TCSS 422 A — Spring 2018 5/14/2018

Institute of Technology

TCSS 422: OPERATING SYSTEMS
| |

Three Easy Pieces:
Free Space Management,
Introduction to Paging

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating S [Spring 2018]

Mavis 201 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

= Assignment 2 - Matrix Task Processor
= Assignment 3 - Posted Tuesday...

= Active reading Quiz #4- Chapter 19

= “Group” Quiz #5 - Wednesday in class

= Memory Virtualization

= Free Space Management - Ch. 17

= |[ntroduction to Paging - Ch. 18

= Translation Lookaside Buffer - Ch. 19

TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma L22

May 14,2018

FEEDBACK - 5/9

= Assignment 2 questions...

= ‘s MAT1 20 20 2"
= Does not print sum to console or a .sum file

= “d” command prints matrix to stdout
= “s” command creates only a sum file which is the sum of
all matrix elements. In the process a matrix is created

(but not saved anywhere)

m iy

= Does not stop program, but should

May 14, 2018 TCS5422: Operating Systems [Spring 2018] | 23

Institute of Technology, University of Washington - Tacoma

FEEDBACK - 2

= What is the math formula to where the stack is
loaded in memory after the program is split into 3
segments in memory?

TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma L4

May 14,2018

FEEDBACK - 3

= Segment registers - first two bits identify segment type

= Stack bits are “10”

= Consider virtual address: 4200

= VIRTUAL ADDRESS = 1000001101000 (on stack)
u %!::qels_KM*ASK=Ox3OOO (10000000000000) *LOGICAL AND THE

= ZEROES OUT everything but the segment blts to [earn the
segment
= SEG_SHIFT = 10 > stack

(mask gives us segment

code) Offset address is the
= OFFSET_MASK=0xFFF (00111111111111) | same in virtual & physical
* LOGICAL AND THE MASK * memory

= ZEROES OUT segment bits to reveal the offset address
= OFFSET = 000001101000 = 104 (isolates segment offset)
= OFFSET < BOUNDS : 104 < 2048

May 14,2018

TCS5422: Operating Systems [Spring 2018] 2s
Institute of Technology, University of Washington - Tacoma i

CHAPTER 17: FREE

SPACE MANAGEMENT

TCSS422: Operating Systems [Spring 2018]

a2 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L12.1

TCSS 422 A — Spring 2018 5/14/2018
Institute of Technology

FREE SPACE MANAGEMENT FRAGMENTATION

= Management of memory using = Consider a 30-byte heap

30-byte heap: [_free [llUsedl| free |
= Only fixed-sized units o 10 20 30
= Easy: keep a list
= Memory request - return first free entry " Request for 15-bytes

Simple search
addr:0 addr:20
free list: head — 1.1.10 —® 1ep:10 —> NULL

= With variable sized units
= More challenging
= Results from variable sized malloc requests = Free space: 20 bytes

= Leads to fragmentation
= No available contiguous chunk > return NULL

TCS5422: Operating Systems [Spring 2018] TCSS422: Operating Systems [Spring 2018]
L2k s T e e ol 2 U nvers o Washin tonsrace el uz7 2ty P S 1 T, Pt G o e TP

128

FRAGMENTATION - 2 ALLOCATION STRATEGY: SPLITTING
= External: OS can compact = Request for 1 byte of memory: malloc(1)
= Example: Client asks for 100 bytes: malloc(100) 30-byte heap: [_free [used | free |
= 0S: No 100 byte contiguous chunk is available: o 2 2 -
returns NULL addr:0 addr:20

free list: 'head —> 1.,.70 — 1en:10 — > NULL

= Memory is externally fragmented - - Compaction can fix!

