TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Three Easy Pieces
Processes, Process API

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2018]

Marchizs 2oL Institute of Technology, University of Washington - Tacoma

OBJECTIVES

B Assignment O - Introduction to Linux
® Feedback from 3/26

B Chapter 2: Operating Systems - Three Easy Pieces
- \/ Easy piece #1: CPU Virtualization
C, Easy piece #2: Memory Virtualization
= Easy piece #3: 1/0 Virtualization
= Operating system design goals

® Processes - Ch. 4

® C Linux Process APl - Ch. 5

® Limited Direct Execution - Ch. 6
= Virtualizing the CPU

TCSS422: Operating Systems [Spring 2018]

March 28, 2018 Institute of Technology, University of Washington - Tacoma

L2.2

Lioyd

3/28/2018

L2.1

TCSS 422 A — Spring 2018
Institute of Technology

VIRTUAL MACHINE SURVEY

= Please complete the Virtual Machine Survey is wanting
an Institute of Technology hosted Ubuntu 16.04 VM

®https://goo.gl/forms/wOVWqkX756yXBUBt1

March 28, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.3

process?

SELECTED FEEDBACK FROM 3/26

= What would be the shared memory for threads?

= Are processes running really fast one at a time,
so that it looks like multiple processes are running
at the same time?

" How do you prevent race conditions?

" How do we determine whether to use a thread or a

March 28, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.4

Slides by Wes J. Lloyd

3/28/2018

L2.2

TCSS 422 A — Spring 2018
Institute of Technology

FEEDBACK - 2

= Will the in class quizzes be known in advance?

®Do you also record the lectures done in class?

TCSS422: Operating Systems [Spring 2018]

(Wiseli 225, 200 Institute of Technology, University of Washington - Tacoma

L2.5

CH. 2: INTRODUCTION TO

OPERATING SYSTEMS

TCSS422: Operating Systems [Spring 2018]

LA) 2, 20 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

3/28/2018

L2.3

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

W To perform parallel work, a single process may:

Launch Launch Both Aand B None of the
multiple multiple above
threads to processes to
execute code execute code
in parallel in parallel

while sharing without sharing
globaldatain global datain
memory memory

.. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app ..

QUESTION: PARALLEL PROGRAMMING

= To perform parallel work, a single process may?:

® A. Launch multiple threads to execute code in parallel while
sharing global data in memory

® B. Launch multiple processes to execute code in parallel
without sharing global data in memory

= C. Both A and B

® D. None of the above

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma 28

March 28, 2018

Lloyd

3/28/2018

L2.4

TCSS 422 A — Spring 2018

Institute of Technology

PERSISTENCE

= DRAM: Dynamic Random Access Memory: DIMMs/SIMMs
= Stores data while power is present
= When power is lost, data is lost (volatile)

® Operating System helps “persist” data more permanently
=|/0 device(s): hard disk drive (HDD), solid state drive (SSD)
= File system(s): “catalog” data for storage and retrieval

TCSS422: Operating Systems [Spring 2018] 2.9

(Wiseli 225, 200 Institute of Technology, University of Washington - Tacoma

PERSISTENCE - 2

1 #include <stdio.h>

2 #include <unistd.h>

3 #include <assert.h>

4 #include <fcntl.h>

5 #include <sys/types.h>

6

7 int

8 main(int argc, char *argv[])

9 {

10 int fd = open("/tmp/file", O WRONLY | O CREAT
| O _TRUNC, S_IRWXU);

11 assert (fd > -1);

12 int rc = write(fd, "hello world\n", 13);

13 assert (rc == 13);

14 close (fd) ;

15 return 0;

16 }

® open(), write(), close(): OS system calls for device I/0

= Note: man page for open(), write() require page number:
“man 2 open”, ”“man 2 write”, “man close”

TCSS422: Operating Systems [Spring 2018] 12.10
Institute of Technology, University of Washington - Tacoma :

Slides by Wes J. Lloyd

3/28/2018

L2.5

TCSS 422 A — Spring 2018

Institute of Technology

PERSISTENCE - 3

® To write to disk, OS must:
= Determine where on disk data should reside

= Perform sys calls to perform 1/0:
Read/write to file system (inode record)
Read/write data to file

® Provide fault tolerance for system crashes
= Journaling: Record disk operations in a journal for replay
= Copy-on-write: see ZFS
= Carefully order writes on disk

TCSS422: Operating Systems [Spring 2018]

L2.11
Institute of Technology, University of Washington - Tacoma

March 28, 2018

SUMMARY:

OPERATING SYSTEM DESIGN GOALS

= ABSTRACTING THE HARDWARE
= Makes programming code easier to write
= Automate sharing resources - save programmer burden

= PROVIDE HIGH PERFORMANCE

= Minimize overhead from OS abstraction
(Virtualization of CPU, RAM, 1/0)

= Share resources fairly

= Attempt to tradeoff performance vs. fairness = consider
priority

" PROVIDE ISOLATION

= User programs can’t interfere with each other’s virtual
machines, the underlying OS, or the sharing of resources

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma L212

March 28, 2018

Slides by Wes J. Lloyd

3/28/2018

L2.6

TCSS 422 A — Spring 2018 3/28/2018
Institute of Technology

SUMMARY:

OPERATING SYSTEM DESIGN GOALS - 2

= RELIABILITY
= OS must not crash, 24/7 Up-time
= Poor user programs must not bring down the system:

Blue Screen

® Other Issues:
= Energy-efficiency
= Security (of data)
= Cloud: Virtual Machines

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma L213

March 28, 2018

Process State

ﬁmltted interrupt

scheduler dispatch
lle}
or
event completion

event wait

? /proc

CHAPTER 4:
PROCESSES

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

March 28, 2018

Slides by Wes J. Lloyd L2.7

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

CPU VIRTUALIZING

® How should the CPU be shared?

