TCSS 422 A — Spring 2018 5/14/2018
Institute of Technology

TCSS 422: OPERATING SYSTEMS

Three Easy Pieces:
Free Space Management,
Introduction to Paging

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2018]

MayiLiq2008 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

® Assighment 2 - Matrix Task Processor
® Assighment 3 - Posted Tuesday...

® Active reading Quiz #4- Chapter 19

= “Group” Quiz #5 - Wednesday in class

= Memory Virtualization

® Free Space Management - Ch. 17

® Introduction to Paging - Ch. 18

= Translation Lookaside Buffer - Ch. 19

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma t122

May 14, 2018

Slides by Wes J. Lloyd L12.1

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

FEEDBACK - 5/9

® Assignment 2 questions...

® ‘s MAT1 20 20 2”
® Does not print sum to console or a .sum file

® “d” command prints matrix to stdout

® “s” command creates only a sum file which is the sum of
all matrix elements. In the process a matrix is created
(but not saved anywhere)

“ ”
mUX

® Does not stop program, but should

TCSS422: Operating Systems [Spring 2018]

L12.3
Institute of Technology, University of Washington - Tacoma

May 14, 2018

FEEDBACK - 2

= What is the math formula to where the stack is
loaded in memory after the program is split into 3
segments in memory?

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma Li24

May 14, 2018

Lloyd

5/14/2018

L12.2

TCSS 422 A — Spring 2018

Institute of Technology

FEEDBACK - 3

m Segment registers - first two bits identify segment type

m Stack bits are “10”

® Consider virtual address: 4200

= VIRTUAL ADDRESS = 1000001101000 (on stack)

= SEG_MASK=0x3000 (10000000000000) *LOGICAL AND THE
MASK*

m ZEROES OUT everything but the segment bits to Iearn the
segment

® SEG_SHIFT = 10 - stack (mask gives us segment
code) Offset address is the

® OFFSET_MASK=0xFFF (00411414141114111) | same in virtual & physical
* LOGICAL AND THE MASK * memory

= ZEROES OUT segment bits to reveal the offset address
® OFFSET = 000001101000 = 104 (isolates segment offset)
= OFFSET < BOUNDS : 104 < 2048

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma Li25

May 14, 2018

CHAPTER 17: FREE

SPACE MANAGEMENT

TCSS422: Operating Systems [Spring 2018]

R e 2K Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

5/14/2018

L12.3

TCSS 422 A — Spring 2018

Institute of Technology

FREE SPACE MANAGEMENT

= Management of memory using

® Only fixed-sized units
= Easy: keep a list
= Memory request - return first free entry
Simple search

® With variable sized units
= More challenging
= Results from variable sized malloc requests
= Leads to fragmentation

TCSS422: Operating Systems [Spring 2018]

IMaypt 22018 Institute of Technology, University of Washington - Tacoma

L12.7

FRAGMENTATION

® Consider a 30-byte heap

30-byte heap: [free [used | free |
0 10 20 30

® Request for 15-bytes

e addr:0 addr:20
free list head —* 1.,.10 —® 1en:10 —> NULL

® Free space: 20 bytes

® No available contiguous chunk = return NULL

TCSS422: Operating Systems [Spring 2018]

MEviE J20Ls Institute of Technology, University of Washington - Tacoma

L12.8

Slides by Wes J. Lloyd

5/14/2018

L12.4

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

FRAGMENTATION - 2

= External: OS can compact
= Example: Client asks for 100 bytes: malloc(100)

= 0S: No 100 byte contiguous chunk is available:
returns NULL

= Memory is externally fragmented - - Compaction can fix!

® Internal: lost space - OS can’t compact
= OS returns memory units that are too large
= Example: Client asks for 100 bytes: malloc(100)
= 0S: Returns 125 byte chunk
* Fragmentation is *in* the allocated chunk
= Memory is lost, and unaccounted for - can’t compact

TCSS422: Operating Systems [Spring 2018]

IMaypt 22018 Institute of Technology, University of Washington - Tacoma

L12.9

ALLOCATION STRATEGY: SPLITTING

® Request for 1 byte of memory: malloc(1)

30-byte heap: | free | used | free |
0 10 20 30

_ addr:0 addr:20
free list: |FEGEE— . (> Rl

m OS locates a free chunk to satisfy request
® Splits chunk into two, returns first chunk

