TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

TCSS 422: OPERATING SYSTEMS

Three Easy Pieces:
Beyond Physical Memory,
1/0 Devices

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2018]

MavEUR2008 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

® Assignment 3 - Page Table Walker

= Memory Virtualization

= Beyond Physical Memory - Ch. 21/22
®=|/0 Devices - Ch. 36

® Final Exam - June 4th

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

May 30, 2018

L16.2

Lioyd

5/31/2018

L16.1

TCSS 422 A — Spring 2018
Institute of Technology

FEEDBACK - 5/23

® Questions on assignment #3...

May 30, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.3

May 30, 2018

CHAPTER 21/22:

BEYOND PHYSICAL
MEMORY

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

5/31/2018

L16.2

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

MEMORY HIERARCHY

® Disks (HDD, SSD) provide another level of storage in the

memory hierarchy

Registers

Cache

Main Memory

Mass Storage(hard disk, tape, etc...)

Memory Hierarchy in modern system

TCSS422: Operating Systems [Spring 2018]

MayjSCa2018 Institute of Technology, University of Washington - Tacoma

L16.5

MOTIVATION FOR

EXPANDING THE ADDRESS SPACE

®m Can provide illusion of an address space larger than
physical RAM

® For a single process
= Convenience
= Ease of use

® For multiple processes

= Large virtual memory space for many concurrent
processes

TCSS422: Operating Systems [Spring 2018]

MavSCIzLs Institute of Technology, University of Washington - Tacoma

L16.6

Lloyd

5/31/2018

L16.3

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

LATENCY TIMES

= Desigh considerations
= SSDs 4x the time of DRAM
= HDDs 80x the time of DRAM

Action Latency (ns) {ps)
L1 cache reference 0.5ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1
Read 4K randomly from SSD* 150,000 ns 150 ps ~1GB/sec 55D
Read 1 MB sequentially from memory 250,000 ns 250 ps
Read 1 MB sequentially from 55D 1,000,000 ns 1,000 ps | 1 ms ~1GB/sec 55D, 4X memory
Read 1 MB sequentially from disk 20,000,000 ns 20,000 ps 20 ms 80x memory, 20X 55D

= Latency numbers every programmer should know

= From: https://gist.github.com/jboner/2841832#file-latency-txt

May 30, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.7

®m Disk space for storing memory pages

SWAP SPACE

m “Swap” them in and out of memory to disk as needed

PFN O PFN 1 PFN 2 PFN 3
Physical Proc 0 Proc 1 Proc1 Proc 2
Memory VPN 0] VPN 2] [VPN 3] [VPN 0]
Block0 Block 1 Block 2 Black 3 Block4 Black 5 Block 6 Block 7
Swap Proc 0 Proc 0 G5 Proc 1 Proc1 Proc 3 Proc 2 Proc 3
Space | [VPN 1] [VPN 2] VPN 0] [VPN 1] [VPN 0] VPN 1] VPN 1]

Physical Memory and Swap Space

May 30, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.8

Lloyd

5/31/2018

L16.4

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

PAGE LOCATION

®m Page table pages are:
= Stored in memory
= Swapped to disk

® Present bit
= |In the page table entry (PTE) indicates if page is present

= Page fault
= Memory page is accessed, but has been swapped to disk

TCSS422: Operating Systems [Spring 2018]

L16.9
Institute of Technology, University of Washington - Tacoma

May 30, 2018

PAGE FAULT

m OS steps in to handle the page fault
® Loading page from disk requires a free memory page

= Page-Fault Algorithm:

PEN = FindFreePhysicalPage ()
if (PFN == -1) // no free page found

PFN = EvictPage () I,
DiskRead (PTE.DiskAddr, pfn) £ 81
PTE.present = True

PTE.PFN = PFN

L M € B O R S N

RetryInstruction() /

TCSS422: Operating Systems [Spring 2018] 116.10

MavSCIzLs Institute of Technology, University of Washington - Tacoma

Lloyd

5/31/2018

L16.5

TCSS 422 A — Spring 2018 5/31/2018
Institute of Technology

PAGE REPLACEMENTS

= Page daemon
= Background threads which monitors swapped pages

= Low watermark (LW)
= Threshold for when to swap pages to disk
= Daemon checks: free pages < LW
= Begin swapping to disk until reaching the highwater mark

