
TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.1Slides by Wes J. Lloyd

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces:
Beyond Physical Memory, 

I/O Devices

Wes J. Lloyd
Institute of Technology
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TCSS 422: OPERATING SYSTEMS

 Assignment 3 – Page Table Walker

 Memory Virtualization

 Beyond Physical Memory – Ch. 21/22

 I/O Devices – Ch. 36

 Final Exam – June 4th
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OBJECTIVES

 Questions on assignment #3…
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FEEDBACK – 5/23

CHAPTER 21/22:
BEYOND PHYSICAL 

MEMORY
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 Disks (HDD, SSD) provide another level of storage in the 
memory hierarchy
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MEMORY HIERARCHY

 Can provide illusion of an address space larger than 
physical RAM

 For a single process

 Convenience

 Ease of use 

 For multiple processes

 Large virtual memory space for many concurrent 
processes
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MOTIVATION FOR 
EXPANDING THE ADDRESS SPACE
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LATENCY TIMES

Design considerations
 SSDs 4x the time of DRAM
 HDDs 80x the time of DRAM

 Lat ency  num be rs  e ve r y  prog ram m e r should  know
 From :  ht tps ://g ist .g i thub.c om /jbone r/2 841832#f i le - l ate nc y - t x t

 Disk space for storing memory pages

 “Swap” them in and out of memory to disk as needed
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SWAP SPACE

 Page table pages are:

 Stored in memory

 Swapped to disk

 Present bit

 In the page table entry (PTE) indicates if page is present

 Page fault

Memory page is accessed, but has been swapped to disk
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PAGE LOCATION

 OS steps in to handle the page fault

 Loading page from disk requires a free memory page

 Page-Fault Algorithm:
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PAGE FAULT

 Page daemon

 Background threads which monitors swapped pages

 Low watermark (LW)

 Threshold for when to swap pages to disk

 Daemon checks: free pages < LW

 Begin swapping to disk until reaching the highwater mark

 High watermark (HW)

 Target threshold of free memory pages

 Daemon free until: free pages >= HW
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PAGE REPLACEMENTS

REPLACEMENT 
POLICIES
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 Replacement policies apply to “any” cache

 Goal is to minimize the number of misses

 Average memory access time (AMAT) can be estimated:

 Consider TM = 100 ns, TD = 10ms

 For a batch of memory accesses:
 Consider Phit = .9 (90%), Pmiss = .1

 Consider Phit = .999 (99.9%), Pmiss = .001
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CACHE MANAGEMENT EXAMPLE

𝐴𝑀𝐴𝑇 = 𝑃ு௧ ∗ 𝑇ெ + (𝑃ெ௦௦ ∗ 𝑇)

Argument Meaning

𝑇ெ The cost of accessing memory (time)

𝑇 The cost of accessing disk (time)

𝑃ு௧ The probability of finding the data item in the cache(a hit)

𝑃ெ௦௦ The probability of not finding the data in the cache(a miss)

 TM (DRAM access time) = 100ns = .0001ms

 TD (HDD/SDD access time) = 10ms

 PH = .9 (90%) 90% hits

 PM = .1 (10%) 10% misses

 AMAT = (.9 * .0001) + (.1 * 10)

 AMAT = .00009 + 1

 AMAT = 1.00009 ms
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CACHE MANAGEMENT EXAMPLE - 2

 What if:
 We could predict the future (… with a magical oracle)

 All future page accesses are known

 Always replace the page in the cache used farthest in the future 

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page 
accesses:

0  1  2  0  1  3  0  3  1  2  1
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OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?

6 hits

 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following 
page accesses:

0  1  2  0  1  3  0  3  1  2  1

 What is the hit/miss ratio?

 How is FIFO different than LRU?
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FIFO REPLACEMENT

4 hits

LRU incorporates history

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0  1  2  0  1  3  0  3  1  2  1
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RANDOM REPLACEMENT

 LRU: Least recently used  (adds “a memory” to the cache)

 Always replace page with oldest access time (front)

 Always move end of cache when element is read again

 Considers temporal locality (when pg was last accessed)
3-element cache:

0  1  2  0  1  3  0  3  1  2  1

 LFU: Least frequently used

 Always replace page with fewest accesses (front)

 Consider frequency of page accesses
3-e lement cache :

0  1  2  0  1  3  0  3  1  2  1
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HISTORY-BASED POLICIES

What is the hit/miss ratio?