30-byte heap: [free [used [| free |
0 10 20 21 30

_— addr:0 addr:21
free listt head —» 1.,.10 —® 1en:o — ™ NULL

TCSS422: Operating Systems [Spring 2018]

MEviE J20Ls Institute of Technology, University of Washington - Tacoma

L12.10

Lloyd

5/14/2018

L12.5

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

ALLOCATION STRATEGY: COALESCING

® Consider 30-byte heap
® Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

addr:10 addr:0 addr: 20

head demn: e Len:10 len:10

— NULL

® Request arrives: malloc(30)
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists!
® Coalescing regroups chunks into contiguous chunk

addr:0

head len:30

— NULL

® Allocation can now proceed
® Coalescing is defragmentation of the free space list

TCSS422: Operating Systems [Spring 2018]

L12.11
Institute of Technology, University of Washington - Tacoma

May 14, 2018

MEMORY HEADERS

® free(void *ptr): Does not require a size parameter

® How does the OS know how much memory to free?

® Header block
= Small descriptive block of memory at start of chunk

:|~ The header used by malloc library

ptr >

The 20 bytes returned to caller

An Allocated Region Plus Header

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma L12.12

May 14, 2018

Lloyd

5/14/2018

L12.6

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

®m Contains size

MEMORY HEADERS - 2

hptr —>

size: 20
magic: 1234567 typedef sfcruct. _ header_t {
ptr —> }nt 512;3;
int magic;
The 20 bytes } header t;
returned to caller

A Simple Header

Specific Contents Of The Header

® Pointers: for faster memory access

® Magic number: integrity checking

May 14, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L12.13

MEMORY HEADERS - 3

® Size of memory chunk is:
® Header size + user malloc size
®m N bytes + sizeof(header)

® Easy to determine address of header

void free(void *ptr) {

header t *hptr = (void *)ptr - sizeof (header t):

May 14, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L12.14

Lloyd

5/14/2018

L12.7

TCSS 422 A — Spring 2018
Institute of Technology

THE FREE LIST

= Simple free list struct

typedef struct _ node t {

int size;
struct _ node € *next;

} nodet t;

® Use mmap to create free list
®m 4kb heap, 4 byte header, one contiguous free chunk

[/ mmap (

head->siz
head->nex

to a chunk of free space

) returns a pointer to
node t *head = mmap(NULL, 4096, PROT READ|PROT WRITE,

MAP ANON|MAP PRIVATE, -1, 0):
S 96 - sizeof(node t):
t = NULL;

May 14, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L12.15

FREE LIST - 2

® Create and initialize free-list “heap”

// mmap
node t

() returns a pointer to a chunk of free space
*head = mmap (NULL, 4096, PROT READ|PROT WRITE,
MAP_ANON|MAP_PRIVATE, -1, 0);

head->size = 4096 - sizeof(node t);
head->next = NULL;
= Heap layout:
[virtual address: 16KB]
] header: size field
size: 4088
head ——>| hext 0 header: next field(NULL is 0)

nee the rest of the 4KB chunk

May 14, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L12.16

Slides by Wes J. Lloyd

5/14/2018

L12.8

TCSS 422 A — Spring 2018
Institute of Technology

® Consider a request for a 100 bytes:
® Header block requires 8 bytes
= 4 bytes for size, 4 bytes for magic number

FREE LIST: MALLOC() CALL

malloc(100)

® Split the heap - header goes with each block N

A 4KB Heap With One Free Chunk
head ——>

size: 4088

the rest of
the 4KB chunk o

A Heap : After One Allocati

size:

ptr —>

First_ _b_lock
is used

head —» —
size:

3980

next:

0

o the free

on
100
magic: 1234567

the 100 bytes now allocated

3980 byte chunk

May 14, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L12.17

® Addresses of chunks

® Start=16384

108 (end of 15t chunk)
108 (end of 2" chunk)
108 (end of 3" chunk)
16708

=+

+
+

8 bytes header {

FREE LIST: FREE() CALL

size: 100
magic: 1234567

size: 100
magic: 1234567

sptr

Free this
block

head —

size: 100
magic: 1234567

size: 3764
next: 0

L

[virtual address: 16KB]

s] 100 bytes still allocated

100 bytes still allocated
(but about to be freed)

S5t j| 100 bytes still allocated

The free 3764-byte chunk

Free Space With Three Chunks Allocated

May 14, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L12.18

Slides by Wes J. Lloyd

5/14/2018

L12.9

TCSS 422 A — Spring 2018
Institute of Technology

Free(sptr)