= High watermark (HW)
= Target threshold of free memory pages
= Daemon free until: free pages >= HW

TCSS422: Operating Systems [Spring 2018]

L16.11
Institute of Technology, University of Washington - Tacoma

May 30, 2018

REPLACEMENT

POLICIES

TCSS422: Operating Systems [Spring 2018]

R S A Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L16.6

TCSS 422 A — Spring 2018
Institute of Technology

CACHE MANAGEMENT EXAMPLE

= Replacement policies apply to “any” cache
® Goal is to minimize the number of misses
= Average memory access time (AMAT) can be estimated:

AMAT = (Py;t * Tyy) + (Puiss * Tp)

Argument Meaning

Tm The cost of accessing memory (time)

Tp The cost of accessing disk (time)

Pyic The probability of finding the data item in the cache(a hit)
Puiss The probability of not finding the data in the cache(a miss)

® Consider T, = 100 ns, T, = 10ms
® For a batch of memory accesses:
= Consider P;; =.9 (90%), P,ics = -1
= Consider Pp;; = .999 (99.9%), P s = -001

TCSS422: Operating Systems [Spring 2018]

MayjSCa2018 Institute of Technology, University of Washington - Tacoma

L16.13

IPH

IPM

CACHE MANAGEMENT EXAMPLE - 2

=" Ty (DRAM access time) = 100ns = .0001ms
=" T, (HDD/SDD access time) = 10ms

.9 (90%) 90% hits
.1 (10%) 10% misses

= AMAT = (.9 * .0001) + (.1 * 10)
= AMAT = .00009 + 1
= AMAT = 1.00009 ms

TCSS422: Operating Systems [Spring 2018]

MavSCIzLs Institute of Technology, University of Washington - Tacoma

L16.14

Slides by Wes J. Lloyd

5/31/2018

L16.7

TCSS 422 A — Spring 2018

Institute of Technology

OPTIMAL REPLACEMENT POLICY

= What if:
= We could predict the future (... with a magical oracle)
= All future page accesses are known
= Always replace the page in the cache used farthest in the future

® Used for a comparison
® Provides a “best case” replacement policy

® Consider a 3-element empty cache with the following page

accesses:
What is the hit/miss ratio?

01201303121

TCSS422: Operating Systems [Spring 2018]

L16.15
Institute of Technology, University of Washington - Tacoma

May 30, 2018

FIFO REPLACEMENT

® Queue based

= Always replace the oldest element at the back of cache
B Simple to implement

® Doesn’t consider importance... just arrival ordering

®m Consider a 3-element empty cache with the following
page accesses:

01201303121
= What is the hit/miss ratio? m

® How is FIFO different than LRU? LRU incorporates history

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma L16.16

May 30, 2018

Slides by Wes J. Lloyd

5/31/2018

L16.8

TCSS 422 A — Spring 2018

Institute of Technology

RANDOM REPLACEMENT

® Pick a page at random to replace
® Simple and fast implementation
= Performance depends on luck of random choices

01201303121

50

40

w
o

Frequency
)
=]

-
o

o

1 2 3 4 5 6
Number of Hits

Random Performance over 10,000 Trials

TCSS422: Operating Systems [Spring 2018]
MavEUR2018 Institute of Technology, University of Washington - Tacoma L16.17

HISTORY-BASED POLICIES

® | RU: Least recently used (adds “a memory” to the cache)
® Always replace page with oldest access time (front)

= Always move end of cache when element is read again

® Considers temporal locality (when pg was last accessed)

3-element cache:
What is the hit/miss ratio?
01201303121 m

® LFU: Least frequently used
® Always replace page with fewest accesses (front)

= Consider frequency of page accesses
3-element cache: Hit/miss ratio is=
01201303121 6 hits |

TCSS422: Operating Systems [Spring 2018]
MavSCIzLs Institute of Technology, University of Washington - Tacoma L16.18

Slides by Wes J. Lloyd

5/31/2018

L16.9

TCSS 422 A — Spring 2018

Institute of Technology

WORKLOAD EXAMPLES: NO-LOCALITY

® No-Locality (Random Access) Workload
= Perform 10,000 random page accesses
= Across set of 100 memory pages

