
TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.1Slides by Wes J. Lloyd

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces:
Translation Lookaside Buffer,

Paging – Smaller Tables

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment 3 – Page Table Walker

 Memory Virtualization

 Paging – Smaller Tables – Ch. 20

 Beyond Physical Memory – Ch. 21/22

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.2

OBJECTIVES

TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.2Slides by Wes J. Lloyd

 …

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.3

FEEDBACK – 5/21

CHAPTER 20:
PAGING:

SMALLER TABLES

May 23, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L15.4

TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.3Slides by Wes J. Lloyd

Chapter 20

Smaller tables

Hybrid tables

Multi-level page tables

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.5

OBJECTIVES

 Process: 16KB Address Space w/ 1KB pages

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.6

PAGE TABLES: WASTED SPACE

Page Table

TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.4Slides by Wes J. Lloyd

 Process: 16KB Address Space w/ 1KB pages

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.7

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page
table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.8

MULTI-LEVEL PAGE TABLES

TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.5Slides by Wes J. Lloyd

 Add level of indirection, the “page directory”

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.9

MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.10

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.6Slides by Wes J. Lloyd

 Advantages

 Only allocates page table space in proportion to the
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

Multi-level page tables are an example of a time-space
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.11

MULTI-LEVEL PAGE TABLES - 3

 Program address space = 16KB (214)

 Page size = 64byte pages (26)

 How large would a one-level page table need to be?
 214 (address space) / 26 (page size) = 28  256 (pages)

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.12

EXAMPLE

TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.7Slides by Wes J. Lloyd

 Number of pages = 256 ; Page size = 64 bytes each

 Assume each page table entry uses 4 bytes storage (32 bits)

 How many VPN bits are there? Offset bits?

 What much space is required to store the page table?
 1,024 bytes page table size, stored using 64-byte pages

= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 Key idea: the page table is stored using pages too!
May 23, 2018 TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma
L15.13

EXAMPLE - 2

 Now, let’s split the page table into two:
 PAGE DIRECTORY (PD) with a Page Directory Index (PDI)

 PAGE TABLE (PT) with a Page Table Index (PTI)

 8 bit VPN to map 256 pages

 USE first 4 bits for page directory index
(PDI – 1st level page table)

 6 bits offset into 64-byte page

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.14

PAGE DIRECTORY INDEX

TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.8Slides by Wes J. Lloyd

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

 We need one page directory entry (PDE)

 One page table Index (PTI) – can address 16 pages

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.15

PAGE TABLE INDEX

 For this example, how much space is required to store as a
single-level page table with any number of PTEs?

 We already answered this…
 16KB address space, 64 byte pages
 256 page frames, 4 byte page size
 1,024 bytes required (single level)

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)
 Page table = 4 entries x 4 bytes (1 x 64 byte page)
 128 bytes required (2 x 64 byte pages)
 Savings = using just 12.5% the space !!!

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.16

EXAMPLE - 3

TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.9Slides by Wes J. Lloyd

 Consider: 32-bit address space, 4KB pages, 220 pages

 Only 4 mapped pages

 Single level: 4 MB (we’ve done this before)

 Two level: (old VPN was 20 bits, split in half)

 Page directory = 210 entries x 4 bytes = 1 x 4 KB page

 Page table = 4 entries x 4 bytes (mapped to 1 4KB page)

 8KB (8,192 bytes) required

 Savings = using just .78 % the space !!!

 100 sparse processes now require < 1MB for page tables

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.17

LARGER EXAMPLE: 32-BIT ADDRESS SPACE

 Consider: page size is 29 = 512 bytes

 Page size 512 bytes / Page entry size 4 bytes

 VPN is 21 bits

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.18

THREE LEVELS

TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.10Slides by Wes J. Lloyd

 Page table entries per page = 512 / 4 = 128

 7 bytes – for page table index (PTI)

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.19

THREE LEVELS - 2

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.20

THREE LEVELS - 3

TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.11Slides by Wes J. Lloyd

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.21

THREE LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

 To map 1 GB address space (230=1GB RAM, 512-byte pages)

 214 = 16,384 page directory entries (PDEs) are required

 When using 27 (128 entry) page tables…

 Page size = 512 bytes / 4 bytes per addr

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.22

THREE LEVELS - 3

Can’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

Need three level page table:
Page directory 0 (PD Index 0)
Page directory 1 (PD Index 1)

Page Table Index

TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.12Slides by Wes J. Lloyd

 We can now address 1GB with“fine grained” 512 byte pages

 Using multiple levels of indirection

 Consider the implications for address translation!

 How much space is required for a vir tual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

 PD0 1 page, PD1 1 page, PT 1 page = 1,536 bytes

 Savings = 1,536 / 8,388,608 (8mb) = .0183% !!!

