
TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.1Slides by Wes J. Lloyd

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces:
Beyond Physical Memory,

I/O Devices

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment 3 – Page Table Walker

 Memory Virtualization

 Beyond Physical Memory – Ch. 21/22

 I/O Devices – Ch. 36

 Final Exam – June 4th

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.2

OBJECTIVES

 Questions on assignment #3…

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.3

FEEDBACK – 5/23

CHAPTER 21/22:
BEYOND PHYSICAL

MEMORY

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L16.4

 Disks (HDD, SSD) provide another level of storage in the
memory hierarchy

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.5

MEMORY HIERARCHY

 Can provide illusion of an address space larger than
physical RAM

 For a single process

 Convenience

 Ease of use

 For multiple processes

 Large virtual memory space for many concurrent
processes

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.6

MOTIVATION FOR
EXPANDING THE ADDRESS SPACE

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.2Slides by Wes J. Lloyd

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.7

LATENCY TIMES

Design considerations
 SSDs 4x the time of DRAM
 HDDs 80x the time of DRAM

 Lat ency num be rs e ve r y prog ram m e r should know
 From : ht tps ://g ist .g i thub.c om /jbone r/2 841832#f i le - l ate nc y - t x t

 Disk space for storing memory pages

 “Swap” them in and out of memory to disk as needed

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.8

SWAP SPACE

 Page table pages are:

 Stored in memory

 Swapped to disk

 Present bit

 In the page table entry (PTE) indicates if page is present

 Page fault

Memory page is accessed, but has been swapped to disk

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.9

PAGE LOCATION

 OS steps in to handle the page fault

 Loading page from disk requires a free memory page

 Page-Fault Algorithm:

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.10

PAGE FAULT

 Page daemon

 Background threads which monitors swapped pages

 Low watermark (LW)

 Threshold for when to swap pages to disk

 Daemon checks: free pages < LW

 Begin swapping to disk until reaching the highwater mark

 High watermark (HW)

 Target threshold of free memory pages

 Daemon free until: free pages >= HW

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.11

PAGE REPLACEMENTS

REPLACEMENT
POLICIES

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.1
2

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.3Slides by Wes J. Lloyd

 Replacement policies apply to “any” cache

 Goal is to minimize the number of misses

 Average memory access time (AMAT) can be estimated:

 Consider TM = 100 ns, TD = 10ms

 For a batch of memory accesses:
 Consider Phit = .9 (90%), Pmiss = .1

 Consider Phit = .999 (99.9%), Pmiss = .001

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.13

CACHE MANAGEMENT EXAMPLE

𝐴𝑀𝐴𝑇 = 𝑃ு௧ ∗ 𝑇ெ + (𝑃ெ௦௦ ∗ 𝑇)

Argument Meaning

𝑇ெ The cost of accessing memory (time)

𝑇 The cost of accessing disk (time)

𝑃ு௧ The probability of finding the data item in the cache(a hit)

𝑃ெ௦௦ The probability of not finding the data in the cache(a miss)

 TM (DRAM access time) = 100ns = .0001ms

 TD (HDD/SDD access time) = 10ms

 PH = .9 (90%) 90% hits

 PM = .1 (10%) 10% misses

 AMAT = (.9 * .0001) + (.1 * 10)

 AMAT = .00009 + 1

 AMAT = 1.00009 ms

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.14

CACHE MANAGEMENT EXAMPLE - 2

 What if:
 We could predict the future (… with a magical oracle)

 All future page accesses are known

 Always replace the page in the cache used farthest in the future

 Used for a comparison

 Provides a “best case” replacement policy

 Consider a 3-element empty cache with the following page
accesses:

0 1 2 0 1 3 0 3 1 2 1

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.15

OPTIMAL REPLACEMENT POLICY

What is the hit/miss ratio?

6 hits

 Queue based

 Always replace the oldest element at the back of cache

 Simple to implement

 Doesn’t consider importance… just arrival ordering

 Consider a 3-element empty cache with the following
page accesses:

0 1 2 0 1 3 0 3 1 2 1

 What is the hit/miss ratio?

 How is FIFO different than LRU?

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.16

FIFO REPLACEMENT

4 hits

LRU incorporates history

 Pick a page at random to replace

 Simple and fast implementation

 Performance depends on luck of random choices

0 1 2 0 1 3 0 3 1 2 1

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.17

RANDOM REPLACEMENT

 LRU: Least recently used (adds “a memory” to the cache)

 Always replace page with oldest access time (front)

 Always move end of cache when element is read again

 Considers temporal locality (when pg was last accessed)
3-element cache:

0 1 2 0 1 3 0 3 1 2 1

 LFU: Least frequently used

 Always replace page with fewest accesses (front)

 Consider frequency of page accesses
3-e lement cache :

0 1 2 0 1 3 0 3 1 2 1

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.18

HISTORY-BASED POLICIES

What is the hit/miss ratio?

