TCSS 422 A — Spring 2018
Institute of Technology

Three Easy Pieces:
Translation Lookaside Buffer,
Paging - Smaller Tables

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2018]

Mavi2e 201 Institute of Technology, University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS
||
g

5/23/2018

OBJECTIVES

= Assignment 3 - Page Table Walker

= Memory Virtuallzation
= Paging - Smaller Tables - Ch. 20
= Beyond Physical Memory - Ch. 21/22

TCSS422: Operating Systems [Spring 2018]
W2 P S 1 T, Pt G o e TP

us2

FEEDBACK - 5/21

TCS5422: Operating Systems [Spring 2018]
ey Inttute of Technoloay)Universitylof Washinston=Tacomal

| us3

CHAPTER 20:
PAGING:
SMALLER TABLES

TCSS422; Operating Systems [Spring 2018]
v 20 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

= Chapter 20

=Smaller tables

=Hybrid tables

= Multi-level page tables

TCS5422: Operating Systems [Spring 2018]
L 2 S Institute o Technoloay)Universitylof Washington®Tacomal

| uss

PAGE TABLES: WASTED SPACE

= Process: 16 KB Address Space w/ 1KB pages

Page Table Physical Memory
Virtual Address
code o
1\ Allocate n n
5 PFN valid prot present dirty
5 N/ 10 1 x 1 0
heap . 3 - 0 -
5 N 0 N
6
7 . 0 -
8 15 1 W 1 1
9 5
0
" - 9
12 3 1 w- 1 1
stack 13 23 i w- 1 1
e
A Page Table For 16KB Address Space

A 16KB Address Space with 1KB Pages

TCSS422: Operating Systems [Spring 2018]
W2 P [nsRueor TechnolosyUniversitylof WashinstonSiacoma!

56

Slides by Wes J. Lloyd

L15.1

TCSS 422 A — Spring 2018 5/23/2018
Institute of Technology

PAGE TABLES: WASTED SPACE MULTI-LEVEL PAGE TABLES

= Process: 16 KB Address Space w/ 1KB pages = Consider a page table:
Page Table Fhysical Mamory, = 32-bit addressing, 4KB pages
® 220 page table entries

PFN valid prot present dirty = Even if memory is sparsely populated the per process page
table requires:

code

Allocate

heap Most of the page table is unused
and full of wasted space. (73%) - Page table size =

212 4Byte — 4MByte

= Often most of the 4MB per process page table is empty
= Page table must be placed in 4MB contiguous block of RAM

2 3 8 w- 1 1
stack 13 23 1 w- 1 1
e
A Page Table For 16KB Address Space = MUST SAVE MEMORY!

A 16KB Address Space with 1KB Pages

TC55422: Operating Systems [Spring 2018] TCSS422: Operating Systems [Spring 2018]
L 2 LS us? W2 P Institute of Technology, University of Washington - Tacoma Lss

Institute of Technology, University of Washington - Tacoma

MULTI-LEVEL PAGE TABLES - 2 MULTI-LEVEL PAGE TABLES - 2

= Add level of indirection, the “page directory” = Add level of indirection, the “page directory”
Linear Page Table Multi-level Page Table Linear Page Table Multi-level Page Table

PBTR | 201 PETR | 200 PBIR | 201 | PBTR | 200
: & = 5 .
i LN 5 PN

-
2 B
Y 3 3
i =g N ECIN s f Y TR N) Two level page table
0 z S - o g .
ek £ [o 12 220 pages addressed with
7 - -
2 5 The Page Direcary TE——— . two I.evel indexing .
5
g £ (page directory index, page table index)
b - rm——
o — |8 g . - g 0 i
g =] : — s
= 3 e e f g
Linear (Left) And Multi-Level (Right) Page Tables Linear (Left) And Multi-Level (Right) Page Tables
TCSS422: Operating Systems [Spring 2018] TCS5422: Operating Systems [Spring 2018]
May 23, 2018 Institute of Technology, University of Washington - Tacoma | 1e9 e e Institute of Technology, University of Washington - Tacoma | 1s10

MULTI-LEVEL PAGE TABLES - 3 EXAMPLE

= Program address space = 16KB (214)