FREE LIST:

FREE() CHUNK #2

® Qur 3 chunks start at 16 KB

(@ 16,384 bytes)

® Free chunk #2 - sptr
® Sptr = 16500

head

= addr - sizeof(node_t)

= 16492

®m Actual start of chunk #2

sptr —>

size: 100
magic: 1234567

size: 100
next: 16708

Block
Now Free

size: 100
magic: 1234567

size: 3764
next: 0

[virtual address: 16KB]

100 bytes still allocated

(now a free chunk of

memory)

100 bytes still allocated

The free 3764-byte chunk

May 14, 2018

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma

L12.19

FREE LIST- FREE ALL CHUNKS

Now free remaining chunks:

- size: 100
Free(16392) next: 16492
Free(16608)
size: 100
Walk back 8 bytes for actual next. 16708
start of chunk
, head —b pe
External fragmentation — —
Free chunk pointers
out of order
size: 3764
Coalescing of next ilois -
pointers is needed
]

[virtual address: 16KB]

B —

(now free)

—

(now free)

(now free)

The free 3764-byte chunk

May 14, 2018

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma

L12.20

Slides by Wes J. Lloyd

5/14/2018

L12.10

TCSS 422 A — Spring 2018

Institute of Technology

GROWING THE HEAP

® Start with small sized heap
® Request more memory when full
® sbrk(), brk()

Segmented heap
(not in use) (not in use)
Heap Heap Heap Heap
- l break sbrk()
y N
break l N \‘-._ (not in use)
(not in use) N \\
\
Address Space Address Space Heap

Physical Memory

TCSS422: Operating Systems [Spring 2018]

IMaypt 22018 Institute of Technology, University of Washington - Tacoma

L12.21

MEMORY ALLOCATION STRATEGIES

= Best fit
= Traverse free list
= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful -- fragmented)

= Worst fit
= Traverse free list
= |[dentify largest free chunk

= Split largest free chunk, leaving a still large free chunk

TCSS422: Operating Systems [Spring 2018]

MEviE J20Ls Institute of Technology, University of Washington - Tacoma

L12.22

Slides by Wes J. Lloyd

5/14/2018

L12.11

TCSS 422 A — Spring 2018

Institute of Technology

EXAMPLES

® Allocation request for 15 bytes

® Result of Best Fit

® Result of Worst Fit

head —> (SN >N 20 —> NULL
head > 10 > 30 5 > NULL
head > 10 19 20 > NULL

May 14, 2018 TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma

L12.23

MEMORY ALLOCATION STRATEGIES - 2

= First fit
= Start search at beginning of free list

= Find first chunk large enough for request

= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fit

= Similar to first fit, but start search at last search location

= Maintain a pointer that “cycles” through the list

= Helps balance chunk distribution vs. first fit
= Find first chunk, that is large enough for the request, and split

= Avoids full free list traversal

May 14, 2018 TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma

L12.24

Slides by Wes J. Lloyd

5/14/2018

L12.12

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

SEGREGATED LISTS

® For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.

® Manage as segregated free lists
® Provide object caches: stores pre-initialized objects

® How much memory should be dedicated for specialized
requests (object caches)?

® |f a given cache is low in memory, can request “slabs” of
memory from the general allocator for caches.

® General allocator will reclaim slabs when not used

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

May 14, 2018

L12.25

BUDDY ALLOCATION

= Binary buddy allocation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

® Consider a 7KB request

‘ 64 KB ‘

‘ 32 KB ‘ 32 KB ‘

64KB free space for 7KB request

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

May 14, 2018

L12.26

Lloyd

5/14/2018

L12.13

TCSS 422 A — Spring 2018
Institute of Technology

BUDDY ALLOCATION - 2

= Buddy allocation: suffers from internal fragmentation

® Allocated fragments, typically too large

® Coalescing is simple
= Two adjacent blocks are promoted up

May 14, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L12.27

May 14, 2018

CHAPTER 18:

INTRODUCTION TO

PAGING

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

5/14/2018

L12.14

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

PAGING

® Split up address space of process into fixed sized pieces
called pages

® Alternative to variable sized pieces (Segmentation) which
suffers from significant fragmentation

® Physical memory is split up into an array of fixed-size slots
called page frames.