6 hits

Hit/miss ratio is=

6 hits

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.4Slides by Wes J. Lloyd

 No-Locality (Random Access) Workload
 Perform 10,000 random page accesses

 Across set of 100 memory pages

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.19

WORKLOAD EXAMPLES: NO-LOCALITY

When the cache is
large enough to fit

the entire workload,
it doesn’t matter

which policy you use.

 80/20 Workload
 Perform 10,000 page accesses, against set of 100 pages

 80% of accesses are to 20% of pages (hot pages)

 20% of accesses are to 80% of pages (cold pages)

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.20

WORKLOAD EXAMPLES: 80/20

LRU is more likely
to hold onto
hot pages

(recalls history)

 Looping sequential workload
 Refer to 50 pages in sequence: 0, 1, …, 49

 Repeat loop

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.21

WORKLOAD EXAMPLES: SEQUENTIAL

Random performs
better than FIFO and

LRU for
cache sizes < 50

Algorithms should provide
“scan resistance”

 Implementing last recently used (LRU) requires tracking
access time for all system memory pages

 Times can be tracked with a list

 For cache eviction, we must scan an entire list

 Consider: 4GB memory system (232),
with 4KB pages (212)

 This requires 220 comparisons !!!

 Simplification is needed

 Consider how to approximate the oldest page access

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.22

IMPLEMENTING LRU

Harness the Page Table Entry (PTE) Use Bit

HW sets to 1 when page is used

OS sets to 0

Clock algorithm (approximate LRU)

Refer to pages in a circular list

Clock hand points to current page

Loops around
 IF USE_BIT=1 set to USE_BIT = 0

 IF USE_BIT=0 replace page

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.23

IMPLEMENTING LRU - 2

 Not as efficient as LRU, but better than other
replacement algorithms that do not consider history

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.24

CLOCK ALGORITHM

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.5Slides by Wes J. Lloyd

Consider dirty pages in cache

 If DIRTY (modified) bit is FALSE

No cost to evict page from cache

 If DIRTY (modified) bit is TRUE

Cache eviction requires updating memory

Contents have changed

Clock algorithm should favor no cost eviction

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.25

CLOCK ALGORITHM - 2

 On demand demand paging

 Prefetching
 Preload pages based on anticipated demand

 Prediction based on locality
 Access page P, suggests page P+1 may be used

 What other techniques might help anticipate required
memory pages?
 Prediction models, historical analysis
 In general: accuracy vs. effort tradeoff
 High analysis techniques struggle to respond in real time

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.26

WHEN TO LOAD PAGES

Page swaps / writes

Group/cluster pages together

Collect pending writes, perform as batch

Grouping disk writes helps amortize latency costs

 Thrashing

Occurs when system runs many memory intensive
processes and is low in memory

Everything is constantly swapped to-and-from disk

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.27

OTHER SWAPPING POLICIES

Working sets

Groups of related processes

When thrashing: prevent one or more working
set(s) from running

Temporarily reduces memory burden

Allows some processes to run, reduces thrashing

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.28

OTHER SWAPPING POLICIES - 2

CHAPTER 36:
I/O DEVICES

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L16.29

Chapter 36

Polling vs Interrupts

Programmed I/O (PIO)
 Port-mapped I/O (PMIO)

Memory-mapped I/O (MMIO)

Direct memory Access (DMA)

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.30

OBJECTIVES

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.6Slides by Wes J. Lloyd

 Modern computer systems interact with a variety of devices

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L16.31

I/O DEVICES

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.32

COMPUTER SYSTEM ARCHITECTURE

VERY FAST: CPU is attached to main memory via a Memory bus.

FAST: High speed devices (e.g. video) are connected via a General I/O bus.

SLOWER: Disks are connected via a Peripheral I/O bus.

 Buses

 Buses closer to the CPU are faster

 Can support fewer devices

 Further buses are slower, but support more devices

 Physics and costs dictate “levels”

Memory bus

 General I/O bus

 Peripheral I/O bus

 Tradeoff space: speed vs. locality

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.33

I/O BUSES

 Consider an arbitrary canonical “standard/generic” device

 Two primary components

 Interface (registers for communication)

 Internals: Local CPU, memory, specific chips, firmware
(embedded software)

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.34

CANONICAL DEVICE

 Status register

Maintains current device status

 Command register

Where commands for interaction are sent

 Data register

 Used to send and receive data to the device

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.35

CANONICAL DEVICE:
HARDWARE INTERFACE

General concept:
The OS interacts and controls device behavior
by reading and writing the device registers.

 Common example of device interaction

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.36

OS DEVICE INTERACTION

Poll- Is device available?

