
TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.1Slides by Wes J. Lloyd

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

Three Easy Pieces:
Translation Lookaside Buffer,

Paging – Smaller Tables

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment 3 – Page Table Walker

 Review Quiz #5 –Memory Virtualization

 Memory Virtualization

 Wrap-up: Translation Lookaside Buffer – Ch. 19

 Paging – Smaller Tables – Ch. 20

 Beyond Physical Memory – Ch. 21/22

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.2

OBJECTIVES

 How to determine whether a cache lookup is a hit or a
miss?

 For example: for a TLB lookup?

 How do you get a miss or a hit in a page table?

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.3

FEEDBACK – 5/16

CHAPTER 19:
TRANSLATION

LOOKASIDE BUFFER
(TLB)

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L14.4

Chapter 19

TLB Algorithm

TLB Tradeoffs

TLB Context Switch

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.5

OBJECTIVES

 For the accesses: a[0], a[1], a[2], a[3], a[4],

 a[5], a[6], a[7], a[8], a[9]

 How many are hits?

 How many are misses?

 What is the hit rate? (%)
 70% (3 misses one for each VP, 7 hits)

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.6

TLB EXAMPLE - 3

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.2Slides by Wes J. Lloyd

 Example: Consider an array of a custom struct where each
struct is 64-bytes. Consider sequential access for an
array of 8,192 elements stored contiguously in memory:

 64 structs per 4KB page

 128 total pages

 TLB caches stores a maximum of 64 - 4KB page lookups

 How many hits vs. misses for sequential array iteration?
 1 miss for every 64 array accesses, 63 hits

 Complete traversal: 128 total misses, 8,064 hits (98.4% hit
ratio)

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.7

EXAMPLE: LARGE ARRAY ACCESS

 Intel Nehalem microarchitecture 2008 – multi level TLBs
 First level TLB:

separate cache for data (DTLB) and code (ITLB)
 Second level TLB:

shared TLB (STLB) for data and code
 Multiple page sizes (4KB, 2MB)
 Page Size Extension (PSE) CPU flag

for larger page sizes

 Intel Haswell microarchitecture 22nm 2013
 Two level TLB
 Three page sizes (4KB, 2MB, 1GB)

 Without large page sizes consider
the # of TLB entries to address
1.9 MB of memory…

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.8

TLB EXAMPLE IMPLEMENTATIONS

 Speed vs. size

 In order to be fast, caches must be small

 Too large of a cache will mimic physical memory

 Limitations for on chip memory

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.9

HW CACHE TRADEOFF

Speed Size

Dwight on “tradeoffs”

Historical view

CISC – Complex instruction set computer

 Intel x86 CPUs

Traditionally have provided on CPU HW instructions
and handling of TLB misses

HW has a page table register to store location of
page table

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.10

HANDLING TLB MISS

 RISC – Reduced instruction set computer

 ARM CPUs

 Traditionally the OS handles TLB misses

 HW raises an exception

 Trap handler is executed to handle the miss

 Advantages

 HW Simplicity: simply needs to raise an exception

 Flexibility: OS provided page table implementations can
use different data structures, etc.

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.11

HANDLING TLB MISS - 2

 TLB typically may have 32, 64, or 128 entries

 HW searches the entire TLB in parallel to find the
translation

 Other bits

 Valid bit: valid translation?

 Protection bit: read/execute, read/write

 Address-space identifier: identify entries by process

 Dirty bit

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.12

TLB CONTENTS

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.3Slides by Wes J. Lloyd

 TLB stores address translations for current running process

 A context/switch to a new process invalidates the TLB

 Must “switch” out the TLB

 TLB f lush
 Flush TLB on context switches, set all entries to 0

 Requires time to flush

 TLB must be reloaded for each C/S

 If process not in CPU for long, the TLB may not get reloaded

 Alternative: be lazy…
 Don’t flush TLB on C/S

 Share TLB across processes during C/S

 Use address space identifier (ASID) to tag TLB entries by process

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.13

TLB: ON CONTEXT SWITCH

 Address space identifier (ASID): enables TLB data to persist
during context switches – also can support virtual machines

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.14

TLB: CONTEXT SWITCH - 2

When processes share a code page

Shared libraries ok

Code pages typically are RX,
not RWX

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.15

SHARED MEMORY SPACE

Sharing of pages is
useful as it reduces the

number of physical
pages in use.

When TLB cache is full, how add a new address
translation to the TLB?