The No-Locality Workload

100%: //W
P
80%— /’/ ,/ .
. P / When the cache is
S eox P large enough to fit
E= / y,,/ — IRU the entire workload,
an— /[//’ — i it doesn’t matter
/ yd which policy you use.
20%—| 4/
v R
2|0 4|0 GlO Sll) 1[‘)0
Cache Size (Blocks)
MayjSCa2018 ;I;'ncsstlstt%: :o??I':::?]tr:r;isosg\{:tﬁr:iie[fs?tryllngfzv(\)liﬂ‘:ington - Tacoma L16.19

WORKLOAD EXAMPLES: 80/20

= 80/20 Workload
= Perform 10,000 page accesses, against set of 100 pages
= 80% of accesses are to 20% of pages (hot pages)
= 20% of accesses are to 80% of pages (cold pages)

The 80-20 Workload

A
i e
100%—] ,// /;7,
® S q q
T LRU is more likely
" / 'y to hold onto
.'2: 60%—| i oA — OPT hot pages
T i — | RU
prasl FFO .
— RAND (recalls history)
20%—
T \ \ T I >
20 40 60 80 100
Cache Size (Blocks)

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

May 30, 2018

L16.20

Slides by Wes J. Lloyd

5/31/2018

L16.10

TCSS 422 A — Spring 2018

Institute of Technology

WORKLOAD EXAMPLES: SEQUENTIAL

® Looping sequential workload
= Refer to 50 pages in sequence: 0, 1, ..., 49
= Repeat loop

The Looping-Sequential Workload

100%— /'7
/] Random performs
50%—] /| better than FIFO and
. / / LRU for
£ 0% / — OPT cache sizes < 50
= / —LRU
FIFO

40%— / i AR

Cache Size (Blocks)

st | Algorithms should provide
P m . ”
R scan resistance
T

TCSS422: Operating Systems [Spring 2018]

MayjSCa2018 Institute of Technology, University of Washington - Tacoma

L16.21

IMPLEMENTING LRU

B [mplementing last recently used (LRU) requires tracking

access time for all system memory pages
B Times can be tracked with a list
® For cache eviction, we must scan an entire list

m Consider: 4GB memory system (232),
with 4KB pages (212)

® This requires 22° comparisons !!!

®m Simplification is needed
= Consider how to approximate the oldest page access

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

May 30, 2018

L16.22

Slides by Wes J. Lloyd

5/31/2018

L16.11

TCSS 422 A — Spring 2018

Institute of Technology

® Harness the Page Table Entry (PTE) Use Bit

IMPLEMENTING LRU - 2

= HW sets to 1 when page is used

E0S setsto O

®mClock algorithm (approximate LRU)
=Refer to pages in a circular list
=Clock hand points to current page

=Loops around
IF USE_BIT=1 set to USE_BIT =0
IF USE_BIT=0 replace page

May 30, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.23

= Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

100%—

Hit Rate

CLOCK ALGORITHM

The 80-20 Workload

o / — OFT
y = |RU
4 Clock
— FIFO
— RAND
| >
40 60 80 100

Cache Size (Blocks)

May 30, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.24

Slides by Wes J.

Lloyd

5/31/2018

L16.12

TCSS 422 A — Spring 2018

Institute of Technology

CLOCK ALGORITHM - 2

®m Consider dirty pages in cache
= If DIRTY (modified) bit is FALSE
=No cost to evict page from cache

= If DIRTY (modified) bit is TRUE
=Cache eviction requires updating memory

=Contents have changed

®mClock algorithm should favor no cost eviction

TCSS422: Operating Systems [Spring 2018]

L16.25
Institute of Technology, University of Washington - Tacoma

May 30, 2018

WHEN TO LOAD PAGES

® On demand > demand paging

= Prefetching
= Preload pages based on anticipated demand

= Prediction based on locality
= Access page P, suggests page P+1 may be used

= What other techniques might help anticipate required
memory pages?
Prediction models, historical analysis
In general: accuracy vs. effort tradeoff
High analysis techniques struggle to respond in real time