® Each process has a page table which translates virtual
addresses to physical addresses

TCSS422: Operating Systems [Spring 2018]

IMaypt 22018 Institute of Technology, University of Washington - Tacoma

L12.29

ADVANTAGES OF PAGING

® Flexibility
= Abstracts the process address space into pages
= No need to track direction of HEAP / STACK growth
Just add more pages...
= No need to store unused space
As with segments...

B Simplicity
= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

TCSS422: Operating Systems [Spring 2018]

MEviE J20Ls Institute of Technology, University of Washington - Tacoma

L12.30

Lloyd

5/14/2018

L12.15

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

Page Table:

PAGING: EXAMPLE VPO > PF3

VP1 > PF7

VP2 > PF5

= Consider a 128 byte address space VP3 - PF2
with 16-byte pages

page frame 0 of
physical memory

® Consider a 64-byte program (unused) | page frame 1
address space

reserved for OS

page 3 of AS | page frame 2

page 0 of AS | page frame 3
0 64

(page 0 of (unused) page frame 4
16 the address space) 80
(page 1) page 2 of AS | page frame 5
32 96
(page 2) (unused) page frame 6
48 112
(page 3) page 1 of AS | page frame7
64 128
A Simple 64-byte Address Space 64-Byte Address Space Placed In Physical Memory
MayiLi 2018 :;Csstiti: .o?Pr:z;tr:r;igosg\;?tar:iie[fs?tryllngfzv?liawington - Tacoma L1231

PAGING: ADDRESS TRANSLATION

® PAGE: Has two address components
= VPN: Virtual Page Number
= Offset: Offset within a Page

VPN offset

[10 1

Va5 | Va4 | Va3 | Va2 | Val | Va0

= Example:
Page Size: 16-bytes, Address Space: 64-bytes

VPN offset
‘) Here there are
' L ‘ Just four pages...
0 1 0 1] 1
TCSS422: Operating Systems [Spring 2018]
MEviE J20Ls Institute of Technology, University of Washington - Tacoma L1232

Lloyd

5/14/2018

L12.16

TCSS 422 A — Spring 2018
Institute of Technology

EXAMPLE:

PAGING ADDRESS TRANSLATION

® Consider a 64-byte program address space (4 pages)
® Stored in 128-byte physical memory (8 frames)

m Offset is preserved r VFTN i Oﬁ.set |
® VPN is looked u irtua
P :ddtres‘s 0 : g 4 £
Page Table: Vo
VPO - PF3
- Add
VP1 > PF7 < Translrai‘is:n
VP2 = PF5
VP3 > PF2 Vo
e [a o]]o]e

PFN

TCSS422: Operating Systems [Spring 2018]

IMaypt 22018 Institute of Technology, University of Washington - Tacoma

L12.33

PAGING DESIGN QUESTIONS

® (1) Where are page tables stored?

® (3) How big are page tables?

® (4) Does paging make the system too slow?

® (2) What are the typical contents of the page table?

TCSS422: Operating Systems [Spring 2018]

MEviE J20Ls Institute of Technology, University of Washington - Tacoma

L12.34

Slides by Wes J. Lloyd

5/14/2018

L12.17

TCSS 422 A — Spring 2018

Institute of Technology

(1) WHERE ARE PAGE TABLES STORED?

= Example:
= Consider a 32-bit process address space (up to 4GB)
= With 4 KB pages
= 20 bits for VPN (220 pages)
= 12 bits for the page offset (212 unique bytes in a page)

® Page tables for each process are stored in RAM

= Support potential storage of 22° translations
= 1,048,576 pages per process

= Each page has a page table entry size of 4 bytes

TCSS422: Operating Systems [Spring 2018]

L12.35
Institute of Technology, University of Washington - Tacoma

May 14, 2018

PAGE TABLE EXAMPLE

m With 220 slots in our page table for a single process

B Each slot dereferences a VPN VPN,

VPN,

= Provides physical frame number
VPN,

® Each slot requires 4 bytes (32 bits)

= 20 for the PFN on a 4GB system with 4KB pages
= 12 for the offset which is preserved

= (note we have no status bits, so this is VPN, 048576

unrealistically small)

®" How much memory to store page table for 1 process?
= 4,194,304 bytes (or 4MB) to index one process

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma L12.36

May 14, 2018

Slides by Wes J. Lloyd

5/14/2018

L12.18

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

NOW FOR AN ENTIRE OS

m|f 4 MB is required to store one process

® Consider how much memory is required for an entire 0S?
= With for example 100 processes...