= Page size = 64byte pages (2°)

= How large would a one-level page table need to be?
= 214 (address space) / 2° (page size) = 28 > 256 (pages)

= Advantages
= Only allocates page table space in proportion to the
address space actually used
= Can easily grab next free page to expand page table

0000 000f__code

(free) Address space 16 KB

= Disadvantages (tree) Page size e byie
. . heap Virtual address 14 bit
= Multi-level page tables are an example of a time-space heap] abn
tradeoff o Offet i

— Page table anery e

= Sacrifice address translation time (now 2-level) for space 1111 11110 ek A 16-KB Address Space With 64-byte Pages

= Complexity: multi-level schemes are more complex

[3]22]11]w0] o8 [7]6[5]a]3]2]1]0]
d Offset 1

TCS5422: Operating Systems [Spring 2018] TC55422: Operating Systems [Spring 2018]
hiavi2s Z201E Institute of Technology, University of Washington - Tacoma tsa W2 P us12

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L15.2

TCSS 422 A — Spring 2018 5/23/2018

Institute of Technology

EXAMPLE - 2

= Number of pages = 256 ; Page size = 64 bytes each
= Assume each page table entry uses 4 bytes storage (32 bits)

= How many VPN bits are there? Offset bits?
= What much space is required to store the page table?
= 1,024 bytes page table size, stored using 64-byte pages
=(1024/64) = 16 page directory entries (PDEs)

= Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

= 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

= Key Idea: the page table Is stored using pages too!

PAGE DIRECTORY INDEX

= Now, let’s split the page table into two:
= PAGE DIRECTORY (PD) with a Page Directory Index (PDI)
= PAGE TABLE (PT) with a Page Table Index (PTI)

= 8 bit VPN to map 256 pages

= USE first 4 bits for page directory index
(PDI - 1st level page table)

= 6 bits offset into 64-byte page

 Page Directory Index _,

(Bl o[7[e[5]4]3]2]1]0]

VPN Offset
14-bits Virtual address

TCS5422: Operating Systems [Spring 2018]

hiavi2s 201e Institute of Technology, University of Washington - Tacoma

| 11513

TCS5422: Operating Systems [Spring 2018]

W2 P Institute of Technology, University of Washington - Tacoma

| Ls.14

PAGE TABLE INDEX

= 4 bits page directory index (PDI - 1stlevel)
= 4 bits page table index (PTI - 2" level)

Page Directory Index _, ~ Page Table Index

13|12|11|1o[9]s[7|6 s[a[3]2]1]0]
VPN Offset '
14-bits Virtual address

= To dereference one 64-byte memory page,
= We need one page directory entry (PDE)
= One page table Index (PTl) - can address 16 pages

EXAMPLE - 3

= For thls example, how much space Is required to store as a
single-level page table with any number of PTEs?

= We already answered this...

= 16KB address space, 64 byte pages
= 256 page frames, 4 byte page size
= 1,024 bytes required (single level)

= How much space Is required for a two-level page table with
only 4 page table entrles (PTEs) ?

= Page directory = 16 entries x 4 bytes (1 x 64 byte page)
= Page table = 4 entries x 4 bytes (1 x 64 byte page)
= 128 bytes required (2 x 64 byte pages)

= Savings = using just 12.5% the space !!!

TCS5422: Operating Systems [Spring 2018]

May 23, 2018 Institute of Technology, University of Washington - Tacoma

L15.15

TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma | vee

May 23,2018

LARGER EXAMPLE: 32-BIT ADDRESS SPACE

= Consider: 32-bit address space, 4KB pages, 22° pages
= Only 4 mapped pages

= Single level: 4 MB (we’ve done this before)

= Two level: (old VPN was 20 bits, split in half)

= Page directory = 210 entries x 4 bytes = 1 x 4 KB page

= Page table = 4 entries x 4 bytes (mapped to 1 4KB page)
= 8KB (8,192 bytes) required

= Savings = using just .78 % the space !!!

