
TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.1Slides by Wes J. Lloyd

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces:
Beyond Physical Memory,

I/O Devices

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment 3 – Page Table Walker

 Memory Virtualization

 Beyond Physical Memory – Ch. 21/22

 I/O Devices – Ch. 36

 Final Exam – June 4th

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.2

OBJECTIVES

 Questions on assignment #3…

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.3

FEEDBACK – 5/23

CHAPTER 21/22:
BEYOND PHYSICAL

MEMORY

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L16.4

 Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.5

MEMORY HIERARCHY

 Can provide illusion of an address space larger than
physical RAM

 For a single process

 Convenience

 Ease of use

 For multiple processes

 Large virtual memory space for many concurrent
processes

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.6

MOTIVATION FOR
EXPANDING THE ADDRESS SPACE

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.2Slides by Wes J. Lloyd

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.7

LATENCY TIMES

Design considerations
 SSDs 4x the time of DRAM
 HDDs 80x the time of DRAM

 Lat ency num be rs e ve r y prog ram m e r should know
 From : ht tps ://g ist .g i thub.c om /jbone r/2 841832#f i le - l ate nc y - t x t

 Disk space for storing memory pages

 “Swap” them in and out of memory to disk as needed

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.8

SWAP SPACE

 Page table pages are:

 Stored in memory

 Swapped to disk

 Present bit

 In the page table entry (PTE) indicates if page is present

 Page fault

Memory page is accessed, but has been swapped to disk

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.9

PAGE LOCATION

 OS steps in to handle the page fault

 Loading page from disk requires a free memory page

 Page-Fault Algorithm:

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.10

PAGE FAULT

 Page daemon

 Background threads which monitors swapped pages

 Low watermark (LW)

 Threshold for when to swap pages to disk

 Daemon checks: free pages < LW

 Begin swapping to disk until reaching the highwater mark

 High watermark (HW)

 Target threshold of free memory pages

 Daemon free until: free pages >= HW

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.11

PAGE REPLACEMENTS

REPLACEMENT
POLICIES

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.1
2

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.3Slides by Wes J. Lloyd

 Replacement policies apply to “any” cache

 Goal is to minimize the number of misses

 Average memory access time (AMAT) can be estimated:

 Consider TM = 100 ns, TD = 10ms

 For a batch of memory accesses:
 Consider Phit = .9 (90%), Pmiss = .1

 Consider Phit = .999 (99.9%), Pmiss = .001

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.13

CACHE MANAGEMENT EXAMPLE

𝐴𝑀𝐴𝑇 = 𝑃ு௜௧ ∗ 𝑇ெ + (𝑃ெ௜௦௦ ∗ 𝑇஽)

Argument Meaning

𝑇ெ The cost of accessing memory (time)

𝑇஽ The cost of accessing disk (time)

𝑃ு௜௧ The probability of finding the data item in the cache(a hit)

𝑃ெ௜௦௦ The probability of not finding the data in the cache(a miss)

 TM (DRAM access time) = 100ns = .0001ms

 TD (HDD/SDD access time) = 10ms

 PH = .9 (90%) 90% hits

 PM = .1 (10%) 10% misses

 AMAT = (.9 * .0001) + (.1 * 10)

 AMAT = .00009 + 1

 AMAT = 1.00009 ms

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.14

CACHE MANAGEMENT EXAMPLE - 2

 What if:
 We could predict the future (… with a magical oracle)

 All future page accesses are known

 Always replace the page in the cache used farthest in the future

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page
accesses:

0 1 2 0 1 3 0 3 1 2 1

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.15

OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?

6 hits

 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following
page accesses:

0 1 2 0 1 3 0 3 1 2 1

 What is the hit/miss ratio?

 How is FIFO different than LRU?

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.16

FIFO REPLACEMENT

4 hits

LRU incorporates history

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0 1 2 0 1 3 0 3 1 2 1

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.17

RANDOM REPLACEMENT

 LRU: Least recently used (adds “a memory” to the cache)

 Always replace page with oldest access time (front)

 Always move end of cache when element is read again

 Considers temporal locality (when pg was last accessed)
3-element cache:

0 1 2 0 1 3 0 3 1 2 1

 LFU: Least frequently used

 Always replace page with fewest accesses (front)

 Consider frequency of page accesses
3-e lement cache :

0 1 2 0 1 3 0 3 1 2 1

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.18

HISTORY-BASED POLICIES

What is the hit/miss ratio?