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.23

THREE LEVELS - 4

// 5-level Linux page table address lookup
//
// Inputs:
// mm_struct – process’s memory map struct
// vpage – virtual page address

// Define page struct pointers
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmt;
pte_t *pte;
struct page *page;

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.24

ADDRESS TRANSLATION CODE

TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.13Slides by Wes J. Lloyd

pgd = pgd_offset(mm, vpage);
if (pgd_none(*pgd) || pgd_bad(*pgd))

return 0;
p4d = p4d_offset(pgd, vpage);
if (p4d_none(*p4d) || p4d_bad(*p4d))

return 0;
pud = pud_offset(p4d, vpage);
if (pud_none(*pud) || pud_bad(*pud))

return 0;
pmd = pmd_offset(pud, vpage);
if (pmd_none(*pmd) || pmd_bad(*pmd))

return 0;
if (!(pte = pte_offset_map(pmd, vpage)))

return 0;
if (!(page = pte_page(*pte)))

return 0;
physical_page_addr = page_to_phys(page);
pte_unmap(pte);
return physical_page_addr; // param to send back

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.25

ADDRESS TRANSLATION - 2

pgd_offset():
Takes a vpage address and the mm_struct
for the process, returns the PGD entry that
covers the requested address…

p4d/pud/pmd_offset():
Takes a vpage address and the
pgd/p4d/pud entry and returns the
relevant p4d/pud/pmd.

pte_unmap()
release temporary kernel mapping
for the page table entry

 Keep a single page table for each physical page of memory

 Consider 4GB physical memory

 Using 4KB pages, page table requires 4MB to map all of RAM

 Page table stores

 Which process uses each page

 Which process virtual page (from process virtual address
space) maps to the physical page

 All processes share the same page table for memory mapping,
kernel must isolate all use of the shared structure

 Finding process memory pages requires search of 220 pages

 Hash table: can index memory and speed lookups

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.26

INVERTED PAGE TABLES

TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.14Slides by Wes J. Lloyd

 Consider a 16 MB computer which indexes memory using 4KB
pages

 (#1) How many pages would fi ll memory on the 16 MB
computer?

 (#2) How many bits are required for the VPN?

 (#3) Assuming each page table entry (PTE) can index any byte
on a 4KB page, how many of fset bits are required?

 (#4) Assuming there are 8 status bits, how many bytes are
required for each page table entry?

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.27

MULTI-LEVEL PAGE TABLE EXAMPLE

 (#5) How many bytes (or KB) are required for a single level
page table?

 Let’s assume a simple HelloWorld.c program.
 HelloWorld.c requires vir tual address translation for 4 pages:
 1 – code page 1 – stack page
 1 – heap page 1 – data segment page

 (#6) Assuming a two-level page table scheme, how many bits
are required for the Page Directory Index (PDI)?

 (#7) How many bits are required for the Page Table Index
(PTI)?

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.28

MULTI LEVEL PAGE TABLE EXAMPLE - 2

TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.15Slides by Wes J. Lloyd

 Assume each page directory entry (PDE) and page table entry
(PTE) requires 4 bytes:
 6 bits for the Page Directory Index (PDI)

 6 bits for the Page Table Index (PTI)

 12 offset bits

 8 status bits

 (#8) How much total memory is required to index the
HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

 HINT: we need to allocate one Page Directory and one Page
Table…

 HINT: how many entries are in the PD and PT

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.29

MULTI LEVEL PAGE TABLE EXAMPLE - 3

 (#9) Using a single page directory entry (PDE) pointing to a
single page table (PT), if al l of the slots of the page table (PT)
are in use, what is the total amount of memory a two-level
page table scheme can address?

 (#10) As a percentage (%), how much memory does the 2-level
page table scheme consume compared to the 1-level scheme?

 HINT: two-level memory use / one-level memory use

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.30

MULTI LEVEL PAGE TABLE EXAMPLE - 4

TCSS 422 A – Spring 2018
Institute of Technology

5/23/2018

L15.16Slides by Wes J. Lloyd

 #1 – 4096 pages

 #2 – 12 bits

 #3 – 12 bits

 #4 – 4 bytes

 #5 – 4096 x 4 = 16,384 bytes (16KB)

 #6 – 6 bits - page directory index (PDI)

 #7 – 6 bits – page table index (PTI)

 #8 – 256 bytes for Page Directory (PD) (64 entries x 4 bytes)
256 bytes for Page Table (PT) TOTAL = 512 bytes

 #9 – 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

 #10- Two-level consumption: 512/16384 = .03125  3.125%

May 23, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L15.31

ANSWERS

QUESTIONS