Observe how the TLB is loaded / unloaded…

Goal minimize miss rate, increase hit rate

 Least Recently Used (LRU)
 Evict the oldest entry

 Random policy
 Pick a candidate at random to free-up space in the TLB

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.16

CACHE REPLACEMENT POLICIES

 RED – miss

 WHITE – hit

 For 3-page TLB, observe replacement

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.17

LEAST RECENTLY USED

11 TLB miss, 5 TLB hit

CHAPTER 20:
PAGING:

SMALLER TABLES

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L14.18

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.4Slides by Wes J. Lloyd

Chapter 20

Smaller tables

Hybrid tables

Multi-level page tables

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.19

OBJECTIVES

Consider array-based page tables:
 Each process has its own page table

 32-bit process address space (up to 4GB)

 With 4 KB pages

 20 bits for VPN

 12 bits for the page offset

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.20

LINEAR PAGE TABLES

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.21

LINEAR PAGE TABLES - 2

 Page tables stored in RAM

 Support potential storage of 220 translations
= 1,048,576 pages per process @ 4 bytes/page

 Page table size 4MB / process

 Consider 100+ OS processes
 Requires 400+ MB of RAM to store process information

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.22

LINEAR PAGE TABLES - 2

Page tables are too big and
consume too much memory.

Need Solutions …

 Larger pages = 16KB = 214

 32-bit address space: 232

 218 = 262,144 pages

 Memory requirement cut to ¼

 However pages are huge

 Internal fragmentation results

 16KB page(s) allocated for small programs with only a
few variables

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.23

PAGING: USE LARGER PAGES

 Process: 16KB Address Space w/ 1KB pages

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.24

PAGE TABLES: WASTED SPACE

Page Table

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.5Slides by Wes J. Lloyd

 Process: 16KB Address Space w/ 1KB pages

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.25

PAGE TABLES: WASTED SPACE

Page Table

Most of the page table is unused
and full of wasted space. (73%)

 Consider a page table:

 32-bit addressing, 4KB pages

 220 page table entries

 Even if memory is sparsely populated the per process page
table requires:

 Often most of the 4MB per process page table is empty

 Page table must be placed in 4MB contiguous block of RAM

 MUST SAVE MEMORY!

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.26

MULTI-LEVEL PAGE TABLES

 Add level of indirection, the “page directory”

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.27

MULTI-LEVEL PAGE TABLES - 2

 Add level of indirection, the “page directory”

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.28

MULTI-LEVEL PAGE TABLES - 2

Two level page table:
220 pages addressed with

two level-indexing
(page directory index, page table index)

 Advantages

 Only allocates page table space in proportion to the
address space actually used

 Can easily grab next free page to expand page table

 Disadvantages

 Multi-level page tables are an example of a time-space
tradeoff

 Sacrifice address translation time (now 2-level) for space

 Complexity: multi-level schemes are more complex

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.29

MULTI-LEVEL PAGE TABLES - 3

 16KB address space, 64byte pages

 How large would a one-level page table need to be?

 214 (address space) / 26 (page size) = 28 = 256 (pages)

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.30

EXAMPLE

TCSS 422 A – Spring 2018
Institute of Technology

5/21/2018

L14.6Slides by Wes J. Lloyd

 256 total page table entries (64 bytes each)

 1,024 bytes page table size, stored using 64-byte pages
= (1024/64) = 16 page directory entries (PDEs)

 Each page directory entry (PDE) can hold 16 page table
entries (PTEs) e.g. lookups

 16 page directory entries (PDE) x 16 page table entries (PTE)
= 256 total PTEs

 Key idea: the page table is stored using pages too!

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.31

EXAMPLE - 2

 Now, let’s split the page table into two:

 8 bit VPN to map 256 pages

 4 bits for page directory index (PDI – 1st level page table)

 6 bits offset into 64-byte page

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.32

PAGE DIRECTORY INDEX

 4 bits page directory index (PDI – 1st level)

 4 bits page table index (PTI – 2nd level)

 To dereference one 64-byte memory page,

 We need one page directory entry (PDE)

 One page table Index (PTI) – can address 16 pages

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.33

PAGE TABLE INDEX

 For this example, how much space is required to store as a
single-level page table with any number of PTEs?

 16KB address space, 64 byte pages
 256 page frames, 4 byte page size
 1,024 bytes required (single level)

 How much space is required for a two-level page table with
only 4 page table entries (PTEs) ?

 Page directory = 16 entries x 4 bytes (1 x 64 byte page)
 Page table = 4 entries x 4 bytes (1 x 64 byte page)
 128 bytes required (2 x 64 byte pages)

 Savings = using just 12.5% the space !!!

May 21, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L14.34

EXAMPLE - 3

QUESTIONS