6 hits

Hit/miss ratio is=

6 hits

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.4Slides by Wes J. Lloyd

 No-Locality (Random Access) Workload
 Perform 10,000 random page accesses

 Across set of 100 memory pages

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.19

WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
large enough to fit

the entire workload,
it doesn’t matter

which policy you use.

 80/20 Workload
 Perform 10,000 page accesses, against set of 100 pages

 80% of accesses are to 20% of pages (hot pages)

 20% of accesses are to 80% of pages (cold pages)

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.20

WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

 Looping sequential workload
 Refer to 50 pages in sequence: 0, 1, …, 49

 Repeat loop

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.21

WORKLOAD EXAMPLES: SEQUENTIAL

Random performs
better than FIFO and

LRU for
cache sizes < 50

Algorithms should provide
“scan resistance”

 Implementing last recently used (LRU) requires tracking
access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),
with 4KB pages (212)

 This requires 220 comparisons !!!

 Simplification is needed

 Consider how to approximate the oldest page access

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.22

IMPLEMENTING LRU

Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

Refer to pages in a circular list

Clock hand points to current page

Loops around
 IF USE_BIT=1 set to USE_BIT = 0

 IF USE_BIT=0 replace page

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.23

IMPLEMENTING LRU - 2

 Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.24

CLOCK ALGORITHM

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.5Slides by Wes J. Lloyd

Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

Cache eviction requires updating memory

Contents have changed

Clock algorithm should favor no cost eviction

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.25

CLOCK ALGORITHM - 2

 On demand  demand paging

 Prefetching
 Preload pages based on anticipated demand

 Prediction based on locality
 Access page P, suggests page P+1 may be used

 What other techniques might help anticipate required
memory pages?
 Prediction models, historical analysis
 In general: accuracy vs. effort tradeoff
 High analysis techniques struggle to respond in real time

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.26

WHEN TO LOAD PAGES

Page swaps / writes

Group/cluster pages together

Collect pending writes, perform as batch

Grouping disk writes helps amortize latency costs

 Thrashing

Occurs when system runs many memory intensive
processes and is low in memory

Everything is constantly swapped to-and-from disk

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.27

OTHER SWAPPING POLICIES

Working sets

Groups of related processes

When thrashing: prevent one or more working
set(s) from running

Temporarily reduces memory burden

Allows some processes to run, reduces thrashing

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.28

OTHER SWAPPING POLICIES - 2

CHAPTER 36:
I/O DEVICES

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L16.29

Chapter 36

Polling vs Interrupts

Programmed I/O (PIO)
 Port-mapped I/O (PMIO)

Memory-mapped I/O (MMIO)

Direct memory Access (DMA)

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.30

OBJECTIVES

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.6Slides by Wes J. Lloyd

 Modern computer systems interact with a variety of devices

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L16.31

I/O DEVICES

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.32

COMPUTER SYSTEM ARCHITECTURE

VERY FAST: CPU is attached to main memory via a Memory bus.

FAST: High speed devices (e.g. video) are connected via a General I/O bus.

SLOWER: Disks are connected via a Peripheral I/O bus.

 Buses

 Buses closer to the CPU are faster

 Can support fewer devices

 Further buses are slower, but support more devices

 Physics and costs dictate “levels”

Memory bus

 General I/O bus

 Peripheral I/O bus

 Tradeoff space: speed vs. locality

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.33

I/O BUSES

 Consider an arbitrary canonical “standard/generic” device

 Two primary components

 Interface (registers for communication)

 Internals: Local CPU, memory, specific chips, firmware
(embedded software)

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.34

CANONICAL DEVICE

 Status register

Maintains current device status

 Command register

Where commands for interaction are sent

 Data register

 Used to send and receive data to the device

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.35

CANONICAL DEVICE:
HARDWARE INTERFACE

General concept:
The OS interacts and controls device behavior
by reading and writing the device registers.

 Common example of device interaction

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.36

OS DEVICE INTERACTION

Poll- Is device available?

Poll – Is device done?