= Internal: lost space - OS can’t compact = OS locates a free chunk to satisfy request
= 0S returns memory units that are too large = Splits chunk into two, returns first chunk
= Example: Client asks for 100 bytes: malloc(100) 30:byte heap; 00
= 0S: Returns 125 byte chunk
= Fragmentation is *in* the allocated chunk free list head —> Gooit —s Lo UL

= Memory is lost, and unaccounted for - can’t compact

TCS5422: Operating Systems [Spring 2018] TCSS422: Operating Systems [Spring 2018]
el Inttute of Technoloay)Universitylof Washinston=Tacomal uz9 2t P [See et Techolo syl nersityofWashinstonSiecome!

| 112.10

ALLOCATION STRATEGY: COALESCING MEMORY HEADERS

= Consider 30-byte heap
= Free() frees all 10 bytes segments (list of 3-free 10-byte chunks)

= free(void *ptr): Does not require a size parameter

= How does the OS know how much memory to free?
addr:10 addr:0 addr:20

head —> jen:10 > ren:10 len:io > NULL
= Request arrives: malloc(30) = Header block
= SPLIT DOES NOT WORK - no contiguous 30-byte chunk exists! = Small descriptive block of memory at start of chunk
= Coalescing regroups chunks into contiguous chunk } o eyt iy
head —» To0ti0 —» NULL prr —>

The 20 bytes returned to caller

= Allocation can now proceed

= Coalescing is defragmentation of the free space list An Allocated Region Plus Header
TCSS422: Operating Systems [Spring 2018] TCS5422: Operating Systems [Spring 2018]
el Institute o Technoloay)Universitylof Washington®Tacomal vz W2ty P [nsRueor TechnolosyUniversitylof WashinstonSiacoma! 212

Slides by Wes J. Lloyd L12.2

TCSS 422 A — Spring 2018
Institute of Technology

MEMORY HEADERS - 2

5/14/2018

Yy ——

hptr size: 20

magic: 1234567 ehy Sigheaderf {
t e — i
L t magic;
The 20 bytes } header_t;
returned to caller
. A Simple Header
Specific Contents Of The Header
= Contains size
= Pointers: for faster memory access
= Magic number: integrity checking
TCSS422: Operating Systems [Spring 2018]
L2k s T e e ol 2 U nvers o Washin tonsrace el 213 ‘

MEMORY HEADERS - 3

= Size of memory chunk is:
= Header size + user malloc size
= N bytes + sizeof(header)

= Easy to determine address of header

void free(void *ptr) {

header_t *hptr = (void *)ptr - si

£ (header_t);

TCS5422: Operating Systems [Spring 2018]

= Simple free list struct

THE FREE LIST

ct _node_t *next;

} nodet_t;

= Use mmap to create free list

= 4kb heap, 4 byte header, one contiguous free chunk

ns a pointer to a
mmap (NULL, 4096,

head->size
head->next

node_t *head

4096 -
NULL;

PROT_READ| PROT_WRITE,
MAP_ANON |MAP_PRIVATE, -1, 0)7
sizeof (node_t);

May 14,2018

TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma 1215 ‘

2ty P S 1 T, Pt G o e TP | 214 |
= Create and initialize free-list “heap”
// p() re s a to a cf free space
node._ 6, PROT_READ|PROT_WRITE,
MAP_ANON|MAP_PRIVATE, -1, 0);
head->size = 40 of (node_t) 7
head->next = NULL;
= Heap layout:
[virtual address: 16KB]
X header: size field
size: 4088
head —>| next: 0 | header: next field(NULL is 0)
e the rest of the 4kB chunk
TCSS422: Operating Systems [Spring 2018]
2t P [See et Techolo syl nersityofWashinstonSiecome! | 1216 |

FREE LIST: MALLOC() CALL

= Consider a request for a 100 bytes: malloc(100)
= Header block requires 8 bytes

= 4 bytes for size, 4 bytes for magic number
= Split the heap - header goes with each block N

A Heap : After One Allocation
size: 100

A 4KB Heap With One Free Chunk

FREE LIST: FREE() CALL

= Addresses of chunks

= Start=16384
+ 108 (end of 15t chunk)
+ 108 (end of 2" chunk)
+ 108 (end of 3" chunk)

[virtual address: 16K8]
8 bytes header {

100 bytes still allocated

[Free.this } 100 bytes still allocated

head —>
size: 4088 —
next: 0 o magic: 1234567
the rest o Firstblock f| 100 bytes now allocated
the 4KB chunk is used
\—1 head —>

size: 3980
next: 0

the free 3980 byte chunk

May 14, 2018 TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington -

11217
|

block (but about to be freed)
= 16708 100
: 1234567
100 bytes still allocated
head —_—
next: 0

The free 3764-byte chunk

Free Space With Three Chunks Allocated

TCS5422: Operating Systems [Spring 2018]