6 hits

Hit/miss ratio is=

6 hits
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 No-Locality (Random Access) Workload
 Perform 10,000 random page accesses 

 Across set of 100 memory pages
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WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
large enough to fit 

the entire workload, 
it doesn’t matter 

which policy you use.

 80/20 Workload
 Perform 10,000 page accesses, against set of 100 pages

 80% of accesses are to 20% of pages (hot pages)

 20% of accesses are to 80% of pages (cold pages)
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WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

 Looping sequential workload
 Refer to 50 pages in sequence: 0, 1, …, 49

 Repeat loop
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WORKLOAD EXAMPLES: SEQUENTIAL

Random performs 
better than FIFO and 

LRU for 
cache sizes < 50

Algorithms should provide
“scan resistance”

 Implementing last recently used (LRU) requires tracking 
access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),
with 4KB pages (212)

 This requires 220 comparisons  !!!

 Simplification is needed

 Consider how to approximate the oldest page access

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.22

IMPLEMENTING LRU

Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

Refer to pages in a circular list

Clock hand points to current page

Loops around
 IF USE_BIT=1 set to USE_BIT = 0

 IF USE_BIT=0 replace page
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IMPLEMENTING LRU - 2

 Not as efficient as LRU, but better than other 
replacement algorithms that do not consider history
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CLOCK ALGORITHM
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Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

Cache eviction requires updating memory

Contents have changed

Clock algorithm should favor no cost eviction
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CLOCK ALGORITHM - 2

 On demand  demand paging

 Prefetching
 Preload pages based on anticipated demand

 Prediction based on locality
 Access page P, suggests page P+1 may be used

 What other techniques might help anticipate required 
memory pages?   
 Prediction models, historical analysis 
 In general: accuracy vs. effort tradeoff
 High analysis techniques struggle to respond in real time
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WHEN TO LOAD PAGES

Page swaps / writes

Group/cluster pages together

Collect pending writes, perform as batch

Grouping disk writes helps amortize latency costs

 Thrashing

Occurs when system runs many memory intensive 
processes and is low in memory

Everything is constantly swapped to-and-from disk
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OTHER SWAPPING POLICIES

Working sets

Groups of related processes

When thrashing: prevent one or more working 
set(s) from running

Temporarily reduces memory burden

Allows some processes to run, reduces thrashing
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OTHER SWAPPING POLICIES - 2

CHAPTER 36:
I/O DEVICES
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Chapter 36

Polling vs Interrupts

Programmed I/O (PIO)
 Port-mapped I/O (PMIO)

Memory-mapped I/O (MMIO)

Direct memory Access (DMA)
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OBJECTIVES
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 Modern computer systems interact with a variety of devices
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I/O DEVICES
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COMPUTER SYSTEM ARCHITECTURE

VERY FAST: CPU is attached to main memory via a Memory bus.

FAST: High speed devices (e.g. video) are connected via a General I/O bus. 

SLOWER:  Disks are connected via a Peripheral I/O bus.

 Buses

 Buses closer to the CPU are faster

 Can support fewer devices

 Further buses are slower, but support more devices

 Physics and costs dictate “levels”

Memory bus

 General I/O bus

 Peripheral I/O bus

 Tradeoff space: speed vs. locality
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I/O BUSES

 Consider an arbitrary canonical “standard/generic” device

 Two primary components

 Interface (registers for communication)

 Internals: Local CPU, memory, specific chips, firmware 
(embedded software)
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CANONICAL DEVICE

 Status register

Maintains current device status

 Command register

Where commands for interaction are sent

 Data register

 Used to send and receive data to the device
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CANONICAL DEVICE: 
HARDWARE INTERFACE

General concept:
The OS interacts and controls device behavior
by reading and writing the device registers.

 Common example of device interaction
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OS DEVICE INTERACTION

Poll- Is device available?

Poll – Is device done?