® Time Sharing:
Run one process, pause it, run another

® How do we SWAP processes in and out of the CPU
efficiently?

= Goal is to minimize overhead of the swap

TCSS422: Operating Systems [Spring 2018]

(Wiseli 225, 200 Institute of Technology, University of Washington - Tacoma

L2.15

PROCESS

running program ‘

® Process comprises of:

= Memory
Instructions (“the code”)
Data (heap)

= Registers
PC: Program counter
Stack pointer

TCSS422: Operating Systems [Spring 2018]

March 28, 2018 Institute of Technology, University of Washington - Tacoma

L2.16

Lloyd

3/28/2018

L2.8

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

= Create
= Create a new process

Destroy

PROCESS API

Modern OSes provide a Process API for process support

= Terminate a process (ctrl-c)

= Wait
= Wait for a process to complete/stop

Miscellaneous Control

= Suspend process (ctrl-z)
= Resume process (fg, bg)

= Status
= Obtain process statistics: (top)

March 28, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.17

1. Load program code (and static data) into memory

= Program executable code (binary): loaded from disk
= Static data: also loaded/created in address space

= Eager loading: Load entire program before running

PROCESS API: CREATE

= Lazy loading: Only load what is immediately needed

Modern OSes: Supports paging & swapping

Run-time stack creation

= Stack: local variables, function params, return address(es)

March 28, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.18

Lloyd

3/28/2018

L2.9

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

PROCESS API: CREATE

3. Create program’s heap memory

For dynamically allocated data

4. Other initialization

/0 Setup

Each process has three open file descriptors:
Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main ()

= OS transfers CPU control to the new process
el 242, 20k :;Csstiti: :o?Pr:z;tr:r;igosg\;?tar:iie[fs?tryilngfzv?liawington - Tacoma L219

CPU Memory

| static data
heap

Loading:
Reads program from
disk into the address

""}’_ré_-q-r;;r;"" Space of process

static data

TCSS422: Operating Systems [Spring 2018]

March26:120(18 Institute of Technology, University of Washington - Tacoma L2.20

Lloyd

3/28/2018

L2.10

TCSS 422 A — Spring 2018
Institute of Technology

PROCESS STATES

" RUNNING

= Currently executing instructions

= READY

= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= BLOCKED

= Process is not ready to run. It is waiting for another event

to complete:
Process has already been initialized and run for awhile
Is now waiting on 1/0 from disk(s) or other devices

TCSS422: Operating Systems [Spring 2018]

(Wiseli 225, 200 Institute of Technology, University of Washington - Tacoma

L2.21

PROCESS STATE TRANSITIONS

—
Descheduled /\

Running i, Ready
Scheduled \

1/0: wtmt& //O: done
Blocked)
AN

TCSS422: Operating Systems [Spring 2018]

March 28, 2018 Institute of Technology, University of Washington - Tacoma

L2.22

Slides by Wes J. Lloyd

3/28/2018

L2.11

TCSS 422 A — Spring 2018
Institute of Technology

PROCESS DATA STRUCTURES

= Process list
Process Data
State of process: Ready, Blocked, Running

= Register context

® PCB (Process Control Block)

= A C-structure that contains information about each
process

m OS provides data structures to track process information

TCSS422: Operating Systems [Spring 2018]

(Wiseli 225, 200 Institute of Technology, University of Washington - Tacoma

L2.23

XV6 KERNEL DATA STRUCTURES

m xv6: pedagogical implementation of Linux
®m Simplified structures

// the registers xv6 will save and restore
// to stop and subsequently restart a process
struct context ({

int eip; // Index pointer register

int esp; // Stack pointer register

int ebx; // Called the base register
int ecx; // Called the counter register
int edx; // Called the data register
int esi; // Source index register

int edi; // Destination index register
int ebp; // Stack base pointer register

}i

// the different states a process can be in
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

TCSS422: Operating Systems [Spring 2018]

March 28, 2018 Institute of Technology, University of Washington - Tacoma

L2.24

Slides by Wes J. Lloyd

3/28/2018

L2.12

TCSS 422 A — Spring 2018

Institute of Technology

XV6 KERNEL DATA STRUCTURES - 2

struct
struct
struct
struct

// the information xv6
// including its register context and state
struct proc {
char *mem;
uint sz;
char *kstack;

enum proc_state state;
int pid;

struct proc *parent;
void *chan;

int killed;

file *ofile[NOFILE];

inode *cwd;
context context;
trapframe *tf;

