worked.

= Why did it work? and/or why is this usually included if it is
not needed?

= What is fork used for? Such as in real-world
applications?

= What is CPU virtualization?

TCS5422: Operating Systems [Spring 2018]

4
Institute of Technology, University of Washington - Tacoma L

April 2,2018

FEEDBACK - 2

" How do you schedule processes manualy?
=Check out the “nice” command

=Does this command, schedule processes?

= Why? Why not?

= What’s an example of a process state that’s
blocked?

TCS5422: Operating Systems [Spring 2018]

EAIIZ 0 Institute of Technology, University of Washington - Tacoma

| 35 ‘

Slides by Wes J. Lloyd

CHAPTER 5:

C PROCESS API

TCSS422: Operating Systems [Spring 2018]

April 2, 2018 Institute of Technology, University of Washington - Tacoma

4/3/2018

L3.1

TCSS 422 A — Spring 2018
Institute of Technology

fork()

= Creates a new process - think of “a fork in the road”
= ‘Parent” process is the original

executlon polnt
= Book says “pretty odd”

= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent
= 0 to child

= Creates “child” process of the program from the current

= Creates a duplicate program instance (these are processes!)

TCS5422: Operating Systems [Spring 2018]

ERIZ 0 T e e ol 2 U nvers o Washin tonsrace el

FORK EXAMPLE

= pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

in(int arge, char *argv(]){

ello world (pid:%d)\n", (int) getpid());
fork();

<0) { 1 ;

fprintf (stderr, "fork failed\n");

exit(1);

(rc == 0) {
printf("hello, I am child (pid:%d)\n", (int) getpid());
{ (
printf("hello, I am parent of %d (pid:%d)\n",
re, (int) getpid());

0;

TCSS422: Operating Systems [Spring 2018]
Bl 200 S 1 T, Pt G o e TP 8

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> ./pl

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>
or

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>

® CPU scheduler determines which to run first

TCS5422: Operating Systems [Spring 2018]

ERIZ 0 Inttute of Technoloay)Universitylof Washinston=Tacomal

)

TCSS422: Operating Systems [Spring 2018]

wait()

= wait(), waitpid()

= Called by parent process

= Waits for a child process to finish executing

= Not a sleep() function

= Provides some ordering to multi-process execution

TCS5422: Operating Systems [Spring 2018]

EAIIZ 0 Institute o Technoloay)Universitylof Washington®Tacomal

|2 2 Institute of Technology, University of Washington - Tacoma | 1310 |
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
int main(int arge, char *argvll)(
rintf("hello world (pidi3d)\n", (int) getpid());
nt re = fork();
(rc < 0) { iled;
printf(stderr, "fork failed\n");
exit (1)
} (x 0
printf(“hello, T am child (pidi¥d)\n", (int) getpid());
} ((
‘ int we = wait (NULL);
printf("hello, I am parent of %d (wei%d) (pid:sd)\n",
re, we, (int) getpid();
}
0;
}
TC55422: Operating Systems [Spring 2018]
Bl 20 [nsRueor TechnolosyUniversitylof WashinstonSiacoma! B2

Slides by Wes J. Lloyd

4/3/2018

L3.2

TCSS 422 A — Spring 2018
Institute of Technology

FORK WITH WAIT - 2

= Deterministic ordering of execution

prompt> ./p2

hello world (pid:29266)

hello, I am child (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

TCS5422: Operating Systems [Spring 2018]
ERIZ 0 T e e ol 2 U nvers o Washin tonsrace el

| 313 ‘

FORK EXAMPLE

® Linux example

April2, 2018 TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma 1314

exec()

® Supports running an external program

= execl(), execlp(), execle(): const char *arg

List of pointers (terminated by null pointer)
to strings provided as arguments... (arg0, argi, .. argn)