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma L16.26

May 30, 2018

Slides by Wes J. Lloyd

5/31/2018

L16.13

TCSS 422 A — Spring 2018

Institute of Technology

OTHER SWAPPING POLICIES

= Page swaps / writes
=Group/cluster pages together
=Collect pending writes, perform as batch
=Grouping disk writes helps amortize latency costs

®Thrashing

=Occurs when system runs many memory intensive
processes and is low in memotry

=Everything is constantly swapped to-and-from disk

TCSS422: Operating Systems [Spring 2018]

L16.27
Institute of Technology, University of Washington - Tacoma

May 30, 2018

OTHER SWAPPING POLICIES - 2

= Working sets
=Groups of related processes

*When thrashing: prevent one or more working
set(s) from running

*Temporarily reduces memory burden
=Allows some processes to run, reduces thrashing

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma L16.28

May 30, 2018

Slides by Wes J. Lloyd

5/31/2018

L16.14

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

CHAPTER 36:
/O DEVICES

TCSS422: Operating Systems [Spring 2018]

MavE U208 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

® Chapter 36

=Polling vs Interrupts

*Programmed I/0 (PI10)
= Port-mapped I/0 (PMIO)
= Memory-mapped I/0 (MMIO)

=*Direct memory Access (DMA)

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

May 30, 2018

L16.30

Lioyd

5/31/2018

L16.15

TCSS 422 A — Spring 2018

Institute of Technology

I/0 DEVICES

B Modern computer systems interact with a variety of devices

input ut

Head set

out

Head phones

Keyboard

Optical pen Laser printer

Joystick

Screen —_
-_—_n. - Plotter

Inkjet I

printer ':é“‘

g 1

Y

Speakers

TCSS422: Operating Systems [Spring 2018]

iMayS02018 Institute of Technology, University of Washington - Tacoma

L16.31

COMPUTER SYSTEM ARCHITECTURE

> Memory Bus

(proprietary)
* General I/O Bus
(e.g., PCD)

Peripheral /O Bus

" (eg. SCSL SATA, USE)

Prototypical System Architecture

Memory bus

General 1/0 bus

Peripheral 1/0 bus

TCSS422: Operating Systems [Spring 2018]

MavSCIzLs Institute of Technology, University of Washington - Tacoma

L16.32

Slides by Wes J. Lloyd

5/31/2018

L16.16

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

® Buses

/0 BUSES

= Buses closer to the CPU are faster

= Can support fewer devices

= Further buses are slower, but support more devices

® Physics and costs dictate “levels”

= Memory bus
= General I/0 bus
= Peripheral 1/0 bus

® Tradeoff space: speed vs. locality

May 30, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.33

CANONICAL DEVICE

® Consider an arbitrary canonical “standard/generic” device

Registers:

‘ Status ‘ ‘Command‘ ‘ Data ‘

Micro-controller(CPU)
Memeory (DRAM or SRAM or both)
Other Hardware-specific Chips

Canonical Device

B Two primary components
= I[nterface (registers for communication)

= [nternals: Local CPU, memory, specific chips, firmware
(embedded software)

interface

internals

May 30, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.34

Lloyd

5/31/2018

L16.17

TCSS 422 A — Spring 2018
Institute of Technology

CANONICAL DEVICE:

HARDWARE INTERFACE

® Status register
= Maintains current device status

® Command register
= Where commands for interaction are sent

® Data register

Used to send and receive data to the device

General concept:

controls device behavior
device registers.

TCSS422: Operating Systems [Spring 2018]
MayjSCa2018 Institute of Technology, University of Washington - Tacoma

L16.35

OS DEVICE INTERACTION

B Common example of device interaction

while (starus == nusy) <@ Poll- Is device available?