Vi 20l Institute of Technology, University of Washington - Tacoma

| 1218

Slides by Wes J. Lloyd

L12.3

TCSS 422 A — Spring 2018
Institute of Technology

FREE LIST:

FREE() CHUNK #2

= Free(sptr)
® Our 3 chunks start at 16 KB
(@ 16,384 bytes)

[virtual address: 16KB]

100 bytes still allocated

5/14/2018

Institute of Technology, University of Washington - Tacoma

head
xt: 16708 | —————————
® Free chunk #2 - sptr sptr —> 02
Block (now a free chunk of
= Sptr = 16500 Now Free memory)
= addr - sizeof(node_t) magic: 1234567
] 100 bytes still allocated
= Actual start of chunk #2
= 16492
- The free 3764-byte chunk
| |
May 14, 2018 TCSS422: Operating Systems [Spring 2018] 112.19

FREE LIST- FREE ALL CHUNKS

Now free remaining chunks: virtual address: 16KE]

= Free(16392) G
= Free(16608) (now free)
100 [«
= Walk back 8 bytes for actual next: 16708
start of chunk
(now free)
head iy
= External fragmentation Fext 16384 |
= Free chunk pointers
out of order (now free)
sizer 3764 |«
= Coalescing of next LEZE 0
pointers is needed The free 3764-byte chunk
[
May 14, 2018 TCSS422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma | 1220

GROWING THE HEAP

= Start with small sized heap
= Request more memory when full
= sbrk(), brk()

Segmented heap
(not in use) (not in use)
Heap Heap Heap Heap
= l break sbrik(),
break T (not in use)
(not in use)
Address Space Address Space Heap
Physical Memory
TCS5422: Operating Systems [Spring 2018]
May 14, 2018 Institute of Technology, University of Washington - Tacoma 1221

MEMORY ALLOCATION STRATEGIES

= Best fit
=Traverse free list
= |dentify all candidate free chunks
= Note which is smallest (has best fit)

= When splitting, “leftover” pieces are small
(and potentially less useful - fragmented)

= Worst fit
=Traverse free list
= ldentify largest free chunk
= Split largest free chunk, leaving a still large free chunk

May 14, 2018 TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma | e

EXAMPLES

= Allocation request for 15 bytes

head —> 10 ——> 30 —> 20 —> NULL

= Result of Best Fit

head —>| 10 —> 30 —> 5 —> NULL

= Result of Worst Fit

head —> 10 ——> 15 ——> 20 —> NULL

TCS5422: Operating Systems [Spring 2018]
el Institute o Technoloay)Universitylof Washington®Tacomal

11223

MEMORY ALLOCATION STRATEGIES - 2

= First fit
= Start search at beginning of free list
= Find first chunk large enough for request
= Split chunk, returning a “fit” chunk, saving the remainder
= Avoids full free list traversal of best and worst fit

= Next fit
= Similar to first fit, but start search at last search location
= Maintain a pointer that “cycles” through the list
= Helps balance chunk distribution vs. first fit
= Find first chunk, that is large enough for the request, and split
= Avoids full free list traversal

May 14, 2018 TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma | -

Slides by Wes J. Lloyd

L12.4

TCSS 422 A — Spring 2018
Institute of Technology

SEGREGATED LISTS

= For popular sized requests
e.g. for kernel objects such as locks, inodes, etc.
= Manage as segregated free lists
= Provide object caches: stores pre-initialized objects

= How much memory should be dedicated for specialized
requests (object caches)?

memory from the general allocator for caches.
= General allocator will reclaim slabs when not used

= |f a given cache is low in memory, can request “slabs” of

5/14/2018

TCS5422: Operating Systems [Spring 2018]

MavLiZhle Institute of Technology, University of Washington - Tacoma

11225

BUDDY ALLOCATION

= Binary buddy allocation

= Divides free space by two to find a block that is big enough to
accommodate the request; the next split is too small...

= Consider a 7KB request

64KB free space for 7KB request

TCS5422: Operating Systems [Spring 2018]

2ty P S 1 T, Pt G o e TP

| 11226

BUDDY ALLOCATION - 2

= Allocated fragments, typically too large

= Coalescing is simple
= Two adjacent blocks are promoted up

= Buddy allocation: suffers from internal fragmentation

TCS5422: Operating Systems [Spring 2018]

el Institute of Technology, University of Washington - Tacoma

11227

CHAPTER 18:
INTRODUCTION TO
PAGING

TCSS422: Operating Systems [Spring 2018]

Ly I Z0E Institute of Technology, University of Washington - Tacoma

PAGING

called pages

suffers from significant fragmentation

called page frames.