= Execv(), execvp(), execvpe()
Array of pointers to strings as arguments

Strings are null-terminated
First argument is name of file being executed

= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

TCS5422: Operating Systems [Spring 2018]
ERIZ 0 Inttute of Technoloay)Universitylof Washinston=Tacomal

| 315 ‘

EXEC() - 2

= Common use case:

= Write a new program which wraps a legacy one

= Provide a new interface to an old system: Web services
= Legacy program thought of as a “black box”

= We don’t want to know what is inside... ©

Qutput
nout ———]

Internal behovior ofthe code is unkrown

EXEC EXAMPLE

#include
#include
#include
#include <string.h>

#include <sys/wait.h>

nt main(int arge, char *argv(l)(
printf("hello world (pid:%d)\n", (int) getpid());
int re - fork();
(xe < 0) {
fprintf (stderr, "fork failed\n");
exit(1);
} (rc) {
printf("hello, I am child (pid:%d)\n", (int) getpid()):
q char *myargs[3];
myargs[0] = strdup ("wc"
myargs[1] = strdup("p3
myargs([2] = NULL;

TCS5422: Operating Systems [Spring 2018]
EAIIZ 0 Institute o Technoloay)Universitylof Washington®Tacomal

| 317 ‘

TCS5422: Operating Systems [Spring 2018]
Bl 200 [See et Techolo syl nersityofWashinstonSiecome! 16
execvp (myargs (0], myargs);
I printf("this shouldn’t print out");
) {
int we = wait (NULL);
printf("hello, I am parent of d (wc:sd) (pid:%d)\n",
re, we, (int) getpid());
)
0;
)
prompt> ./p3
hello world (pid:29383)
hello, I am child (pid:29384)
29 107 1030 p3.c
hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>
TCS5422: Operating Systems [Spring 2018]
Bl 20 [nsRueor TechnolosyUniversitylof WashinstonSiacoma! 18

Slides by Wes J. Lloyd

4/3/2018

L3.3

TCSS 422 A — Spring 2018
Institute of Technology

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fentl.h>
#include <sys/wait.h>

nt
main(int arge, char *argv(]){
int rc = fork();

£ (e <0) | fork fai
fprintf (stderr, "fork failed\
exit (1);
} £ o(re == 0) { hild: redirect standar tput t

close (STDOUT_FILENO) ;

- open ("./p4.output”, O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

TCS5422: Operating Systems [Spring 2018]

ERIZ 0 Institute of Technology, University of Washington - Tacoma

| 319

FILE MODE BITS

S_IRWXU

read, write, execute/search by owner
S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner
S_IRWXG

read, write, execute/search by group
S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group
S_IRWXO

read, write, execute/search by others
S_IROTH

read permission, others

S_IWOTH

write permission, others

April2, 2018 TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma

13.20

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

char *myargs[2];

myargs[0] = strdup ("wc" I
myargs (1] = strdup ("pd. t
myargs[2] = NULL;

execvp (myargs (0], myargs);

int wc = wait (NULL);

07

prompt> ./p4

prompt> cat pd.output
32 109 846 pd.c
prompt>

TCS5422: Operating Systems [Spring 2018]

ERIZ 0 Institute of Technology, University of Washington - Tacoma

| 1321 ‘

Which Process API call is used to launch a

different program from the current program?

Fork() Exec() Wait() Noneof Allof

the the
above above

QUESTION: PROCESS API

= Which Process API call is used to launch a different

program from the current program?

= (a) Fork()

= (b) Exec()

= (c) Wait()

= (d) None of the above
= (e) All of the above

TCS5422: Operating Systems [Spring 2018]

EAIIZ 0 Institute of Technology, University of Washington - Tacoma

| 1323

Slides by Wes J. Lloyd

April 2,2018

CH. 6:

LIMITED DIRECT
EXECUTION

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

4/3/2018

L3.4

TCSS 422 A — Spring 2018
Institute of Technology

VIRTUALIZING THE CPU

=" How does the CPU support running so many jobs
simultaneously?

