
TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.1Slides by Wes J. Lloyd

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces:
Translation Lookaside Buffer,

Paging – Smaller Tables

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment 3 – Page Table Walker

 Review Quiz #5 –Memory Virtualization

 Memory Virtualization

 Wrap-up: Translation Lookaside Buffer – Ch. 19

 Paging – Smaller Tables – Ch. 20

 Beyond Physical Memory – Ch. 21/22

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.2

OBJECTIVES

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.2Slides by Wes J. Lloyd

 How to determine whether a cache lookup is a hit or a
miss?

 For example: for a TLB lookup?

 How do you get a miss or a hit in a page table?

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.3

FEEDBACK – 5/16

CHAPTER 19:
TRANSLATION

LOOKASIDE BUFFER
(TLB)

May 21, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L14.4

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.3Slides by Wes J. Lloyd

Chapter 19

TLB Algorithm

TLB Tradeoffs

TLB Context Switch

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.5

OBJECTIVES

 For the accesses: a[0], a[1], a[2], a[3], a[4],

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)
 70% (3 misses one for each VP, 7 hits)

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.6

TLB EXAMPLE - 3

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.4Slides by Wes J. Lloyd

 Example: Consider an array of a custom struct where each
struct is 64-bytes. Consider sequential access for an
array of 8,192 elements stored contiguously in memory:

 64 structs per 4KB page

 128 total pages

 TLB caches stores a maximum of 64 - 4KB page lookups

 How many hits vs. misses for sequential array iteration?
 1 miss for every 64 array accesses, 63 hits

 Complete traversal: 128 total misses, 8,064 hits (98.4% hit
ratio)

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.7

EXAMPLE: LARGE ARRAY ACCESS

 Intel Nehalem microarchitecture 2008 – multi level TLBs
 First level TLB:

separate cache for data (DTLB) and code (ITLB)
 Second level TLB:

shared TLB (STLB) for data and code
 Multiple page sizes (4KB, 2MB)
 Page Size Extension (PSE) CPU flag

for larger page sizes

 Intel Haswell microarchitecture 22nm 2013
 Two level TLB
 Three page sizes (4KB, 2MB, 1GB)

 Without large page sizes consider
the # of TLB entries to address
1.9 MB of memory…

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.8

TLB EXAMPLE IMPLEMENTATIONS

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.5Slides by Wes J. Lloyd

 Speed vs. size

 In order to be fast, caches must be small

 Too large of a cache will mimic physical memory

 Limitations for on chip memory

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.9

HW CACHE TRADEOFF

Speed Size

Dwight on “tradeoffs”

Historical view

CISC – Complex instruction set computer

 Intel x86 CPUs

Traditionally have provided on CPU HW instructions
and handling of TLB misses

HW has a page table register to store location of
page table

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.10

HANDLING TLB MISS

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.6Slides by Wes J. Lloyd

 RISC – Reduced instruction set computer

 ARM CPUs

 Traditionally the OS handles TLB misses

 HW raises an exception

 Trap handler is executed to handle the miss

 Advantages

 HW Simplicity: simply needs to raise an exception

 Flexibility: OS provided page table implementations can
use different data structures, etc.

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.11

HANDLING TLB MISS - 2

 TLB typically may have 32, 64, or 128 entries

 HW searches the entire TLB in parallel to find the
translation

 Other bits

 Valid bit: valid translation?

 Protection bit: read/execute, read/write

 Address-space identifier: identify entries by process

 Dirty bit

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.12

TLB CONTENTS

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.7Slides by Wes J. Lloyd

 TLB stores address translations for current running process

 A context/switch to a new process invalidates the TLB

 Must “switch” out the TLB

 TLB flush
 Flush TLB on context switches, set all entries to 0

 Requires time to flush

 TLB must be reloaded for each C/S

 If process not in CPU for long, the TLB may not get reloaded

 Alternative: be lazy…
 Don’t flush TLB on C/S

 Share TLB across processes during C/S

 Use address space identifier (ASID) to tag TLB entries by process

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.13

TLB: ON CONTEXT SWITCH

 Address space identifier (ASID): enables TLB data to persist
during context switches – also can support virtual machines

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.14

TLB: CONTEXT SWITCH - 2

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.8Slides by Wes J. Lloyd

When processes share a code page

Shared libraries ok

Code pages typically are RX,
not RWX

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.15

SHARED MEMORY SPACE

Sharing of pages is
useful as it reduces the

number of physical
pages in use.

When TLB cache is full, how add a new address
translation to the TLB?

Observe how the TLB is loaded / unloaded…

Goal minimize miss rate, increase hit rate

 Least Recently Used (LRU)
 Evict the oldest entry

 Random policy
 Pick a candidate at random to free-up space in the TLB

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.16

CACHE REPLACEMENT POLICIES

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.9Slides by Wes J. Lloyd

 RED – miss

 WHITE – hit

 For 3-page TLB, observe replacement

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.17

LEAST RECENTLY USED

11 TLB miss, 5 TLB hit

CHAPTER 20:
PAGING:

SMALLER TABLES

May 21, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L14.18

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.10Slides by Wes J. Lloyd

Chapter 20

Smaller tables

Hybrid tables

Multi-level page tables

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.19

OBJECTIVES

Consider array-based page tables:
 Each process has its own page table

 32-bit process address space (up to 4GB)

 With 4 KB pages

 20 bits for VPN

 12 bits for the page offset

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.20

LINEAR PAGE TABLES

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.11Slides by Wes J. Lloyd

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.21

LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.22

LINEAR PAGE TABLES - 2

Page tables are too big and
consume too much memory.

Need Solutions …

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.12Slides by Wes J. Lloyd

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a
few variables

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.23

PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.24

PAGE TABLES: WASTED SPACE

Page Table

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.13Slides by Wes J. Lloyd

 Process: 16KB Address Space w/ 1KB pages

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.25

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page
table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.26

MULTI-LEVEL PAGE TABLES

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.14Slides by Wes J. Lloyd

 Add level of indirection, the “page directory”

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.27

MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.28

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.15Slides by Wes J. Lloyd

 Advantages

 Only allocates page table space in proportion to the
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

 Multi-level page tables are an example of a time-space
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.29

MULTI-LEVEL PAGE TABLES - 3

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.30

EXAMPLE

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.16Slides by Wes J. Lloyd

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 Key idea: the page table is stored using pages too!

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.31

EXAMPLE - 2

 Now, let’s split the page table into two:

 8 bit VPN to map 256 pages

 4 bits for page directory index (PDI – 1st level page table)

 6 bits offset into 64-byte page

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.32

PAGE DIRECTORY INDEX

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.17Slides by Wes J. Lloyd

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

 We need one page directory entry (PDE)

 One page table Index (PTI) – can address 16 pages

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.33

PAGE TABLE INDEX

 For this example, how much space is required to store as a
single-level page table with any number of PTEs?

 16KB address space, 64 byte pages
 256 page frames, 4 byte page size
 1,024 bytes required (single level)

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)
 Page table = 4 entries x 4 bytes (1 x 64 byte page)
 128 bytes required (2 x 64 byte pages)

 Savings = using just 12.5% the space !!!

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.34

EXAMPLE - 3

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.18Slides by Wes J. Lloyd

QUESTIONS