® Page table memory requirement is now 4MB x 100 = 400MB

® |[f computer has 4GB memory (maximum for 32-bits),
the page table consumes 10% of memory

400 MB / 4000 GB

m |s this efficient?

TCSS422: Operating Systems [Spring 2018]

L12.37
Institute of Technology, University of Washington - Tacoma

May 14, 2018

(2) WHAT’S ACTUALLY IN THE PAGE TABLE

® Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
Number PFN)

= Linear page table > simple array

= Page-table entry
= 32 bits for capturing state

BV BTXH5XB3R2A01918171615143121109 8 7 65 4

3
— (]
PFN o|g|o|<|S(3

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma L12.38

May 14, 2018

Lloyd

5/14/2018

L12.19

TCSS 422 A — Spring 2018

Institute of Technology

PAGE TABLE ENTRY

o P: present

o R/W: read/write bit

o U/S: supervisor

o A: accessed bit

o D: dirty bit

o PFN: the page frame number

Bl30BBTX5XB32222019181716151413121109 8 7 6 5 4

R/AW | =
P

Us |m

3
PFN ol%|a|<|S|5
oo

An x86 Page Table Entry(PTE)

TCSS422: Operating Systems [Spring 2018]

L12.39
Institute of Technology, University of Washington - Tacoma

May 14, 2018

PAGE TABLE ENTRY - 2

= Common flags:

= Valid Bit: Indicating whether the particular translation is valid.

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

= Present Bit: Indicating whether this page is in physical
memory or on disk(swapped out)

= Dirty Bit: Indicating whether the page has been modified since
it was brought into memory

= Reference Bit(Accessed Bit): Indicating that a page has been
accessed

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma L12.40

May 14, 2018

Slides by Wes J. Lloyd

5/14/2018

L12.20

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

(3) HOW BIG ARE PAGE TABLES?

® Page tables are too big to store on the CPU

® Page tables are stored using physical memory

® Paging supports efficiently storing a sparsely populated
address space

= Reduced memory requirement
Compared to base and bounds, and segments

TCSS422: Operating Systems [Spring 2018]

L12.41
Institute of Technology, University of Washington - Tacoma

May 14, 2018

(4) DOES PAGING MAKE

THE SYSTEM TOO SLOW?

® Translation

= Issue #1: Starting location of the page table is

heeded
= HW Support: Page-table base register Page Table:
stores active process VPO - PF3
Facilitates translation VP1 > PF7
. VP2 = PF5
Stored in RAM > VP3 > PF2

= I[ssue #2: Each memory address translation for paging
requires an extra memory reference

= HW Support: TLBs (Chapter 19)

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma L12.42

May 14, 2018

Lloyd

5/14/2018

L12.21

TCSS 422 A — Spring 2018

Institute of Technology

PAGING MEMORY ACCESS

1. // Extract the VPN from the virtual address

2. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

3.

4. // Form the address of the page-table entry (PTE)
5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6.

7. // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // Check if process can access the page

11. if (PTE.valid == False)

12. RaiseException(SEGMENTATION_FAULT)

13. else 1f (CanAccess(PTE.ProtectBits) == False)

14. RaiseException(PROTECTION_FAULT)

15. else

16. // Access is OK: form physical address and fetch it
17. offset = vVirtualAddress & OFFSET_MASK

18. PhysAddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)

TCSS422: Operating Systems [Spring 2018]

IMaypt 22018 Institute of Technology, University of Washington - Tacoma

L12.43

COUNTING MEMORY ACCESSES

m Example: Use this Array initialization Code

int array[1000]:

for (i = 07 1 < 1000; i++)
array[i] = 0:

m Assembly equivalent:

0x1024 movl §0x0, (%edi, %eax,4)
0x1028 incl %eax

0x102c cmpl $0x03e8, $eax
0x1030 jne 0x1024

TCSS422: Operating Systems [Spring 2018]

MEviE J20Ls Institute of Technology, University of Washington - Tacoma

L12.44

Slides by Wes J. Lloyd

5/14/2018

L12.22

TCSS 422 A — Spring 2018
Institute of Technology

® Locations:
= Page table
= Array
= Code

® 50 accesses
for 5 loop
iterations

VISUALIZING MEMORY ACCESSES:

FOR THE FIRST 5 LOOP ITERATIONS

Page Table[39]

\ ~ 1224

[} O O L] [} — 1174

Page Table[1] — 1124

\ - 1074

Page Table(PA)

0 0000 0000 0000 0000 0001 19

5 000 4, - g
240050 4 °© 7282 &
c u 2
£ n
40000 ——m m u 7952
1124 5, — 419
£ 107 i 4146
n
< 1024 e N L L L B= 00 ©

0 10 20 30 40 50

Memory Access

May 14, 2018

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma

L12.45

VPN?