=Time Sharing

" Tradeoffs:
= Performance
Excessive overhead
= Control
Fairness
Security

= Both HW and OS support
is used

COMPUTER BOOT SEQUENCE:

OS WITH DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0OS Program

1. Create entry for process list
2. Allocate memory for
program

3. Load program into memory
4. Set up stack with argc /
argv

5. Clear registers

6. Execute call main ()

7. Run main ()
8. Execute return from main ()

9. Free memory of process
10. Remove from process list

TCS5422: Operating Systems [Spring 2018]

ERIZ 0 T e e ol 2 U nvers o Washin tonsrace el

| 325

TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma 13.26

April 2,2018

0S WITH DIRECT EXECUTION

COMPUTER BOOT SEQUENCE:

= What if programs could directly control the CPU / system?

0s Program

1. Create entry for process list
2. Allocate memory for

Without /imits on running programs,

the OS wouldn't be in control of anything
and would

7. Run main ()
8. Execute return from main ()

5. Clear registers
6. Execute call main ()

9. Free memory of process
10. Remove from process list

DIRECT EXECUTION - 2

= With direct executlon:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform 1/0 if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

TCS5422: Operating Systems [Spring 2018]

ERIZ 0 Inttute of Technoloay)Universitylof Washinston=Tacomal

| 1327

TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma 13.28

April 2,2018

CONTROL TRADEOFF

= Too little control:
= No security
= No time sharing

=Too much control:
=Too much OS overhead
= Poor performance for compute & 1I/0
= Complex APls (system calls), difficult to use

CONTEXT SWITCHING OVERHEAD

Context Switching Total cost of

context switching

Multitasking

H N |

vs. Multitasking with context switching

TCS5422: Operating Systems [Spring 2018]

EAIIZ 0 Institute o Technoloay)Universitylof Washington®Tacomal

| 329

sequential
TCS5422: Operating Systems [Spring 2018]
Bl 20 [nsRueor TechnolosyUniversitylof WashinstonSiacoma! 1330

Slides by Wes J. Lloyd

4/3/2018

L3.5

TCSS 422 A — Spring 2018 4/3/2018
Institute of Technology

LIMITED DIRECT EXECUTION CPU MODES

= 0S implements LDE to support time/resource sharing = Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access _ no access
= User mode:
= TRUSTED means the process is trusted, and it can do Application is running, but w/o direct I/0 access
anything... (e.g. it is a system / kernel level process)

= Limited direct execution means “only limited” processes
can execute DIRECTLY on the CPU in trusted mode

= Kernel mode:
= Enabled by protected (safe) control transfer 0S kernel is running performing restricted operations

= CPU supported context switch

= Provides data isolation

April2,2018 e e Bl April2,2018 P N
CPU MODES SYSTEM CALLS
= User mode: ring 3 - untrusted = Implement restricted “OS” operations
= Some instructions and registers are disabled by the CPU = Kernel exposes key functions through an API:
= Exception registers = Device I/0 (e.g.file 1/0)
= HALT instruction = Task swapping: context switching between processes
= MMU instructions = Memory management/allocation: malloc()
= 0S memory access = Creating/destroying processes

=1/0 device access

= Kernel mode: ring 0 - trusted
= All instructions and registers enabled

April2, 2018 TCS5422: Operating Systems [Spring 2018] | 533 ‘ April2, 2018 TCS5422: Operating Systems [Spring 2018] 3

Institute of Technology, University of Washington - Tacoma Institute of Technology, University of Washington - Tacoma

TRAPS:
SYSTEM CALLS, EXCEPTIONS, INTERRUPTS

Mainline Code AN internupt service Routine

— Interrupt

EXCEPTION TYPES

= Trap: any transfer to kernel mode —— = ot
nstruction 5

Synchronous User request

Nonmaskable Between

= Three kinds of traps

)] Synchronous: User request User maskable Between Resume

= System call: (planned) user > kernel Synetvonous User roquest User maskable Between Rosume
SYSCALL for 1/0, etc. S o]] Within e

= Exception: (error) user > kernel Syoness ot frermeskanie e o
Div by zero, page fault, page protection error Synehronous Coerced Nonmaskable i —
[Misaligned memory accesses Synchronous Coerced User maskable Within Resume.