= 100 sparse processes now require < 1MB for page tables

THREE LEVELS

= Consider: page size is 2° = 512 bytes
= Page size 512 bytes / Page entry size 4 bytes
= VPN is 21 bits

30292827262524232221201918171615141312111098 7654 3 21 0

[T T [TT1

VPN offset
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit

TCS5422: Operating Systems [Spring 2018]

May 23, 2018 Institute of Technology, University of Washington - Tacoma

1517

TCS5422: Operating Systems [Spring 2018]

May 23, 2018 Institute of Technology, University of Washington - Tacoma

| 11518

Slides by Wes J. Lloyd

L15.3

TCSS 422 A — Spring 2018
Institute of Technology

5/23/2018

= 7 bytes - for page table ind

ex (PTI)

THREE LEVELS - 2

= Page table entries per page = 512 / 4 = 128

3029282726252423222120191817161514131211109 8 7 6 54 3 21 0
- . > i
Page Directory Index " $age T2]

VPN offset

Flag Detail

Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page 128 PTEs

——r>log,128 =7

May 23, 2018

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

115.19

THREE LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required

= When using 27 (128 entry) page tables...

= Page size = 512 bytes / 4 bytes per addr

3029282726252423222120191817161514131211109 8 7654 3 2 1

[TTTTTITITTT T A ||||||0\i

Page Directory Index i

VPN —
Flag Detail
Virtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page | 128 PTEs ——]—>log,128 =7
TCSS422: Operating Systems [Spring 2018]
May 23, 2018 Insttute of Technology, University of Washington - Tacoma Hs20

= Pagg

THREE LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)
= 214 = 16,384 page directory entries (PDEs) are required
= When using 27 (128 entry) page tables...

Can'’t Store Page Directory with 16K
pages, using 512 bytes pages.

Pages only dereference 128 addresses
(512 bytes / 32 bytes)

irtual address 30 bit
Page size 512 byte
VPN 21 bit
Offset 9 bit
Page entry per page | 128 PTEs

——>log,128 =7

May 23, 2018

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

1521

THREE LEVELS - 3

= To map 1 GB address space (23°=1GB RAM, 512-byte pages)

= 214 = 16,384 page directory entries (PDEs) are required
= When using 27 (128 entry) page tables...
" Pagosad g

Need three level page table:
Page directory 0 (PD Index 0)

Page directory 1 (PD Index 1)
Page Table Index

Virtual address 0 bit

Page size 512 byte

VPN 21 bit

Offset 9 bit

Page entry per page 128 PTEs ———> log,128 =7
I L e . BB

= Using multiple levels of ind

irection

THREE LEVELS - 4

= We can now address 1GB with“fine grained” 512 byte pages

3029282726252423222120191817161514131211109 876 54 3 21 0

[TTTTTTI

(LTI

" Page Table Index.

VPN

= Consider the implications for address translation!

= How much space is required for a virtual address space with 4
entries on a 512-byte page? (let’s say 4 32-bit integers)

= PDO 1 page, PD1 1 page, PT 1 page = 1,536 bytes

= Savings = 1,536 / 8,388,608 (8mb) = .0183% !!!

May 23, 2018 TCS5422: Operating Syste

ms [Spring 2018]

Institute of Technology, University of Washington - Tacoma

11523

ADDRESS TRANSLATION CODE

// 5-level Linux page table address lookup
//

// Inputs:

// mm_struct - process’s memory map struct
// vpage - virtual page address

// Define page struct pointers
pgd_t *pgd;

p4d_t *p4d;

pud_t *pud;

pmd_t *pmt;

pte_t *pte;

struct page *page;

May 23, 2018 TCS5422: Operating Systems [Spring 2018] | 524

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L15.4

TCSS 422 A — Spring 2018 5/23/2018
Institute of Technology

ADDRESS TRANSLATION - 2 INVERTED PAGE TABLES

pgd = pgd_offset(mm, vpage); Takes a vpage address and the mm_struct - 0

if (pgd_none(*pgd) || pgd_bad(*pgd)) forthe process, returns the PGD entry that - Keep a smgle page table for each physwal page of memory
return 0; covers the requested address...

p4d = p4d_offset(pgd, vpage); = Consider 4GB physical memory

if (p4d_none (*p4d) || p4d_bad(*p4d)) p4d/pud/pmd_offset():