Command parameterization

Send command

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.7Slides by Wes J. Lloyd

 OS checks if device is READY by repeatedly checking the
STATUS register
 Simple approach

 CPU cycles are wasted without doing meaningful work

 Ok if only a few cycles, for rapid devices that are often READY

 BUT polling, as with “spin locks” we understand is inefficient

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.37

POLLING

 For longer waits, put process waiting on I/O to sleep

 Context switch (C/S) to another process

 When I/O completes, fire an interrupt to initiate C/S back
 Advantage: better multi-tasking and CPU utilization

 Avoids: unproductive CPU cycles (polling)

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.38

INTERRUPTS VS POLLING

 Interrupts are not always the best solution

 How long does the device I/O require?

What is the cost of context switching?

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.39

INTERRUPTS VS POLLING - 2

If device I/O is fast  polling is better.
If device I/O is slow  interrupts are better.

What is the tradeoff space ?  One solution is a two-phase hybrid approach

 Initially poll, then sleep and use interrupts

 Livelock problem

 Common with network I/O

 Many arriving packets generate many many interrupts

 Overloads the CPU!

 No time to execute code, just interrupt handlers !

 Livelock optimization

 Coalesce multiple arriving packets (for different processes) into
fewer interrupts

 Must consider number of interrupts a device could generate

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.40

INTERRUPTS VS POLLING - 3

 To interact with a device we must send/receive
DATA

 There are two general approaches:

Programmed I/O (PIO)

Direct memory access (DMA)

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.41

DEVICE I/O

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

From https://en.wikipedia.org/wiki/Parallel_ATA

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.8Slides by Wes J. Lloyd

 Spend CPU time to perform I/O

 CPU is involved with the data movement (input/output)

 PIO is slow –CPU is occupied with meaningless work

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.43

PROGRAMMED I/O (PIO)

PIO

 Legacy serial ports

 Legacy parallel ports

 PS/2 keyboard and mouse

 Legacy MIDI, joysticks

 Old network interfaces

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.44

PIO DEVICES

 Two primary PIO methods

Port mapped I/O (PMIO)

Memory mapped I/O (MMIO)

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.45

PROGRAMMED I/O DEVICE (PIO)
INTERACTION

 Device specific CPU I/O Instructions

 Follows a CISC model: extra instructions

 x86-x86-64: in and out instructions

 outb, outw, outl

 1, 2, 4 byte copy from EAX  device’s I/O port

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.46

PORT MAPPED I/O (PMIO)

 Device’s memory is mapped to CPU memory

 Tenet of RISC CPUs: instructions are eliminated, CPU is
simpler

 Old days: 16-bit CPUs didn’t have a lot of spare memory space

 Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr
space)

 Regular CPU instructions used to access device: mapped to
memory

 Devices monitor CPU address bus and respond to their
addresses

 I/O device address areas of memory are reserved for I/O
 Must not be available for normal memory operations.

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.47

MEMORY MAPPED I/O (MMIO)

 Copy data in memory by of floading to “DMA controller”

 Many devices (including CPUs) integrate DMA controllers

 CPU gives DMA: memory address, size, and copy instruction
 DMA performs I/O independent of the CPU

 DMA controller generates CPU interrupt when I/O completes

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.48

DIRECT MEMORY ACCESS (DMA)

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.9Slides by Wes J. Lloyd

 Many devices use DMA

 HDD/SSD controllers (ISA/PCI)

 Graphics cards

 Network cards

 Sound cards

 Intra-chip memory transfer for multi-core processors

 DMA allows computation and data transfer time to
proceed in parallel

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.49

DIRECTORY MEMORY ACCESS – 2

 The OS must interact with a variety of devices

 Example: for DISK I/O consider the variety of disks:

 SCSI, IDE, USB flash drive, DVD, etc.

 Device drivers use abstraction to provide general
interfaces for vendor specific hardware

 In Linux: block devices

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.50

DEVICE INTERACTION

 Layers of I/O abstraction in Linux

 C functions (open, read, write) issue block read and write
requests to the generic block layer

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.51

FILE SYSTEM ABSTRACTION

 Too much abstraction

 Many devices provide special capabilities

 Example: SCSI Error handling

 SCSI devices provide extra detail which are lost to the OS

 Buggy device dr ivers

 70% of OS code is in device drivers

 Device drivers are required for every device plugged in

 Drivers are often 3rd party, which is not quality controlled at
the same level as the OS (Linux, Windows, MacOS, etc.)

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.52

FILE SYSTEM ABSTRACTION ISSUES

QUESTIONS