/ //
/ //
//
//
//
/ //
// //
//
//

///

// Switch here to run process

//
//

tracks about each process

Start of pro
Size of pr
Bottom of kernel
for this process
Process state
Process ID
Parent process

5 memory
memory
stack

If non-zero, sleeping on chan
If non-zero, have been killed

// Open files
Current directory

Trap frame for the
current interrupt

March 28, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.25

LINUX: STRUCTURES

B struct task struct, equivalent to struct proc

= Provides process description
= Large: 10,000+ bytes

= /usr/src/linux-headers-{kernel version}/include/linux/sched.h

1227 - 1587

® struct thread info, provides “context”

= thread_info.h is at:

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

March 28, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.26

Slides by Wes J. Lloyd

3/28/2018

L2.13

TCSS 422 A — Spring 2018

Institute of Technology

LINUX: THREAD_INFO

struct thread_info {
struct task_struct
struct exec_domain
_u32
_ u32
_ u32
int

mm_segment_t
struct restart_block
void _ user

#ifdef CONFIG_X86_32
unsigned long

__u8
#endif
int

};

task; /
exec_domain; /
flags; /*
status; /*
cpu; /*

preempt_count; /*
addr_limit;
restart_block;
*sysenter_ return;

previous_esp; /*

*/

main task structure */
execution domain */

low level flags */

thread synchronous flags */
current CPU */

0 => preemptable,

<0 => BUG */

ESP of the previous stack in
case of nested (IRQ) stacks

supervisor_stack[0];

uaccess_err;

March 28, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.27

LINUX STRUCTURES - 2

® List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

® Description of process data structures:

http://www.makelinux.net/books/lkd2/ch03levisecl

2nd edition is online (dated from 2005):
Linux Kernel Development, 2"9 edition

Robert Love

Sams Publishing

March 28, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.28

Slides by Wes J. Lloyd

3/28/2018

L2.14

TCSS 422 A — Spring 2018 3/28/2018
Institute of Technology

When a process is in this state, it is
advantageous for the Operating System to

perform a CONTEXT SWITCH to perform other
work

40

30

20+

107

1 2 3 4 5

RUNNING READY BLOCKED Allofthe None of
above the above

TCSS422: Operating Systems [Spring 2018
.. (LD 25, 20K Slar“hepfﬂ%}m@&d@ﬁﬁé&%&ﬁhﬁi@h&?&wﬁ}@mzﬂmw'ﬁmmf:ﬁw L2-2!.

QUESTION: WHEN TO CONTEXT SWITCH

® When a process is in this state, it is advantageous for the
Operating System to perform a CONTEXT SWITCH to
perform other work:

® (a) RUNNING

" (b) READY

® (c) BLOCKED

m (d) All of the above

® (e) None of the above

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

March 28, 2018

L2.30

Slides by Wes J. Lloyd L2.15

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

March 28, 2018

CHAPTER 5:
C PROCESS API

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

= Creates a new process - think of “a fork in the road”

fork()

= “Parent” process is the original

® Creates “child” process of the program from the current

execution point

= Book says “pretty odd”
= Creates a duplicate program instance (these are processes!)

= Copy of

= Address space (memory)

= Register

= Program Counter (PC)

® Fork returns

= child PID to parent

= 0 to child

March 28, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.32

Lioyd

3/28/2018

L2.16

TCSS 422 A — Spring 2018

Institute of Technology

FORK EXAMPLE

®pl.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]) {
printf ("hello world (pid:%d)\n", (int) getpid());
‘ int rc = fork();
if (rc < 0) { // fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1) ;

printf("hello, I am parent of %d (pid:%d)\n",
rc, (int) getpid());
}

return 0;

} els if (rc == 0) { // child (new pro)
printf("hello, I am child (pid:%d)\n", (int) getpid()):
} else { // parent g n this path (main)

TCSS422: Operating Systems [Spring 2018]

(Wiseli 225, 200 Institute of Technology, University of Washington - Tacoma

L2.33

FORK EXAMPLE - 2

® Non deterministic ordering of execution

prompt> ./pl

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>

or

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)
prompt>

® CPU scheduler determines which to run first

TCSS422: Operating Systems [Spring 2018]

March 28, 2018 Institute of Technology, University of Washington - Tacoma

L2.34

Slides by Wes J. Lloyd

3/28/2018

L2.17

TCSS 422 A — Spring 2018
Institute of Technology

March 28, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L2.35

QUESTIONS

Slides by Wes J. Lloyd

3/28/2018

L2.18

TCSS 422 A — Spring 2018
Institute of Technology

Descriptive Statistics
mean

standard deviation

New Window | Postscript
March 28, 2018

QUIZ 0 - C REVIEW

6.348 79.36% avg
6.34848484848485 20 iELi Uil
1.45170906433046 i 2L i
: 7.000 87.50% mode
Histogram of x
T T T T T T
2 2 4 5 B 7
x
TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma

| L2.37 ‘

Slides by Wes J. Lloyd

3/28/2018

L2.19