; //wait until device is not busy
write data to data register h Command parameterization
write command to command register - Send command

Doing so starts the device and executes the command

while (STATUS == BUSY) <@ Poll - Is device done?

with your request

; //wait until device is done

TCSS422: Operating Systems [Spring 2018]
MavSCIzLs Institute of Technology, University of Washington - Tacoma

L16.36

Slides by Wes J. Lloyd

5/31/2018

L16.18

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

POLLING

® OS checks if device is READY by repeatedly checking the
STATUS register

= Simple approach

= CPU cyc
= Ok if on

les are wasted without doing meaningful work
ly a few cycles, for rapid devices that are often READY

= BUT polling, as with “spin locks” we understand is inefficient

————— D task 1 EI : pelling

o [a]a]z]]z]plplplelp|2]1]2]1]1]
Disk HEERERER
CPU utilization by polling
May 30, 2018 TCSS422: Operating Systems [Spring 2018] 116.37

Institute of Technology, University of Washington - Tacoma

INTERRUPTS VS POLLING

® For longer waits, put process waiting on 1/0 to sleep

® Context switch (C/S) to another process

® When I/0 completes, fire an interrupt to initiate C/S back
= Advantage: better multi-tasking and CPU utilization

= Avoids:

unproductive CPU cycles (polling)

CPU

Disk

s task 1 : task 2

EIENENENENEY EYEN e N EY N ENEY

[1]afafa]a]

Diagram of CPU utilization by interrupt

May 30, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.38

Lloyd

5/31/2018

L16.19

TCSS 422 A — Spring 2018
Institute of Technology

INTERRUPTS VS POLLING - 2

What is the tradeoff space ?

® [nterrupts are not always the best solution

= How long does the device I/0 require?

= What is the cost of context switching?

polling
interrupts

TCSS422: Operating Systems [Spring 2018]

L16.39
Institute of Technology, University of Washington - Tacoma

May 30, 2018

INTERRUPTS VS POLLING - 3

® One solution is a two-phase hybrid approach

= |nitially poll, then sleep and use interrupts

® Livelock problem

= Common with network 1/0

= Many arriving packets generate many many interrupts
= Overloads the CPU!

= No time to execute code, just interrupt handlers !

® Livelock optimization

= Coalesce multiple arriving packets (for different processes) into
fewer interrupts

= Must consider number of interrupts a device could generate

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma L16.40

May 30, 2018

Slides by Wes J. Lloyd

5/31/2018

L16.20

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

DEVICE 1I/0

= To interact with a device we must send/receive
DATA

®"There are two general approaches:
*Programmed I/0 (P10)

=Direct memory access (DMA)

MayjSCa2018 :;Csstiti: :o?Pr:z;tr:r;igosg\;?tar:iie[fs?tryilngfzv?liawington - Tacoma L1641
Tr&nsfl_ar Modes
Mode = # = Maximu:nu':?:]sfer e = cycle time =

0 3.3 | Bo0ns
1 5.2 | =283ns
PIO 2 8.3 | 240ns
3 11.1 | 180ns
4 16.7 | 1z0ns
o 2.1 | oeons
Single-word DMA | 1 4.2 | 480ns
2 8.3 | z40ns
0 4.2 | asons
1 13.3 | 1s0ns
Multi-word DMA | 2 16.7 [120 ns
' 31341 ' 20 | 100ns
21341 [25 - 80 ns

o ' 18.7 | 240ns=2

1 ' 25.0 | 160ns+2

2 (Ultra ATA33) | a3za | 120ns =2

- ' 3] 44.4 | 90ns=2

4 (Ultra ATAIG6) 66.7 60 ns + 2

& (Ultra ATA/100) | 100 | 40ns=2

6 (Ultra ATA/133) | 133 | 2ons=2

| 7 (Ultra ATA/167)121 | 167 | 24ns-=2

From https://en.wikipedia.org/wiki/Parallel ATA
Lloyd

5/31/2018

L16.21

TCSS 422 A — Spring 2018
Institute of Technology

PROGRAMMED 1/0 (PIO)

® Spend CPU time to perform I/0
® CPU is involved with the data movement (input/output)
® P|O is slow -CPU is occupied with meaningless work

PIO

“over-burdened” s task 1 : task 2

—_—

i : copy data from memory

v [1]a]a]s

JEE AR

Disk

[2fafafa]e]

Diagram of CPU utilization

May 30, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.43

P10 DEVICES

m L egacy serial ports

m L egacy parallel ports

® PS/2 keyboard and mouse

m Legacy MIDI, joysticks

® Old network interfaces

May 30, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.44

Slides by Wes J. Lloyd

5/31/2018

L16.22

TCSS 422 A — Spring 2018
Institute of Technology

PROGRAMMED I/0 DEVICE (PIO)