= Interrupt: (event) user 2> kernel [B LD Coereed Nonmasiatle Wihin Resume
Non-maskable vs. maskable Synchronous Coereed Nonmaskable within Terminate
Keyboard event, network packet arrival, timer ticks] [Coment] Nonmasiabla Within e
Memory parity error (ECC), hard drive failure Asynchronous. Coerced Nonmaskable Within Terminate

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

TC55422: Operating Systems [Spring 2018]
EAIIZ 0 | 1335 ‘ Bl 20 Institute of Technology, University of Washington - Tacoma 1336

Slides by Wes J. Lloyd L3.6

TCSS 422 A — Spring 2018 4/3/2018
Institute of Technology

05 @ boot Hardware 05 @ boot Hardware
(kernel mode) (kernel mode)
‘ ialize trap table - ize trap table
remenber address of remember address of
syscall handler syscall handler
Hardware Program 05 @ run Hardware Program
(kernel mode) (user mode) (kernel mode) (user mode)
Create entry for process list Create entry for process ist
Allocate memory for program Allocate memory for program
Load program into memory Load program into memory

Setup user stack with argy
Fill kernel stack with reg/PC

return-from -tra
e restore regs from kernel stack
‘ move to user mode
Jump to main

Setup user stack with argv

- Computer BOOT Sequence
L £ OS with Limited Direct Execution

trap into OS
save regs to kemel stack

q move to kernel mode move to kernel mode
jump to trap handler jump to trap handler

Handle trap Handle trap
‘ Do work of syscall - Do work of syscall

return-from-trap return-from-trap

restore regs from kernel stack restore regs from kernel stack
move to user mode move to user mode
Jump to PC after trap jump to PC after trap
‘ return from main ‘ return from main
trap (via exit ()) trap (via exit ()
Free memory of process Free memory of process
Remove from process ist Remove from process list

TCSS422: Operating Systems [Spring 2018] TCSS422: Operating Systems [Spring 2018]

ARTI2 12018 Institute of Technology, University of Washington - Tacoma L337 Spai 2200 Institute of Technology, University of Washington - Tacoma 1338
MULTITASKING MULTITASKING
= How/when should the OS regain control of the CPU to = How/when should the OS regain control of the CPU to
switch between processes? switch between processes?

= Cooperative multitasking (mostly pre 32-bit)
= < Windows 95, Mac 0SX
= Opportunistic: running programs must give up control
User programs must call a special yleld system call
When performing 1/0

Illegal operations lllegal operations
= (POLLEV) * (POLLEV)
What problems could you for see with this approach? What problems could you for see with this approach?

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Spring 2018]

April 2,2018 Institute of Technology, University of Washington - Tacoma

| 1339 ‘ April 2,2018

13.40

What problems exist for regaining the control

W of the CPU with cooperative multitasking QUESIONE LTSS E

OSes?

= What problems exist for regaining the control of
the CPU with cooperative multitasking 0Ses?

n u April2, 2018 TCS5422: Operating Systems [Spring 2018]

4
- - Institute of Technology, University of Washington - Tacoma 142

Slides by Wes J. Lloyd L3.7

TCSS 422 A — Spring 2018 4/3/2018
Institute of Technology

MULTITASKING - 2 MULTITASKING - 2
= Preemptive multitasking (32 & 64 bit OSes) = Preemptive multitasking (32 & 64 bit OSes)
= >= Mac 0SX, Windows 95+ = >= Mac 0SX, Windows 95+

=Timer interrupt . -
= Raised at some regular interval (in ms) i gives OS the ability to
= Interrupt handling

run again on a CPU.

