
TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.1Slides by Wes J. Lloyd

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces
Processes, Process API

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment 0 – Introduction to Linux
 Feedback from 3/26

 Chapter 2: Operating Systems – Three Easy Pieces
 √ Easy piece #1: CPU Virtualization
 √ Easy piece #2: Memory Virtualization
 Easy piece #3: I/O Virtualization
 Operating system design goals

 Processes – Ch. 4
 C Linux Process API – Ch. 5
 Limited Direct Execution – Ch. 6
 Virtualizing the CPU

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.2

OBJECTIVES

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.2Slides by Wes J. Lloyd

 Please complete the Virtual Machine Survey is wanting
an Institute of Technology hosted Ubuntu 16.04 VM

https://goo.gl/forms/w9VWqkX756yXBUBt1

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.3

VIRTUAL MACHINE SURVEY

What would be the shared memory for threads?

Are processes running really fast one at a time,
so that it looks like multiple processes are running
at the same time?

How do you prevent race conditions?

How do we determine whether to use a thread or a
process?

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.4

SELECTED FEEDBACK FROM 3/26

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.3Slides by Wes J. Lloyd

Will the in class quizzes be known in advance?

Do you also record the lectures done in class?

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.5

FEEDBACK - 2

CH. 2: INTRODUCTION TO
OPERATING SYSTEMS

March 28, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L2.6

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.4Slides by Wes J. Lloyd

March 28, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L2.7

 To per form parallel work, a single process may?:

 A. Launch multiple threads to execute code in parallel while
sharing global data in memory

 B. Launch multiple processes to execute code in parallel
without sharing global data in memory

 C. Both A and B

 D. None of the above

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.8

QUESTION: PARALLEL PROGRAMMING

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.5Slides by Wes J. Lloyd

 DRAM: Dynamic Random Access Memory: DIMMs/SIMMs

 Stores data while power is present

When power is lost, data is lost (volatile)

 Operating System helps “persist” data more permanently

 I/O device(s): hard disk drive (HDD), solid state drive (SSD)

 File system(s): “catalog” data for storage and retrieval

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.9

PERSISTENCE

 open(), write(), close(): OS system calls for device I/O

 Note: man page for open(), write() require page number:
“man 2 open”, ”man 2 write”, “man close”

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.10

PERSISTENCE - 2

1 #include <stdio.h>
2 #include <unistd.h>
3 #include <assert.h>
4 #include <fcntl.h>
5 #include <sys/types.h>
6
7 int
8 main(int argc, char *argv[])
9 {
10 int fd = open("/tmp/file", O_WRONLY | O_CREAT

| O_TRUNC, S_IRWXU);
11 assert(fd > -1);
12 int rc = write(fd, "hello world\n", 13);
13 assert(rc == 13);
14 close(fd);
15 return 0;
16 }

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.6Slides by Wes J. Lloyd

 To write to disk, OS must:

 Determine where on disk data should reside

 Perform sys calls to perform I/O:
 Read/write to file system (inode record)

 Read/write data to file

 Provide fault tolerance for system crashes

 Journaling: Record disk operations in a journal for replay

 Copy-on-write: see ZFS

 Carefully order writes on disk

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.11

PERSISTENCE - 3

 ABSTRACTING THE HARDWARE
 Makes programming code easier to write
 Automate sharing resources – save programmer burden

 PROVIDE HIGH PERFORMANCE
 Minimize overhead from OS abstraction

(Virtualization of CPU, RAM, I/O)
 Share resources fairly
 Attempt to tradeoff performance vs. fairness consider

priority

 PROVIDE ISOLATION
 User programs can’t interfere with each other’s virtual

machines, the underlying OS, or the sharing of resources

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.12

SUMMARY:
OPERATING SYSTEM DESIGN GOALS

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.7Slides by Wes J. Lloyd

 RELIABILITY

 OS must not crash, 24/7 Up-time

 Poor user programs must not bring down the system:

Blue Screen

 Other Issues:
 Energy-efficiency

 Security (of data)

 Cloud: Virtual Machines

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.13

SUMMARY:
OPERATING SYSTEM DESIGN GOALS - 2

CHAPTER 4:
PROCESSES

March 28, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L2.14

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.8Slides by Wes J. Lloyd

 How should the CPU be shared?

 Time Sharing:
Run one process, pause it, run another

 How do we SWAP processes in and out of the CPU
efficiently?

 Goal is to minimize overhead of the swap

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.15

CPU VIRTUALIZING

 Process comprises of:

Memory
 Instructions (“the code”)

 Data (heap)

 Registers
 PC: Program counter

 Stack pointer

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.16

PROCESS

A process is a running program.