PAGING SYSTEM EXAMPLE

® Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
®= How many pages would fit in physical memory?

® Now consider a page table:
® For the page table entry, how many bits are required for the

= |f we assume the use of 4-byte (32 bit) page table entries,
how many bits are available for status bits?

® How much space does this page table require?
Page Table Entries x Number of pages

® How many page tables (for user processes)
would fill the entire 4GB of memory?

May 14, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L12.46

Slides by Wes J. Lloyd

5/14/2018

L12.23

TCSS 422 A — Spring 2018
Institute of Technology

CHAPTER 19:
TRANSLATION
LOOKASIDE BUFFER

(TLB)

TCSS422: Operating Systems [Spring 2018]

by T 200 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

® Chapter 19

*TLB Algorithm

=TLB Tradeoffs

=TLB Context Switch

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

May 14, 2018

L12.48

Slides by Wes J. Lloyd

5/14/2018

L12.24

TCSS 422 A — Spring 2018
Institute of Technology

Slides by Wes J.

TRANSLATION LOOKASIDE BUFFER

®mlLegacy name...

m Better name, “Address Translation Cache”

mTLB is an on CPU cache of address translations

=virtual - physical memory

May 14, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L12.49

TRANSLATION LOOKASIDE BUFFER - 2

Page Table[39]

® Goal: s
Reduce access 0 . - 0 o L g
to the page Page Table[1] — 1124 éz
tables \ 1074 &

OO0 0000000000000 1024

= Example:

50 RAM accesses g 40100 - | rs g
for first 5 for-loop e : - m %
iterations * s0000 L = L a 732 I

= Move lookups o WIS m 4%
from RAM to TLB ?‘; wa 45 70T 4146 %‘s;
by Caching page & 1024 —'_.L.r._.._.r._.._.r._.._.r._.LI, 4006 ©
table entries 0 10 20 30 40 50

Memory Access

May 14, 2018

TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma

L12.50

Lloyd

5/14/2018

L12.25

TCSS 422 A — Spring 2018
Institute of Technology

m Address translation cache

® Part of the CPU’s Memory Management Unit (MMU)

TRANSLATION LOOKASIDE BUFFER (TLB)

TLB

. ViU TLB Hit 2

Logical Lookup ; Physical
>

Address i TL Address

popular v to p 2 vlr

| 7LE Miss

] Page 0
Page Table = 3 -

all v to p entries =

Address Translation with MMU Bhysical Memory
TCSS422: Operating Systems [Spring 2018]
MayiLi 2018 Institute of Technology, University of Washington - Tacoma L1251

7LB

m Address translation cache

A

® Part of the CPU’s Memory Management Unit (MMU)

1

TRANSLATION LOOKASIDE BUFFER (TLB)

The TLB is an addres's'translatior.l cache
Different than L1, L2, L3 CPU memory caches

=)

Page Table -
all v to p entries

Address Translation with MMU

Page O

Page 1

Physical Memory

TCSS422: Operating Systems [Spring 2018]
MEviE J20Ls Institute of Technology, University of Washington - Tacoma

L12.52

Slides by Wes J. Lloyd

5/14/2018

L12.26

TCSS 422 A — Spring 2018
Institute of Technology

® For: array
® Hardware

TLB BASIC ALGORITHM

based page table
managed TLB

»

[T« N & 3 B Y B N R

» VPN = (VirtualAddress & VPN MASK) >> SHIFT
» (Success , TlbEntry) = TLB_Lookup (VPN)
if (Success == True){ // TLB Hit
if (CanAccess (T1bEntry.ProtectBits) == True){

Offset = VirtualAddress & OFFSET MASK
PhySAddr_»(leEntIy.PFN << SHIFT) | Offset

AccessMemory (PhysAddr)

}else RaiseException (PROTECTION ERROR)

Generate the physical address to access memory

May 14, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L12.53

TLB BASIC ALGORITHM - 2

317 i
12:
3 »
14:

15:

le:

L

18: }
19:}

PTEAddr = PTBR + (VPN * sizeof (PTE))
PTE = AccessMemory (PTEAdAr)

(..) // Check for, and raise exceptions..

