
TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.1Slides by Wes J. Lloyd

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces
Processes, Process API

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment 0 – Introduction to Linux
 Feedback from 3/26

 Chapter 2: Operating Systems – Three Easy Pieces
 √ Easy piece #1: CPU Virtualization
 √ Easy piece #2: Memory Virtualization
 Easy piece #3: I/O Virtualization
 Operating system design goals

 Processes – Ch. 4
 C Linux Process API – Ch. 5
 Limited Direct Execution – Ch. 6
 Virtualizing the CPU

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.2

OBJECTIVES

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.2Slides by Wes J. Lloyd

 Please complete the Virtual Machine Survey is wanting
an Institute of Technology hosted Ubuntu 16.04 VM

https://goo.gl/forms/w9VWqkX756yXBUBt1

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.3

VIRTUAL MACHINE SURVEY

What would be the shared memory for threads?

Are processes running really fast one at a time,
so that it looks like multiple processes are running
at the same time?

How do you prevent race conditions?

How do we determine whether to use a thread or a
process?

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.4

SELECTED FEEDBACK FROM 3/26

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.3Slides by Wes J. Lloyd

Will the in class quizzes be known in advance?

Do you also record the lectures done in class?

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.5

FEEDBACK - 2

CH. 2: INTRODUCTION TO
OPERATING SYSTEMS

March 28, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L2.6

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.4Slides by Wes J. Lloyd

March 28, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L2.7

 To per form parallel work, a single process may?:

 A. Launch multiple threads to execute code in parallel while
sharing global data in memory

 B. Launch multiple processes to execute code in parallel
without sharing global data in memory

 C. Both A and B

 D. None of the above

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.8

QUESTION: PARALLEL PROGRAMMING

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.5Slides by Wes J. Lloyd

 DRAM: Dynamic Random Access Memory: DIMMs/SIMMs

 Stores data while power is present

When power is lost, data is lost (volatile)

 Operating System helps “persist” data more permanently

 I/O device(s): hard disk drive (HDD), solid state drive (SSD)

 File system(s): “catalog” data for storage and retrieval

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.9

PERSISTENCE

 open(), write(), close(): OS system calls for device I/O

 Note: man page for open(), write() require page number:
“man 2 open”, ”man 2 write”, “man close”

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.10

PERSISTENCE - 2

1 #include <stdio.h>
2 #include <unistd.h>
3 #include <assert.h>
4 #include <fcntl.h>
5 #include <sys/types.h>
6
7 int
8 main(int argc, char *argv[])
9 {
10 int fd = open("/tmp/file", O_WRONLY | O_CREAT

| O_TRUNC, S_IRWXU);
11 assert(fd > -1);
12 int rc = write(fd, "hello world\n", 13);
13 assert(rc == 13);
14 close(fd);
15 return 0;
16 }

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.6Slides by Wes J. Lloyd

 To write to disk, OS must:

 Determine where on disk data should reside

 Perform sys calls to perform I/O:
 Read/write to file system (inode record)

 Read/write data to file

 Provide fault tolerance for system crashes

 Journaling: Record disk operations in a journal for replay

 Copy-on-write: see ZFS

 Carefully order writes on disk

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.11

PERSISTENCE - 3

 ABSTRACTING THE HARDWARE
 Makes programming code easier to write
 Automate sharing resources – save programmer burden

 PROVIDE HIGH PERFORMANCE
 Minimize overhead from OS abstraction

(Virtualization of CPU, RAM, I/O)
 Share resources fairly
 Attempt to tradeoff performance vs. fairness  consider

priority

 PROVIDE ISOLATION
 User programs can’t interfere with each other’s virtual

machines, the underlying OS, or the sharing of resources

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.12

SUMMARY:
OPERATING SYSTEM DESIGN GOALS

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.7Slides by Wes J. Lloyd

 RELIABILITY

 OS must not crash, 24/7 Up-time

 Poor user programs must not bring down the system:

Blue Screen

 Other Issues:
 Energy-efficiency

 Security (of data)

 Cloud: Virtual Machines

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.13

SUMMARY:
OPERATING SYSTEM DESIGN GOALS - 2

CHAPTER 4:
PROCESSES

March 28, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L2.14

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.8Slides by Wes J. Lloyd

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 How do we SWAP processes in and out of the CPU
efficiently?

