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FEEDBACK - 5/23

= Questions on assignment #3...

CHAPTER 21/22:
BEYOND PHYSICAL
MEMORY
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MOTIVATION FOR
EXPANDING THE ADDRESS SPACE

MEMORY HIERARCHY

= Disks (HDD, SSD) provide another level of storage in the = Can provide illusion of an address space larger than
memory hierarchy physical RAM

= For a single process
= Convenience

Registers
= Ease of use
Cache
Main Memory = For multiple processes
o hard ik tapes stesd) = Large virtual memory space for many concurrent
lass Storage( har IsK, e, etc...,
9 P processes
Memory Hierarchy in modern system
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LATENCY TIMES

= Design considerations
= SSDs 4x the time of DRAM
= HDDs 80x the time of DRAM

Action Latency (ns) (ps)
L1 cache reference 0.5ns
L2 cache reference 7ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1
Read 4K randomly from 55D 150,000 ns 150 ps ~1GB/sec 55D
Read 1 MB sequentially from memory 250,000 ns 250 ps
Read 1 MB sequentially from S5D* 1,000,000 ns 1,000 ps | 1 ms ~1GB/sec 55D, 4X memory
Read 1 MB sequentially from disk 20,000,000 ns 20,000 ps 20 ms 80x memaory, 20X 55D

= Latency numbers every programmer should know
= From: https://gist.github.com/jboner/2841832#file-latency-txt
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SWAP SPACE

= Disk space for storing memory pages
= “‘Swap” them in and out of memory to disk as needed

PFN 0 PFN 1 PFN 2 PFN 3
Physical Proc0 Proc1 Proc1 Proc2
Memory VPN 0] VPN 2] [VPN 3] [VPN 0]

Block0  Block 1 Block 2 Block 3 Block4  Block 5 Block 6 Block 7

Swap | proc0 | ProcO | o | Procl | Procl | Proc3 | Proc2 | Proc3
Space | [VPN1] | [VPN 2] [VPNO] | [VPN1] | [VPNO] | [VPN1] | [VPN 1]
Physical Memory and Swap Space
TCS$422: Operating Systems [Spring 2018]
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PAGE LOCATION

= Page table pages are:
= Stored in memory
= Swapped to disk

= Present bit
= In the page table entry (PTE) indicates if page is present

= Page fault
= Memory page is accessed, but has been swapped to disk

TCS5422: Operating Systems [Spring 2018] | 1169 ‘
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PAGE FAULT

= 0S steps in to handle the page fault
= Loading page from disk requires a free memory page

= Page-Fault Algorithm:

PEN = FindFreePhysicalPage ()
if (PEN == -1)
PFN = EvictPage ()
DiskRead (PTE.DiskAddr, pfn) //
PTE.present =

PTE.PFN = PFN Z

N

RetryInstruction()

TCS5422: Operating Systems [Spring 2018] 610
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PAGE REPLACEMENTS

= Page daemon
= Background threads which monitors swapped pages

= Low watermark (LW)
= Threshold for when to swap pages to disk
= Daemon checks: free pages < LW
= Begin swapping to disk until reaching the highwater mark

= High watermark (HW)
= Target threshold of free memory pages
= Daemon free until: free pages >= HW

TCS5422: Operating Systems [Spring 2018]
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REPLACEMENT

PpoOLICY
CHANGES

POLICIES
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CACHE MANAGEMENT EXAMPLE CACHE MANAGEMENT EXAMPLE - 2

= Replacement policies apply to “any” cache = T,, (DRAM access time) = 100ns = .0001ms
® Goal is to minimize the number of misses = T, (HDD/SDD access time) = 10ms
= Average memory access time (AMAT) can be estimated: °
| AMAT = (Pyie * Ty) + (Puiss * Tp) ‘ =Py =.9 (90%) 90% hits
*Py=.1(10%)  10% misses

Ty The cost of accessing memory (time)

Tp The cost of accessing disk (time) - * *

Puic The probability of finding the data item in the cache(a hit) HHARIAT = (@ = @0 s+ (L = 40)

Puiss | The probability of not finding the data in the cache(a miss) = AMAT =.00009 + 1

= Consider Ty = 100 ns, Ty = 10ms FARIANT = SO iws

= For a batch of memory accesses:
= Consider P,;; = .9 (90%), Ppiss = .1
= Consider P, = .999 (99.9%), Pss = .001