= Each process has a page table which translates virtual
addresses to physical addresses

= Split up address space of process into fixed sized pieces

= Alternative to variable sized pieces (Segmentation) which

= Physical memory is split up into an array of fixed-size slots

TCS5422: Operating Systems [Spring 2018]

el Institute of Technology, University of Washington - Tacoma

11229

ADVANTAGES OF PAGING

= Flexibility
= Abstracts the process address space into pages
= No need to track direction of HEAP / STACK growth
Just add more pages...
= No need to store unused space
As with segments...

= Simplicity
= Pages and page frames are the same size
= Easy to allocate and keep a free list of pages

TCS5422: Operating Systems [Spring 2018]

W2ty P Institute of Technology, University of Washington - Tacoma

| 11230

Slides by Wes J. Lloyd

L12.5

TCSS 422 A — Spring 2018
Institute of Technology

PAGING: EXAMPLE

= Consider a 128 byte address space

Page Table:
VPO - PF3

VP1 > PF7
VP2 > PF5
VP3 > PF2

page frame 0 of
physical memory

page frame 1

page frame 2

page frame 3

page frame 4

page frame 5

page frame 6

with 16-byte pages 0
reserved for OS
16
= Consider a 64-byte program (unused)
32
address space page 3 of AS
8
page 0 of AS
0 64
(page 0 of (unused)
16 the address space) 80
(page 1) page 2 of AS
2 9%
(page 2) (unused)
48 G 3 12
page
page 1 of AS
64 128

page frame 7

A Simple 64-byte Address Space

64-Byte Address Space Placed In Physical Memory

TCS5422: Operating Systems [Spring 2018]

MavLiZhle Institute of Technology, University of Washington - Tacoma

11231

5/14/2018

PAGING: ADDRESS TRANSLATION

= PAGE: Has two address components
=VPN: Virtual Page Number
= Offset: Offset within a Page

VPN offset
1

ol
= Example:

Page Size: 16-bytes, Address Space: 64-bytes

VPN offset
— 1

BEOBREE

TCS5422: Operating Systems [Spring 2018]

2ty P Institute of Technology, University of Washington - Tacoma

1232

EXAMPLE:

= Stored in 128-byte physical memory (8 frames)

= Offset is preserved el

PAGING ADDRESS TRANSLATION

= Consider a 64-byte program address space (4 pages)

offset

= VPN is looked up Mo [0 [o o]0]
Vo

Institute of Technology, University of Washington - Tacoma

Page Table:
VPO - PF3 e
ress
VP1-> PF7 Translation
VP2 > PF5
VP3 > PF2 Vol
zzz?:i ‘1‘1‘1‘0‘1‘0‘1
L J L
PFN offset
May 14, 2018 TCSS422: Operating Systems [Spring 2018] 233

PAGING DESIGN QUESTIONS

= (1) Where are page tables stored?

= (2) What are the typical contents of the page table?

= (3) How big are page tables?

= (4) Does paging make the system too slow?

TCS5422: Operating Systems [Spring 2018]

May 14, 2018 Institute of Technology, University of Washington - Tacoma

1234

= Example:

= With 4 KB pages
= 20 bits for VPN (22° pages)

= Page tables for each process are stored in RAM

= Support potential storage of 220 translations
= 1,048,576 pages per process

(1) WHERE ARE PAGE TABLES STORED?

= Consider a 32-bit process address space (up to 4GB)

= 12 bits for the page offset (212 unique bytes in a page)

= Each page has a page table entry size of 4 bytes

TCS5422: Operating Systems [Spring 2018]

May 14, 2018 Institute of Technology, University of Washington - Tacoma

11235

PAGE TABLE EXAMPLE

= With 220 slots in our page table for a single process

= Each slot dereferences a VPN VPN,
= Provides physical frame number VPNy
VPN,
= Each slot requires 4 bytes (32 bits)
= 20 for the PFN on a 4GB system with 4KB pages
= 12 for the offset which is preserved
= (note we have no status bits, so this is VPNy048576

unrealistically small)