Poll – Is device done?

Command parameterization

Send command

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.7Slides by Wes J. Lloyd

 OS checks if device is READY by repeatedly checking the
STATUS register
 Simple approach

 CPU cycles are wasted without doing meaningful work

 Ok if only a few cycles, for rapid devices that are often READY

 BUT polling, as with “spin locks” we understand is inefficient

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.37

POLLING

 For longer waits, put process waiting on I/O to sleep

 Context switch (C/S) to another process

 When I/O completes, fire an interrupt to initiate C/S back
 Advantage: better multi-tasking and CPU utilization

 Avoids: unproductive CPU cycles (polling)

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.38

INTERRUPTS VS POLLING

 Interrupts are not always the best solution

 How long does the device I/O require?

What is the cost of context switching?

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.39

INTERRUPTS VS POLLING - 2

If device I/O is fast polling is better.
If device I/O is slow interrupts are better.

What is the tradeoff space ? One solution is a two-phase hybrid approach

 Initially poll, then sleep and use interrupts

 Livelock problem

 Common with network I/O

 Many arriving packets generate many many interrupts

 Overloads the CPU!

 No time to execute code, just interrupt handlers !

 Livelock optimization

 Coalesce multiple arriving packets (for different processes) into
fewer interrupts

 Must consider number of interrupts a device could generate

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.40

INTERRUPTS VS POLLING - 3

 To interact with a device we must send/receive
DATA

 There are two general approaches:

Programmed I/O (PIO)

Direct memory access (DMA)

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.41

DEVICE I/O

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

From https://en.wikipedia.org/wiki/Parallel_ATA

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.8Slides by Wes J. Lloyd

 Spend CPU time to perform I/O

 CPU is involved with the data movement (input/output)

 PIO is slow –CPU is occupied with meaningless work

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.43

PROGRAMMED I/O (PIO)

PIO

 Legacy serial ports

 Legacy parallel ports

 PS/2 keyboard and mouse

 Legacy MIDI, joysticks

 Old network interfaces

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.44

PIO DEVICES

 Two primary PIO methods

Port mapped I/O (PMIO)

Memory mapped I/O (MMIO)

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.45

PROGRAMMED I/O DEVICE (PIO)
INTERACTION

 Device specific CPU I/O Instructions

 Follows a CISC model: extra instructions

 x86-x86-64: in and out instructions

 outb, outw, outl

 1, 2, 4 byte copy from EAX device’s I/O port

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.46

PORT MAPPED I/O (PMIO)

 Device’s memory is mapped to CPU memory

 Tenet of RISC CPUs: instructions are eliminated, CPU is
simpler

 Old days: 16-bit CPUs didn’t have a lot of spare memory space

 Today’s CPUs: 32-bit (4GB addr space) & 64-bit (128 TB addr
space)

 Regular CPU instructions used to access device: mapped to
memory

 Devices monitor CPU address bus and respond to their
addresses

 I/O device address areas of memory are reserved for I/O
 Must not be available for normal memory operations.

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.47

MEMORY MAPPED I/O (MMIO)

 Copy data in memory by of floading to “DMA controller”

 Many devices (including CPUs) integrate DMA controllers

 CPU gives DMA: memory address, size, and copy instruction
 DMA performs I/O independent of the CPU

 DMA controller generates CPU interrupt when I/O completes

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.48

DIRECT MEMORY ACCESS (DMA)

TCSS 422 A – Spring 2018
Institute of Technology

5/31/2018

L16.9Slides by Wes J. Lloyd

 Many devices use DMA

 HDD/SSD controllers (ISA/PCI)

 Graphics cards

 Network cards

 Sound cards

 Intra-chip memory transfer for multi-core processors

 DMA allows computation and data transfer time to
proceed in parallel

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.49

DIRECTORY MEMORY ACCESS – 2

 The OS must interact with a variety of devices

 Example: for DISK I/O consider the variety of disks:

 SCSI, IDE, USB flash drive, DVD, etc.

 Device drivers use abstraction to provide general
interfaces for vendor specific hardware

 In Linux: block devices

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.50

DEVICE INTERACTION

 Layers of I/O abstraction in Linux

 C functions (open, read, write) issue block read and write
requests to the generic block layer

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.51

FILE SYSTEM ABSTRACTION

 Too much abstraction

 Many devices provide special capabilities

 Example: SCSI Error handling

 SCSI devices provide extra detail which are lost to the OS

 Buggy device dr ivers

 70% of OS code is in device drivers

 Device drivers are required for every device plugged in

 Drivers are often 3rd party, which is not quality controlled at
the same level as the OS (Linux, Windows, MacOS, etc.)

May 30, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L16.52

FILE SYSTEM ABSTRACTION ISSUES

QUESTIONS