TCS5422: Operating Systems [Spring 2018]
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OPTIMAL REPLACEMENT POLICY FIFO REPLACEMENT
= What if: = Queue based
gWelcouldipradictithejuturelCHwithiaimazicalloracle) = Always replace the oldest element at the back of cache
= All future page accesses are known = Simple to implement

= Always replace the page in the cache used farthest in the future ) ) ) ) .
= Doesn’t consider importance... just arrival ordering

= Used for a comparison = Consider a 3-element empty cache with the following
= Provides a “best case” replacement policy page accesses:
= Consider a 3-element empty cache with the following page 01201303121

accesses:
What Is the hit/miss ratio? = What is the hit/miss ratio? m
01201303121 m = How is FIFO different than LRU? LRU incorporates history
TCS5422: Operating Systems [Spring 2018]
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RANDOM REPLACEMENT HISTORY-BASED POLICIES

= Pick a page at random to replace = LRU: Least recently used (adds “a memory” to the cache)

= Simple and fast implementation = Always replace page with oldest access time (front)

= Performance depends on luck of random choices = Always move end of cache when element is read again
01201303121 = Considers temporal locality (when pg was last accessed)

3-element cache:
s What Is the hit/miss ratlo?
- 01201303121 m

= LFU: Least frequently used

= Always replace page with fewest accesses (front)
— = Consider frequency of page accesses
T 2 s a4 s e SR i Hit/missratlo Is

Random Performance over 10,000 Trials 01201303121 m

TCS5422: Operating Systems [Spring 2018]
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WORKLOAD EXAMPLES: NO-LOCALITY WORKLOAD EXAMPLES: 80/20

= No-Locality (Random Access) Workload = 80/20 Workload
= Perform 10,000 random page accesses = Perform 10,000 page accesses, against set of 100 pages
= Across set of 100 memory pages = 80% of accesses are to 20% of pages (hot pages)
The No-Locality Workload = 20% of accesses are to 80% of pages (cold pages)

100%. ‘The 80-20 Workload

When the cache is LRU is more likely

;;0' s 7 large enough to fit % to hold onto
£ / the entire workload, 2 hot pages
wet / it doesn’t matter =

(recalls history)

which policy you use.

T T I I T T T T T T
40 60 s 100 0 4 & s 100

Cache Size (Blocks) Cache Size (Blocks)

TCS5422: Operating Systems [Spring 2018] TCSS422: Operating Systems [Spring 2018]
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IMPLEMENTING LRU

WORKLOAD EXAMPLES: SEQUENTIAL

= Looping sequential workload = Implementing last recently used (LRU) requires tracking
= Refer to 50 pages in sequence: 0, 1, ..., 49 access time for all system memory pages
" Repeat loop = Times can be tracked with a list

The Looping-Sequential Workload

= For cache eviction, we must scan an entire list

Random performs = Consider: 4GB memory system (232),
80% better than FIFO and with 4KB pages (212)
s LRU for
s / cache sizes < 50
o = This requires 22° comparisons !!!

s i A Algorithms should provide
I “scan resistance” = Simplification is needed

= Consider how to approximate the oldest page access

Cache Size (Blocks)

TCS5422: Operating Systems [Spring 2018]
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IMPLEMENTING LRU - 2 CLOCK ALGORITHM

= Harness the Page Table Entry (PTE) Use Bit = Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

= HW sets to 1 when page is used e

m0S setsto O

= Clock algorithm (approximate LRU)

=Refer to pages in a circular list : 41
- Clock
=Clock hand points to current page o —fro

=Loops around
IF USE_BIT=1 set to USE_BIT = 0 S
IF USE_BIT=0 replace page Cache Size (Blocks)

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Spring 2018]
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CLOCK ALGORITHM - 2 WHEN TO LOAD PAGES
= Consider dirty pages in cache = On demand > demand paging
= |f DIRTY (modified) bit is FALSE = Prefetching
=No cost to evict page from cache = Preload pages based on anticipated demand
= Prediction based on locality
= |f DIRTY (modified) bit is TRUE = Access page P, suggests page P+1 may be used
=Cache eviction requires updating memory

= What other techniques might help anticipate required
=Contents have changed memory pages?