= How much memory to store page table for 1 process?
= 4,194,304 bytes (or 4MB) to index one process

TCS5422: Operating Systems [Spring 2018]

Vi 20l Institute of Technology, University of Washington - Tacoma

11236

Slides by Wes J. Lloyd

L12.6

TCSS 422 A — Spring 2018 5/14/2018
Institute of Technology

NOW FOR AN ENTIRE OS (2) WHAT’S ACTUALLY IN THE PAGE TABLE

= If 4 MB is required to store one process = Page table is data structure used to map virtual page
numbers (VPN) to the physical address (Physical Frame
= Consider how much memory is required for an entire 0S? Number PFN)

= With for example 100 processes... = Linear page table > simple array

= Page table memory requirement is now 4MB x 100 = 400MB
= Page-table entry

= |f computer has 4GB memory (maximum for 32-bits), . .

=32 bits for capturing state
the page table consumes 10% of memory P g
310VPVBTHXX54822120191817161514131211109 87 654321

400 MB / 4000 GB ‘ PEN ‘ |a‘g‘a‘<‘§‘g‘§‘g‘2‘

?
= Is this efflclent? An x86 Page Table Entry(PTE)

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Spring 2018]
MavLiZhle T e e ol 2 U nvers o Washin tonsrace el 237 238

‘ May 14,2018

PAGE TABLE ENTRY PAGE TABLE ENTRY - 2
o P: present = Common flags:
o R/W: read/write bit = Valld BIt: Indicating whether the particular translation is valid.

o U/S: supervisor
o A: accessed bit
o D: dirty bit

o PFN: the page frame number = Present BIt: Indicating whether this page is in physical
memory or on disk(swapped out)

= Protection Bit: Indicating whether the page could be read
from, written to, or executed from

3100876548 22120191817161514131211109 87 6543210)) . ;
‘ - ‘ ‘G‘E‘D‘<‘§"§‘§‘§‘m‘ L Plrty Bit: Indlca.tmg whether the page has been modified since
it was brought into memory

An x86 Page Table Entry(PTE)

= Reference Blt(Accessed BIt): Indicating that a page has been

accessed

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2018] a
Institute of Technology, University of Washington - Tacoma L1239 May 14, 2018 240

| May 14,2018

(4) DOES PAGING MAKE
THE SYSTEM TOO SLOW?

(3) HOW BIG ARE PAGE TABLES?

= Page tables are too big to store on the CPU = Translation
= Page tables are stored using physical memory = |ssue #1: Starting location of the page table is
needed
= Paging supports efficiently storing a sparsely populated "HW Support: Page-table base register _g_\l::oe;agll:(:
address space stores active process VP1 - PF7
fed g . . Facilitates translation . VP2 > PF5
educed memory requiremen Stored in RAM > VP3 > PF2

Compared to base and bounds, and segments

= Issue #2: Each memory address translation for paging
requires an extra memory reference

=HW Support: TLBs (Chapter 19)

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

TCS5422: Operating Systems [Spring 2018]
el Institute of Technology, University of Washington - Tacoma 241 W2ty P 242

Slides by Wes J. Lloyd L12.7

TCSS 422 A — Spring 2018
Institute of Technology

PAGING MEMORY ACCESS

1 // Extract the VPN from the virtual address

2 VPN = (virtualAddress & VPN_MASK) >> SHIFT

3

4 // Form the address of the page-table entry (PTE)
5. PTEAddr = PTBR + (VPN * sizeof(PTE))

6

7 // Fetch the PTE

8. PTE = AccessMemory(PTEAddr)

9.

10. // check if process can access the page

11. if (PTE.valid == False)

12 RaiseException (SEGMENTATION_FAULT)

Ik else if (CanAccess(PTE.ProtectBits) == False)

14 RaiseException (PROTECTION_FAULT)

i15: else

16. // Access is ok: form physical address and fetch it
17. offset = virtualAddress & OFFSET_MASK

18. Physaddr = (PTE.PFN << PFN_SHIFT) | offset
19. Register = AccessMemory(PhysAddr)

May 14,2018

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

11243

5/14/2018

COUNTING MEMORY ACCESSES

= Example: Use this Array initialization Code

t array[1000];

for (i = 0; i < 1000; i++)
array[i] = 07

= Assembly equivalent:

0x1024 movl $0x0, (%edi, $eax, 4)
0x1028 incl %eax

0x102¢c cmpl $0x03e8, veax
0x1030 jne 0x1024

TCS5422: Operating Systems [Spring 2018]

2ty P S 1 T, Pt G o e TP

| L12.44

® Locations:

FOR THE FIRST 5 LOOP ITERATIONS

Page Table[39]

VISUALIZING MEMORY ACCESSES:

1224

Institute of Technology, University of Washington - Tacoma

= Page table s} o o o un g
= Array Page Table[1] u24 3
= Code 074 %

1024
= 50 accesses 2 40100 R o
B g
for 5 loop % 40050 282 F
. . < <

iterations 40000 7232
g 1124 3 vez 4196 2z
P oifE g
3 0m 446 3
S o
[S

C i munfy guf, gul, gul, guf¥

10 20 30 50
Memory Access
May 14, 2018 TCS5422: Operating Systems [Spring 2018] L12as

PAGING SYSTEM EXAMPLE

= Consider a 4GB Computer:
= With a 4096-byte page size (4KB)
= How many pages would fit in physical memory?

= Now consider a page table:

= For the page table entry, how many bits are required for the

VPN?

= |f we assume the use of 4-byte (32 bit) page table entries,

how many bits are available for status bits?

= How much space does this page table require?
Page Table Entries x Number of pages

= How many page tables (for user processes)
would fill the entire 4GB of memory?

TCS5422: Operating Systems [Spring 2018]

2t P [See et Techolo syl nersityofWashinstonSiecome!

| L12.46

May 14,2018

CHAPTER 19:

TRANSLATION
LOOKASIDE BUFFER
(TLB)

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

!

d!

I

OBJECTIVES

= Chapter 19

=TLB Algorithm

=TLB Tradeoffs

=TLB Context Switch

TCS5422: Operating Systems [Spring 2018]

W2ty P Institute of Technology, University of Washington - Tacoma

| L12.48

Slides by Wes J.

Lioyd

L12.8

TCSS 422 A — Spring 2018
Institute of Technology

=|lLegacy nhame...

= Better name, “Address Translation Cache”

=virtual > physical memory

TRANSLATION LOOKASIDE BUFFER

=TLB is an on CPU cache of address translations

5/14/2018

TCS5422: Operating Systems [Spring 2018]

MavLiZhle Institute of Technology, University of Washington - Tacoma

112.49

TRANSLATION LOOKASIDE BUFFER - 2

Page Table[39]

= Goal: 1224
Reduce access o o o o o 174
to the page Page Tablel1]
tables

= Example:

50 RAM accesses g w0
for first 5 for-loop & 40050
iterations 40000

Move lookups
from RAM to TLB
by caching page
table entries

Memory Access

Array(PA) Page Table(PA)

Code(PA)

TCS5422: Operating Systems [Spring 2018]

2ty P Institute of Technology, University of Washington - Tacoma

11250

= Part of the CPU’s Memory Management Unit (MMU)

= Address translation cache

e
Logical | Lookup | AN T8 Hit -
Address TLB Address
popular v to p T
Page 0
Page Table 9
all v to p entries Page 1
Page 2
[Pagen |

Address Translation with MMU "
Physical Memory

TRANSLATION LOOKASIDE BUFFER (TLB)

TCS5422: Operating Systems [Spring 2018]

el Institute of Technology, University of Washington - Tacoma

1251

TRANSLATION LOOKASIDE BUFFER (TLB)

= Part of the CPU’'s Memory Management Unit (MMU)
= Address translation cache

| — ns VTR | —
The TLB is an address translation cache
Different than L1, L2, L3 CPU memory caches

|
t Page Table Page 0

all v to p entries Ll

Page 2
Page n

Physical Memory

Address Translation with MMU

TCS5422: Operating Systems [Spring 2018]

May 14, 2018 Institute of Technology, University of Washington - Tacoma

u252

TLB BASIC ALGORITHM

= For: array based page table
= Hardware managed TLB

»
»