TLE_Insert(VPN , PTE.FFN , PTE.ProtectBits)

RetryInstruction ()

Retry the instruction... (requery the TLB)

May 14, 2018

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L12.54

Slides by Wes J. Lloyd

5/14/2018

L12.27

TCSS 422 A — Spring 2018
Institute of Technology

= Key detail:

= All address translations go through the TLB

TLB - ADDRESS TRANSLATION CACHE

® For a TLB miss, we first access the page table in RAM to
populate the TLB... we then requery the TLB

TCSS422: Operating Systems [Spring 2018]

IMaypt 22018 Institute of Technology, University of Washington - Tacoma

TLB EXAMPLE

int sum = 0 ;
for(i=0; i<10; i++){

sum+=a[i];

w N o

= Example:

® Program address space: 256-byte
= Addressable using 8 total bits (28)
= 4 bits for the VPN (16 total pages)

® Page size: 16 bytes
= Offset is addressable using 4-bits

® Store an array: of (10) 4-byte integers

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN = 14

VPN =15

TCSS422: Operating Systems [Spring 2018]

MEviE J20Ls Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

5/14/2018
L12.55
OFFSET
00 04 08 12 16
al0] | ay | a2
a3l | a[4] | aps] | alel
a7l | a[8l | a[9]
L12.56
L12.28

TCSS 422 A — Spring 2018
Institute of Technology

TLB EXAMPLE - 2

0 int sum = 0 ;
1 for(i=0; i<10; i++){
2 sum+=al[i] ;
3

}

® Consider the code above:

® |nitially the TLB does not know where a[] is

® Consider the accesses:

= a[0], a[1], a[2], a[3], a[4], a[53], a[6], a[7],
a[8], a[9]

= How many pages are accessed?

= What happens when accessing a page not
in the TLB?

VPN =00

VPN =01

VPN =03

VPN =04

VPN =05

VPN = 06

VPN =07

VPN =08

VPN =09

VPN =10

VPN =11

VPN =12

VPN =13

VPN =14

VPN =15

00

OFFSET

04 08 12 16

afo] | a[1] | a[2]

a[3]

af4] | a[3] | a[6]

ag] | a[9]

TCSS422: Operating Systems [Spring 2018]

IMaypt 22018 Institute of Technology, University of Washington - Tacoma

L12.57

TLB EXAMPLE - 3

int sum = 0 ;

OFFSET

Institute of Technology, University of Washington - Tacoma

0:
00 04 08 12 16
1B for(i=0; i<10: i++){ VPN = 00
20 sum+=a[i]; VPN = 01
3 } VPN = 03
VPN =04
= For the accesses: a[0], a[1], a[2], a[3], a[4], " "
VPN = 06 a[o] | afl | af21
= a[5], a[6], a[7], a[8], a[9] VPN =07 [ap3) | ap) | e | al6]
VPN =08 | a[n a[g] a[9]
. VPN =09
® How many are hits? i
® How many are misses? VPN =11
: . VPN =12
® What is the hit rate? (%) T
= 70% (3 misses one for each VP, 7 hits) VPN = 14
VPN =15
May 14, 2018 TCSS422: Operating Systems [Spring 2018] 112.58

Slides by Wes J. Lloyd

5/14/2018

L12.29

TCSS 422 A — Spring 2018
Institute of Technology

TLB EXAMPLE - 4

0: int sum = 0 ; OFFSET
00 04 08 12 16
1: for(i=0; i<10; i++){ VPN = 00
2: sum+=al[i]; VPN = 01
e } VPN =03
VPN =04
. . VPN =03
= What factors affect the hit/miss rate? - o
- Page size VPN =07 | af3] | a4l | als] | alé]
VPN =08 | af7] | af@] | a[]

= Data locality

VPN =09

= Temporal locality VPN - 10

VPN =11

VPN =12

VPN =13

VPN =14

VPN =15

TCSS422: Operating Systems [Spring 2018]

IMaypt 22018 Institute of Technology, University of Washington - Tacoma

L12.59

QUESTIONS

Slides by Wes J. Lloyd

5/14/2018

L12.30