Prediction models, historical analysis

In general: accuracy vs. effort tradeoff

=Clock algor'thm should favor no cost eviction High analysis techniques struggle to respond in real time
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OTHER SWAPPING POLICIES OTHER SWAPPING POLICIES - 2
= Page swaps / writes = Working sets
=Group/cluster pages together =Groups of related processes
=Collect pending writes, perform as batch =When thrashing: prevent one or more working
=Grouping disk writes helps amortize latency costs set(s) from running
=Temporarily reduces memory burden
= Thrashing =Allows some processes to run, reduces thrashing

=QOccurs when system runs many memory intensive
processes and is low in memory

=Everything is constantly swapped to-and-from disk

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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OBJECTIVES

= Chapter 36

=Polling vs Interrupts

CHAPTER 36:
1/0 DEVICES

=Programmed 1/0 (P10)
Port-mapped 1/0 (PMIO)
Memory-mapped I/0 (MMIO)

=Direct memory Access (DMA)

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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O DEVICES

Onteapen o ey

Pendive &gas,

Touch screen

= Modern computer systems interact with a variety of devices

input output

5/31/2018

COMPUTER SYSTEM ARCHITECTURE

Memory Bus
(proprietary)

General /O Bus
(e, PCD

Peripheral /O Bus
(e.g. SCSI, SATA, USB)

Memory bus

General I/0 bus

May 30, 2018 TCS5422: Operating Systems [Spring 2018]
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= Buses closer to the CPU are faster
= Can support fewer devices
= Further buses are slower, but support more devices

= Physics and costs dictate “levels”
= Memory bus
= General I/0 bus
= Peripheral /0 bus

= Tradeoff space: speed vs. locality

TCS5422: Operating Systems [Spring 2018]
RavSDR0 1 Institute of Technology, University of Washington - Tacoma L1631
= Buses
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CANONICAL DEVICE

= Consider an arbitrary canonical “standard/generic” device

Registerss [ status | [ command | [ pata | interface

Micro-controller(CPU) )
Memory (DRAM or SRAM or both) internals
Other Hardware-specific Chips

Canonical Device

= Two primary components
= Interface (registers for communication)

= Internals: Local CPU, memory, specific chips, firmware
(embedded software)

May 30, 2018 TCS5422: Operating Systems [Spring 2018]
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CANONICAL DEVICE:
HARDWARE INTERFACE

= Status register
= Maintains current device status

= Command register
= Where commands for interaction are sent

= Data register
= Used to send and receive data to the device

General concept:

controls device behavior
device registers.

TCS5422: Operating Systems [Spring 2018]
L £l S Institute o Technoloay)Universitylof Washington®Tacomal

11635

OS DEVICE INTERACTION

= Common example of device interaction

while ( sTaTus == susy) <@mm Poll-Is device available?
/wait until device is not busy
4= Command parameterization
write command to command register - Send command
Doing so starts the device and executes the command
4= Poll - Is device done?

th you

write data to data register

while ( STATUS == BUSY)

May 30, 2018 TCS5422: Operating Systems [Spring 2018]
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POLLING INTERRUPTS VS POLLING

= 0S checks if device is READY by repeatedly checking the = For longer waits, put process waiting on I/0 to sleep
STATUS register = Context switch (C/S) to another process
= Simple approach = When I/0 completes, fire an interrupt to initiate C/S back
* CPU cycles are wasted without doing meaningful work = Advantage: better multi-tasking and CPU utilization
= Ok if only a few cycles, for rapid devices that are often READY = Avoids: unproductive CPU cycles (polling)
= BUT polling, as with “spin locks” we understand is inefficient

“waiting 10" task 1 E polling
o [1]a]1]z]plelelelel]1]1]1]1] v [1]2]a[a]2 22022 2 1 2 2] 1]
Disk - Disk
CPU utilization by polling Diagram of CPU utilization by interrupt

TCS5422: Operating Systems [Spring 2018]
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INTERRUPTS VS POLLING - 2

INTERRUPTS VS POLLING - 3

= One solution is a two-phase hybrid approach
= Initially poll, then sleep and use interrupts

What is the tradeoff space

= Interrupts are not always the best solution = Livelock problem

= Common with network 1I/0

= Many arriving packets generate many many interrupts
= What is the cost of context switching? = Overloads the CPU!

=How long does the device 1/0 require?