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.9Slides by Wes J. Lloyd

 Modern OSes provide a Process API for process suppor t

 Create
 Create a new process

 Destroy
 Terminate a process (ctrl-c)

 Wait
 Wait for a process to complete/stop

 Miscellaneous Control
 Suspend process (ctrl-z)
 Resume process (fg, bg)

 Status
 Obtain process statistics: (top)

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.17

PROCESS API

1. Load program code (and static data) into memory

 Program executable code (binary): loaded from disk

 Static data: also loaded/created in address space

 Eager loading: Load entire program before running

 Lazy loading: Only load what is immediately needed
 Modern OSes: Supports paging & swapping

2. Run-time stack creation

 Stack: local variables, function params, return address(es)

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.18

PROCESS API: CREATE

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.10Slides by Wes J. Lloyd

3. Create program’s heap memory
 For dynamically allocated data

4. Other initialization
 I/O Setup
 Each process has three open file descriptors:

Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main()
 OS transfers CPU control to the new process

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.19

PROCESS API: CREATE

March 28, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L2.20

code
static data

heap

stack
Process

Memory

code
static data

heap

Program

Loading:
Reads program from
disk into the address

space of process

CPU

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.11Slides by Wes J. Lloyd

 RUNNING

 Currently executing instructions

 READY

 Process is ready to run, but has been preempted

 CPU is presently allocated for other tasks

 BLOCKED

 Process is not ready to run. It is waiting for another event
to complete:
 Process has already been initialized and run for awhile

 Is now waiting on I/O from disk(s) or other devices

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.21

PROCESS STATES

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.22

PROCESS STATE TRANSITIONS

Running Ready

Blocked

Descheduled

Scheduled

I/O: doneI/O: initiate

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.12Slides by Wes J. Lloyd

 OS provides data structures to track process information

 Process list
 Process Data

 State of process: Ready, Blocked, Running

 Register context

 PCB (Process Control Block)

 A C-structure that contains information about each
process

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.23

PROCESS DATA STRUCTURES

 xv6: pedagogical implementation of Linux

 Simplified structures

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.24

XV6 KERNEL DATA STRUCTURES

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context {

int eip; // Index pointer register
int esp; // Stack pointer register
int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register
int edi; // Destination index register
int ebp; // Stack base pointer register

};

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,

RUNNABLE, RUNNING, ZOMBIE };

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.13Slides by Wes J. Lloyd

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.25

XV6 KERNEL DATA STRUCTURES - 2

// the information xv6 tracks about each process
// including its register context and state
struct proc {

char *mem; // Start of process memory
uint sz; // Size of process memory
char *kstack; // Bottom of kernel stack

// for this process
enum proc_state state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for the

// current interrupt
};

 struct task_struct, equivalent to struct proc
 Provides process description

 Large: 10,000+ bytes

 /usr/src/linux-headers-{kernel version}/include/linux/sched.h
 1227 – 1587

 struct thread_info, provides “context”
 thread_info.h is at:

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.26

LINUX: STRUCTURES

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.14Slides by Wes J. Lloyd

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.27

LINUX: THREAD_INFO

struct thread_info {
struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
__u32 status; /* thread synchronous flags */
__u32 cpu; /* current CPU */
int preempt_count; /* 0 => preemptable,

<0 => BUG */
mm_segment_t addr_limit;
struct restart_block restart_block;
void __user *sysenter_return;

#ifdef CONFIG_X86_32
unsigned long previous_esp; /* ESP of the previous stack in

case of nested (IRQ) stacks
*/

__u8 supervisor_stack[0];
#endif

int uaccess_err;
};

 List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

 Description of process data structures:
http://www.makelinux.net/books/lkd2/ch03lev1sec1
2nd edition is online (dated from 2005):
Linux Kernel Development, 2nd edition
Robert Love
Sams Publishing

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.28

LINUX STRUCTURES - 2

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.15Slides by Wes J. Lloyd

March 28, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L2.29

 When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

 (a) RUNNING

 (b) READY

 (c) BLOCKED

 (d) All of the above

 (e) None of the above

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.30

QUESTION: WHEN TO CONTEXT SWITCH

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.16Slides by Wes J. Lloyd

CHAPTER 5:
C PROCESS API

March 28, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L2.31

 Creates a new process - think of “a fork in the road”
 “Parent” process is the original
 Creates “child” process of the program from the current

execution point
 Book says “pretty odd”
 Creates a duplicate program instance (these are processes!)
 Copy of
 Address space (memory)
 Register
 Program Counter (PC)

 Fork returns
 child PID to parent
 0 to child

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.32

fork()

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.17Slides by Wes J. Lloyd

 p1.c

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.33

FORK EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]){
printf("hello world (pid:%d)\n", (int) getpid());
int rc = fork();
if (rc < 0) { // fork failed; exit

fprintf(stderr, "fork failed\n");
exit(1);

} else if (rc == 0) { // child (new process)
printf("hello, I am child (pid:%d)\n", (int) getpid());

} else { // parent goes down this path (main)
printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());

}
return 0;

}

 Non deterministic ordering of execution

or

 CPU scheduler determines which to run first

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.34

FORK EXAMPLE - 2

prompt> ./p1
hello world (pid:29146)
hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)
prompt>

prompt> ./p1
hello world (pid:29146)
hello, I am child (pid:29147)
hello, I am parent of 29147 (pid:29146)
prompt>

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.18Slides by Wes J. Lloyd

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L2.35

:(){ :|: & };:

QUESTIONS

TCSS 422 A – Spring 2018
Institute of Technology

3/28/2018

L2.19Slides by Wes J. Lloyd

March 28, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.37

QUIZ 0 – C REVIEW