VPN = (VirtualAddress & VPN _MASK) >> SHIFT
: (Success , TlbEntry) = TLB_Lookup (VEN)

if (Success == True){ // TLB Hit

Offset = VirtualAddress & OFFSET_MASK
‘PhysAddr»(leEntry.PFN << SHIFT) | Offset
AccessMemory(PhysAddr)

s
2
3
4: if (CanAccess (T1bEntry.ProtectBits) == True){
5
6
7
8

}else RaiseException(PROTECTION_ERROR)

| Generate the physical address to access memory

TCS5422: Operating Systems [Spring 2018]

| el Institute of Technology, University of Washington - Tacoma

112553

Slides by Wes J. Lloyd

TLB BASIC ALGORITHM - 2

11: else{ //T s
12: PTEAddr = PTBR + (VPN * sizeof (PTE))
53 ‘ PTE = AccessMemory (PTEAddr)
14: () // Check for, and raise exceptions..
15:
16: TLB_Insert(VBN , PTE.PEN , PTE.ProtectBits)
17: RetryInstruction ()
18:)
19:)
I Retry the instruction... (requery the TLB) |
‘ S rsteseot ey ety o Washingon- Tacoma zss

L12.9

TCSS 422 A — Spring 2018 5/14/2018
Institute of Technology

TLB - ADDRESS TRANSLATION CACHE TLB EXAMPLE

™ Key detail: 0: int sum = 0 ; w0 os OFFSET
e for(i=0; i<10; i++){ VPN = 00
2: sum+=a[i]; VPN = 01
= For a TLB miss, we first access the page table in RAM to 3:) veN - 03
opulate the TLB... we then requery the TLB . Vo8
Beb = Example: stk
VPN = 06 ao] | a[1 | a2l
= Program address space: 256-byte R
= All address translatlons go through the TLB R X o Vo=
= Addressable using 8 total bits (28) VPN = 08 | af7) | aif) | aio)
= 4 bits for the VPN (16 total pages) e
VN - 10
= Page size: 16 bytes e
w12
= Offset is addressable using 4-bits p—
N - 10
= Store an array: of (10) 4-byte integers VeN = 15
TCSS422: Of ting Syste [Spring 2018] TCS5422: Of ting Systs [Spring 2018]
(0 itz et ol linwers oot Wedhte e Teeerte u2ss \ A A it echmologl eratyof Washissongreconts | uzss
0: int sum = 0 ; OFFSET. 0: int sum = 0 ; OFFSET
w o o 1 w o o 1
s for(i=0; i<10; i++){ I S for(i=0; i<10; i++){ VPN =00
2: sum+=a[i]; VPN = 01 2: sum+=a[i]; VPN = 01
3 } VPN = 03 35 } VPN = 03
; ven - o4 ven - 08
= Consider the code above: VT R
= For the accesses: a[0], a[1], a[2], a[3], a[4],

. . VPN = 06 a0 | a1l | al2] VPN = 06 ao] | a[1 | a2l
= |nitially the TLB does not know where a[] is ven -7 (o) | et | a5 | ate) = a[5], a[6], a[7], a[8], a[9] ven =07 (g | ate | a1 | atel
= Consider the accesses: Nl v - o

Ve =09) ven <08
= a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], = How many are hits?
a[8], a[9] N =1 = How many are misses? ven =11
ven - 12 w12
= How many pages are accessed? — = What is the hit rate? (%) ——
= What happens when accessing a page not VPN - 14 = 70% (3 misses one for each VP, 7 hits) VeN - 14
in the TLB? ven - 15 e =15
TCSS422: Of ting Syste [Spring 2018] TCS5422: Of ting Systs [Spring 2018]
(k8 IiStibuteoTathnologAUniersiy of Washineton s Tecorma i \ iy A st ofechnologg vty of Wasfinston Taconta | uzss
0: int sum = 0 ; OFFSET.
w o o 1
1% for(i=0; i<10; i++){ veN'= 00
2: sum+=a[i]; VPN = 01
3 } VPN = 03
ven - o4
. . ven =05
= What factors affect the hit/miss rate? o0
= a0 | a1l | al2]
= Page size VPN =07 | a3 | a4 | ais) | al6)
. VPN =08 | a7 | ai8] | a9
= Data locality e
= Temporal locality VNS0
ven =11
ven - 12
ven =13
en - 14
ven =15
TCSS422: Of ting Syste [Spring 2018]
(ko IiStiuteoTathnologyAUniersiy of Washieton & Tecorma 12s \

Slides by Wes J. Lloyd L12.10