= No time to execute code, just interrupt handlers!

polling = Livelock optimization
interrupts = Coalesce multiple arriving packets (for different processes) into
fewer interrupts

= Must consider number of interrupts a device could generate

May 30,2018 e e e May 30, 2018 B [ o
Transfer Modes
Mode P # - Maxi'"""l"M::;sm' e s | cvciatmne e

DEVICE 1/0 ° 33 500
1 52 383 ns
PIO 2 8.3 240 ns
. B . . 3 11.1 180 ns
=To interact with a device we must send/receive 1 T P
DATA o 2.1 960 ns
Single-word DMA 1 4.2 480 ns
2 83 240 ns
=There are two general approaches: = e e
1 13.3 150 ns
-Programmed |/0 (P|0) Multi-word DMA 2 16.7 | 120 ns
30341 20 100 ns
=Direct memory access (DMA) e = e

0 16.7 240ns + 2

1 25.0 160 ns + 2

2 (Ultra ATAS33) 33.3 120ns + 2

Gl SRA a 44.4 90 ns + 2

4 (Ultra ATASGE) B86.7 60ns +2

5 (Ultra ATA/100) 100 40ns = 2

May 30, 2018 TC55422: Operating Systems [Spring 2018] 641 6 (Ultra ATA/133) 133 30ns +2

Institute of Technology, University of Washington - Tacoma | 7 (Untra ATA/ 67)1351 167 24ns+2
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PROGRAMMED I/0 (PIO) P10 DEVICES
= Spend CPU time to perform 1/0 = Legacy serial ports
= CPU is involved with the data movement (input/output)
= PIO is slow -CPU is occupied with meaningless work = Legacy parallel ports

= PS/2 keyboard and mouse

PIO “over-burdened” ttaskl :task2

: copy data from memory = Legacy MIDI, joysticks

ov [1]1]1]1 [clele | EIEEEE 1]

ois [1]

Diagram of CPU utilization

= Old network interfaces

TCS5422: Operating Systems [Spring 2018]
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PROGRAMMED 1/0 DEVICE (P10)
INTERACTION

PORT MAPPED 1/0 (PMIO)

= Two primary PIO methods = Device specific CPU 1/0 Instructions

=Port mapped I/0 (PMIO) = Follows a CISC model: extra instructions

= x86-x86-64: in and out instructions

= Memory mapped /0 (MMIO) ® outb, outw, outl

=1 2 4 byte copy from EAX > device’s I/0 port

TCS5422: Operating Systems [Spring 2018]
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MEMORY MAPPED 1/0 (MMIO) DIRECT MEMORY ACCESS (DMA)

= Copy data in memory by offloading to “DMA controller”
= Many devices (including CPUs) integrate DMA controllers

= Device’s memory is mapped to CPU memory
= Tenet of RISC CPUs: instructions are eliminated, CPU is

simpler = CPU gives DMA: memory address, size, and copy instruction

= 0ld days: 16-bit CPUs didn’t have a lot of spare memory space = DMA performs 1/0 independent of the CPU

= Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr = DMA controller generates CPU interrupt when 1I/0 completes
space) [1]: w1 2] -tsk2

= Regular CPU instructions used to access device: mapped to capy datalfrormamiory
memory

e [a]afa]1[2l2]2 2 2 2 2 2] 1 1] 1]

= Devices monitor CPU address bus and respond to their
addresses DMA

= |/0 device address areas of memory are reserved for |/0
= Must not be available for normal memory operations.

Disk

May 30, 2018

Diagram of CPU utilization by DMA
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DIRECTORY MEMORY ACCESS - 2

= Many devices use DMA
=HDD/SSD controllers (ISA/PCl)
= Graphics cards
= Network cards
=Sound cards
= Intra-chip memory transfer for multi-core processors

= DMA allows computation and data transfer time to
proceed in parallel

DEVICE INTERACTION

= The OS must interact with a variety of devices
= Example: for DISK I/0 consider the variety of disks:
= SCSI, IDE, USB flash drive, DVD, etc.

= Device drivers use abstraction to provide general
interfaces for vendor specific hardware

= |n Linux: block devices

TCS5422: Operating Systems [Spring 2018]

L £l S Institute of Technology, University of Washington - Tacoma
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FILE SYSTEM ABSTRACTION

= Layers of /0 abstraction in Linux

= C functions (open, read, write) issue block read and write
requests to the generic block layer

‘ Application ‘ user

__________ .{ POSIX API [open, read, write, close, etc] = = = = = = = = — -
kernel

Generic Block Interface [block read/write]

‘ Generic Block Layer ‘

T
Specific Block Interface [protocol-specific read/write]

The File System Stack

FILE SYSTEM ABSTRACTION ISSUES

= Too much abstraction

= Many devices provide special capabilities
= Example: SCSI Error handling
= SCSI devices provide extra detail which are lost to the 0S

= Buggy device drivers

= 70% of OS code is in device drivers
= Device drivers are required for every device plugged in

= Drivers are often 3" party, which is not quality controlled at
the same level as the OS (Linux, Windows, MacOS, etc.)

TCS5422: Operating Systems [Spring 2018]
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