INTERACTION

= Two primary PIO methods

= Port mapped I/0 (PMIO)

= Memory mapped I/0 (MMIO)

TCSS422: Operating Systems [Spring 2018]

MayjSCa2018 Institute of Technology, University of Washington - Tacoma

L16.45

PORT MAPPED I/0 (PMIO)

® Device specific CPU I/0 Instructions
E Follows a CISC model: extra instructions
B x86-x86-64: in and out instructions

" outb, outw, outl
m1 2, 4 byte copy from EAX = device’s I/0 port

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

May 30, 2018

L16.46

Slides by Wes J. Lloyd

5/31/2018

L16.23

TCSS 422 A — Spring 2018

Institute of Technology

MEMORY MAPPED I/0 (MMIO)

® Device’s memory is mapped to CPU memory

® Tenet of RISC CPUs: instructions are eliminated, CPU is
simpler

® Old days: 16-bit CPUs didn’t have a lot of spare memory space

® Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr
space)

®m Regular CPU instructions used to access device: mapped to
memory

® Devices monitor CPU address bus and respond to their
addresses

® |/0 device address areas of memory are reserved for I/0
= Must not be available for normal memory operations.

TCSS422: Operating Systems [Spring 2018]

MayjSCa2018 Institute of Technology, University of Washington - Tacoma

L16.47

DIRECT MEMORY ACCESS (DMA)

® Copy data in memory by offloading to “DMA controller”

® Many devices (including CPUs) integrate DMA controllers

®m CPU gives DMA: memory address, size, and copy instruction
= DMA performs I/0 independent of the CPU

= DMA controller generates CPU interrupt when I/0 completes

:taskl :task2
: copy data from memory
v {11 [1 | 1 |1 |
DMA

Disk [1]1]1]2]1]

Diagram of CPU utilization by DMA

TCSS422: Operating Systems [Spring 2018]

May 30, 2018

Institute of Technology, University of Washington - Tacoma L16.48

Slides by Wes J. Lloyd

5/31/2018

L16.24

TCSS 422 A — Spring 2018
Institute of Technology

DIRECTORY MEMORY ACCESS - 2

® Many devices use DMA
= HDD/SSD controllers (ISA/PCl)
= Graphics cards
= Network cards
= Sound cards
= [ntra-chip memory transfer for multi-core processors

® DMA allows computation and data transfer time to
proceed in parallel

May 30, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.49

DEVICE INTERACTION

B The OS must interact with a variety of devices

m Example: for DISK I/0 consider the variety of disks:

= SCSI, IDE, USB flash drive, DVD, etc.

® Device drivers use abstraction to provide general
interfaces for vendor specific hardware

®E |n Linux: block devices

May 30, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.50

Slides by Wes J. Lloyd

5/31/2018

L16.25

TCSS 422 A — Spring 2018
Institute of Technology

FILE SYSTEM ABSTRACTION

® | ayers of I/0 abstraction in Linux

® C functions (open, read, write) issue block read and write
requests to the generic block layer

‘ Application ‘ user

—————————— POSIX API [open, read, write, close, etc] F i e e [T

Generic Block Interface [block read/write]

Generic Block Layer ‘

|
Specific Block Interface [protocol-specific read/write]

The File System Stack

TCSS422: Operating Systems [Spring 2018] 116,51

MayjSCa2018 Institute of Technology, University of Washington - Tacoma

Slides by Wes J.

FILE SYSTEM ABSTRACTION ISSUES

® Too much abstraction

® Many devices provide special capabilities
® Example: SCSI Error handling
®m SCSI devices provide extra detail which are lost to the 0OS

= Buggy device drivers

® 70% of OS code is in device drivers
® Device drivers are required for every device plugged in

m Drivers are often 3' party, which is not quality controlled at
the same level as the OS (Linux, Windows, MacOS, etc.)

TCSS422: Operating Systems [Spring 2018] 116.52

MavSCIzLs Institute of Technology, University of Washington - Tacoma

Lloyd

5/31/2018

L16.26

TCSS 422 A — Spring 2018 5/31/2018
Institute of Technology

QUESTIONS

Slides by Wes J. Lloyd L16.27