Takes a vpage address and the = Using 4KB pages, page table requires 4MB to map all of RAM

it 0;
rerurn pgd/p4d/pud entry and returns the

pud = pud_offset(p4d, vpage);

if (pud none(*pud) || pud bad(*pud)) |relevantpdd/pud/pmd. = Page table stores
_— fe::?oggsetm“d e 8 = Which process uses each page
if (pmd_none (*pmd) || pmd_bad (*pmd)) = Which process virtual page (from process virtual address
return 0; i
; space) maps to the physical page
if (! (pte = pte_offset_map (pmd, vpage))) P) p phy pag
return 0; .
if (! (page = pte_page (*pte))) pte_unmap() = All processes share the same page table for memory mapping,

release temporary kernel mapping

kernel must isolate all use of the shared structure
for the page table entry

= Finding process memory pages requires search of 220 pages

return 0;
physical_page_addr = page_to_phys (page)
pte_unmap (pte) ;
return physical_page_addr; // param to send back = Hash table: can index memory and speed lookups

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Spring 2018]

L15.25 Institute of Technology, University of Washington - Tacoma

May 23, 2018

May 23, 2018 | 115.26 |

MULTI-LEVEL PAGE TABLE EXAMPLE MULTI LEVEL PAGE TABLE EXAMPLE - 2
= Consider a 16 MB computer which indexes memory using 4KB = (#5) How many bytes (or KB) are required for a single level
pages page table?
= (#1) How many pages would fill memory on the 16 MB ® Let’s assume a simple HelloWorld.c program.
computer? = HelloWorld.c requires virtual address translation for 4 pages:
=1 - code page 1 - stack page
= (#2) How many bits are required for the VPN? = 1 - heap page 1 - data segment page
= (#3) Assuming each page table entry (PTE) can index any byte = (#6) Assuming a two-level page table scheme, how many bits
on a 4KB page, how many offset bits are required? are required for the Page Directory Index (PDI)?
= (#4) Assuming there are 8 status bits, how many bytes are = (#7) How many bits are required for the Page Table Index
required for each page table entry? (PTI?
way 23,2018 e e i May 23,208 B [|

MULTI LEVEL PAGE TABLE EXAMPLE - 3 MULTI LEVEL PAGE TABLE EXAMPLE - 4

= Assume each page directory entry (PDE) and page table entry = (#9) Using a single page directory entry (PDE) pointing to a
(PTE) requires 4 bytes: single page table (PT), if all of the slots of the page table (PT)
= 6 bits for the Page Directory Index (PDI) are in use, what is the total amount of memory a two-level
= 6 bits for the Page Table Index (PTI) page table scheme can address?
= 12 offset bits
= 8 status bits = (#10) As a percentage (%), how much memory does the 2-level
page table scheme consume compared to the 1-level scheme?
= (#8) How much total memory is required to index the = HINT: two-level memory use / one-level memory use

HelloWorld.c program using a two-level page table when we
only need to translate 4 total pages?

= HINT: we need to allocate one Page Directory and one Page
Table...

= HINT: how many entries are in the PD and PT

TCS5422: Operating Systems [Spring 2018]

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L1529 Institute of Technology, University of Washington - Tacoma

May 23,2018

May 23, 2018 | 11530

Slides by Wes J. Lloyd L15.5

TCSS 422 A — Spring 2018 5/23/2018
Institute of Technology

ANSWERS

QUESTIONS

= #1 - 4096 pages

= #2 - 12 bits

= #3 - 12 bits

= #4 - 4 bytes

= #5 - 4096 x 4 = 16,384 bytes (16KB)

= #6 - 6 bits - page directory index (PDI)

= #7 - 6 bits - page table index (PTI)

= #8 - 256 bytes for Page Directory (PD) (64 entries x 4 bytes)

256 bytes for Page Table (PT) TOTAL = 512 bytes

= #9 - 64 entries, where each entry maps a 4,096 byte page
With 12 offset bits, can address 262,144 bytes (256 KB)

= #10- Two-level consumption: 512/16384 = .03125 > 3.125%

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

11531

May 23, 2018

Slides by Wes J. Lloyd L15.6