Current program is halted Current program is halted
Program states are saved Program states are saved
OS Interrupt handler is run (kernel mode) 0OS Interrupt handler is run (kernel mode)
= (PollEV) What is a good interval for the timer interrupt? = (PollEV) What is a good interval for the timer interrupt?
TCSS422: Oy ting Syste [Spring 2018] TCS5422: Of ting Systs [Spring 2018]
BIA2 itz et ol linwers oot Wedhte e Teeerte | B Ll it echmologl eratyof Washissongreconts G

For an OS that uses a system timer to force

arbitrary context switches to share the CPU, EEDRE 1hilE S

what is a good value (in seconds) for the timer

o o =For an OS that uses a system timer to force
Interrupt? arbitrary context switches to share the CPU, what
is a good value (in seconds) for the timer

interrupt?

13.46

- TCSS422: Operating Systems [Spring 2018] TCS5422: Operating Systems [Spring 2018]
- April 2,2018 i gy Bl 200 [See et Techolo syl nersityofWashinstonSiecome!

CONTEXT SWITCH CONTEXT SWITCH - 2

= Preemptive multitasking initiates “trap” 1. Save register values of the current process to its kernel
into the OS code to determine: stack

= General purpose registers
= PC: program counter (instruction pointer)
= kernel stack pointer

+ Whether to continue running the current process,
or switch to a different one.

+ If the decision is made to switch, the OS performs a context

switch swapping out the current process for a new one. 2. Restore soon-to-be-executing process from its kernel
stack
3. Switch to the kernel stack for the soon-to-be-executing
process
TCSS422: Of ting Syste [Spring 2018] TCSS422: O ting Systs [Spring 2018]
April2, 2018 Instiute of Technoloy, Univerty of WashingtonTacoma | B Aprl2, 2018 i P O e A AP P B4

Slides by Wes J. Lloyd L3.8

TCSS 422 A — Spring 2018
Institute of Technology

0S @ boot

(kernel mode) Hardware

- initialize trap table
- start interrupt timer

remember address of ...

syscall handler
timer handler
- start timer

interrupt CPU in X ms

05 @ run S Program

(kernel mode) (user mode)

B rocess A
timer interrupt

save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Handle the trap
Call switch() routine
‘ save regs(A) to proc-struct(A)
restore regs(8) from proc-struct(8)
switch to k-stack(B)
return-from-trap (into B)
restore regs(B) from k-stack(®)
move to user mode
jump to B's PC

TCSS422: Operating Systems [Spring 2018]

ARTHZ 208 Institute of Technology, University of Washington - Tacoma

q Process B

L3.49

05 @ boot
(kernel mode)

- initialize trap table
‘ start interrupt timer

Hardware

remember address of ...

q syscall handler

timer handler

‘ start timer
interrupt CPU in X ms

Program

Hardware

Context Switch

Call switch() routine
- save regs(A) to proc-struct(A)
restore regs(B) from proc-struct(3)
switch to k-stack(B)
return-from-trap (into B)

restore regs(B) from k-stack(8)
move to user mode
jump to B's PC

- Process B

TCSS422: Operating Systems [Spring 2018]

Gl Institute of Technology, University of Washington - Tacoma 220

mode), another interrupt occurs?

= Linux
= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

INTERRUPTED INTERRUPTS

= What happens if during an interrupt (trap to kernel

TCS5422: Operating Systems [Spring 2018]

ERIZ 0 Institute of Technology, University of Washington - Tacoma

| 1351

PREEMPTIVE KERNEL

mUse “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

= Preemption counter (preempt_count)
= begins at zero
= increments for each lock acquired (not safe to preempt)
= decrements when locks are released

= |nterrupt can be interrupted when preempt_count=0
= It is safe to preempt (maskable interrupt)
=the interrupt is more important

April2, 2018 TCS5422: Operating Systems [Spring 2018] 2

Institute of Technology, University of Washington - Tacoma

QUESTIONS

Slides by Wes J. Lloyd

4/3/2018

L3.9