 Goal is to minimize overhead of the swap

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.15

CPU VIRTUALIZING

 Process comprises of:

Memory
 Instructions (“the code”)

 Data (heap)

 Registers
 PC: Program counter

 Stack pointer

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.16

PROCESS

A process is a running program.

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.9Slides by Wes J. Lloyd

 Modern OSes provide a Process API for process suppor t

 Create
 Create a new process

 Destroy
 Terminate a process (ctrl-c)

 Wait
 Wait for a process to complete/stop

 Miscellaneous Control
 Suspend process (ctrl-z)
 Resume process (fg, bg)

 Status
 Obtain process statistics: (top)

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.17

PROCESS API

1. Load program code (and static data) into memory

 Program executable code (binary): loaded from disk

 Static data: also loaded/created in address space

 Eager loading: Load entire program before running

 Lazy loading: Only load what is immediately needed
 Modern OSes: Supports paging & swapping

2. Run-time stack creation

 Stack: local variables, function params, return address(es)

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.18

PROCESS API: CREATE

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.10Slides by Wes J. Lloyd

3. Create program’s heap memory
 For dynamically allocated data

4. Other initialization
 I/O Setup
 Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()
 OS transfers CPU control to the new process

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.19

PROCESS API: CREATE

March 28, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L2.20

code
static data

heap

stack
Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.11Slides by Wes J. Lloyd

 RUNNING

 Currently executing instructions

 READY

 Process is ready to run, but has been preempted

 CPU is presently allocated for other tasks

 BLOCKED

 Process is not ready to run. It is waiting for another event
to complete:
 Process has already been initialized and run for awhile

 Is now waiting on I/O from disk(s) or other devices

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.21

PROCESS STATES

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.22

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.12Slides by Wes J. Lloyd

 OS provides data structures to track process information

 Process list
 Process Data

 State of process: Ready, Blocked, Running

 Register context

 PCB (Process Control Block)

 A C-structure that contains information about each
process

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.23

PROCESS DATA STRUCTURES

 xv6: pedagogical implementation of Linux

 Simplified structures

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.24

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip; // Index pointer register
int esp; // Stack pointer register
int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register
int edi; // Destination index register
int ebp; // Stack base pointer register

};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.13Slides by Wes J. Lloyd

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.25

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack

// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt
};

 struct task_struct, equivalent to struct proc
 Provides process description

 Large: 10,000+ bytes

 /usr/src/linux-headers-{kernel version}/include/linux/sched.h
 1227 – 1587

 struct thread_info, provides “context”
 thread_info.h is at:

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.26

LINUX: STRUCTURES

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.14Slides by Wes J. Lloyd

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.27

LINUX: THREAD_INFO

struct thread_info {
struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart_block restart_block;
void __user *sysenter_return;

#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in

case of nested (IRQ) stacks
*/

__u8 supervisor_stack[0];
#endif

int uaccess_err;
};

 List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:
http://www.makelinux.net/books/lkd2/ch03lev1sec1
2nd edition is online (dated from 2005):
Linux Kernel Development, 2nd edition
Robert Love
Sams Publishing

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.28

LINUX STRUCTURES - 2

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.15Slides by Wes J. Lloyd

March 28, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L2.29

 When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.30

QUESTION: WHEN TO CONTEXT SWITCH

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.16Slides by Wes J. Lloyd

CHAPTER 5:
C PROCESS API

March 28, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L2.31

 Creates a new process - think of “a fork in the road”
 “Parent” process is the original
 Creates “child” process of the program from the current

execution point
 Book says “pretty odd”
 Creates a duplicate program instance (these are processes!)
 Copy of
 Address space (memory)
 Register
 Program Counter (PC)

 Fork returns
 child PID to parent
 0 to child

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.32

fork()

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.17Slides by Wes J. Lloyd

 p1.c

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.33

FORK EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

}
return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.34

FORK EXAMPLE - 2

prompt> ./p1
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>

prompt> ./p1
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.18Slides by Wes J. Lloyd

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L2.35

:(){ :|: & };:

QUESTIONS

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.19Slides by Wes J. Lloyd

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.37

QUIZ 0 – C REVIEW