Command parameterization

Send command
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 OS checks if device is READY by repeatedly checking the 
STATUS register
 Simple approach

 CPU cycles are wasted without doing meaningful work

 Ok if only a few cycles, for rapid devices that are often READY

 BUT polling, as with “spin locks” we understand is inefficient
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POLLING

 For longer waits, put process waiting on I/O to sleep

 Context switch (C/S) to another process

 When I/O completes, fire an interrupt to initiate C/S back
 Advantage: better multi-tasking and CPU utilization

 Avoids: unproductive CPU cycles (polling)
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INTERRUPTS VS POLLING

 Interrupts are not always the best solution

 How long does the device I/O require?

What is the cost of context switching?
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INTERRUPTS VS POLLING - 2

If device I/O is fast  polling is better.
If device I/O is slow  interrupts are better.

What is the tradeoff space ?  One solution is a two-phase hybrid approach

 Initially poll, then sleep and use interrupts

 Livelock problem

 Common with network I/O

 Many arriving packets generate many many interrupts

 Overloads the CPU!

 No time to execute code, just interrupt handlers !

 Livelock optimization

 Coalesce multiple arriving packets (for different processes) into 
fewer interrupts 

 Must consider number of interrupts a device could generate
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INTERRUPTS VS POLLING - 3

 To interact with a device we must send/receive 
DATA

 There are two general approaches:

Programmed I/O (PIO)

Direct memory access (DMA)
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DEVICE I/O
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 Spend CPU time to perform I/O

 CPU is involved with the data movement (input/output)

 PIO is slow –CPU is occupied with meaningless work
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PROGRAMMED I/O (PIO)

PIO

 Legacy serial ports

 Legacy parallel ports

 PS/2 keyboard and mouse

 Legacy MIDI, joysticks

 Old network interfaces
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PIO DEVICES

 Two primary PIO methods

Port mapped I/O  (PMIO)

Memory mapped I/O (MMIO)
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PROGRAMMED I/O DEVICE (PIO) 
INTERACTION

 Device specific CPU I/O Instructions 

 Follows a CISC model: extra instructions

 x86-x86-64: in and out instructions

 outb, outw, outl

 1, 2, 4 byte copy from EAX  device’s I/O port
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PORT MAPPED I/O (PMIO)

 Device’s memory is mapped to CPU memory  

 Tenet of RISC CPUs: instructions are eliminated, CPU is 
simpler

 Old days: 16-bit CPUs didn’t have a lot of spare memory space

 Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr
space)

 Regular CPU instructions used to access device: mapped to 
memory

 Devices monitor CPU address bus and respond to their 
addresses

 I/O device address areas of memory are reserved for I/O 
 Must not be available for normal memory operations. 
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MEMORY MAPPED I/O (MMIO)

 Copy data in memory by of floading to “DMA controller”

 Many devices (including CPUs) integrate DMA controllers

 CPU gives DMA: memory address, size, and copy instruction
 DMA performs I/O independent of the CPU

 DMA controller generates CPU interrupt when I/O completes
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DIRECT MEMORY ACCESS (DMA)
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 Many devices use DMA

 HDD/SSD controllers (ISA/PCI)

 Graphics cards

 Network cards

 Sound cards

 Intra-chip memory transfer for multi-core processors

 DMA allows computation and data transfer time to 
proceed in parallel
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DIRECTORY MEMORY ACCESS – 2

 The OS must interact with a variety of devices

 Example: for DISK I/O consider the variety of disks:

 SCSI, IDE, USB flash drive, DVD, etc.

 Device drivers use abstraction to provide general 
interfaces for vendor specific hardware

 In Linux: block devices
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DEVICE INTERACTION

 Layers of I/O abstraction in Linux

 C functions (open, read, write) issue block read and write 
requests to the generic block layer
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FILE SYSTEM ABSTRACTION

 Too much abstraction

 Many devices provide special capabilities

 Example: SCSI Error handling

 SCSI devices provide extra detail which are lost to the OS

 Buggy device dr ivers

 70% of OS code is in device drivers

 Device drivers are required for every device plugged in

 Drivers are often 3rd party, which is not quality controlled at 
the same level as the OS (Linux, Windows, MacOS, etc.)
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FILE SYSTEM ABSTRACTION ISSUES

QUESTIONS


