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Three Easy Pieces:
Intro to Memory Virtualization

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Assignment 2 – Matrix Task Processor

 Wrap up Concurrency Problems – Ch. 32

 Active reading quiz – to be posted…

 Memory Virtualization

 Address Spaces – Ch. 13

 Memory API – Ch. 14

 Address Translation – Ch. 15

 Segmentation – Ch. 15
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 Assignment 2 questions…
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FEEDBACK – 5/7

CHAPTER 32 –
CONCURRENCY 

PROBLEMS
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 Presence of a cycle in code

 Two threads share a resource, prevent each other 
from accessing the resource  both programs BLOCK

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, 
waits for lock L1

 Both threads can block, unless 
one manages to acquire both locks

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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DEADLOCK BUGS

 Four conditions are required for dead lock to occur
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CONDITIONS FOR DEADLOCK
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 Build wait-free data structures

 Eliminate locks altogether 

 Build structures using CompareAndSwap atomic CPU (HW) 
instruction

 C pseudo code for CompareAndSwap (as before)

 Hardware executes this code atomically
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PREVENTION – MUTUAL EXCLUSION

 Leverage atomic increment for a counter

Compare and Swap tries over and over until 
successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)
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PREVENTION – MUTUAL EXCLUSION - 2



TCSS 422 A – Spring 2018
Institute of Technology

5/10/2018

L11.5Slides by Wes J. Lloyd

Consider list insertion
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MUTUAL EXCLUSION: LIST INSERTION

Here we’ve added locks to the insert() list method

As in a “Thread-safe” Linked List
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MUTUAL EXCLUSION – LIST INSERTION - 2
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Wait free (no lock) implementation

 Leverage CompareAndSwap to ensure that we only
assign the next node **IF** the next node is the 
circular head
Reasign next node to the node we’re inserting

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {
2 node_t *n = malloc(sizeof(node_t));
3 assert(n != NULL);
4 n->value = value;
5 do {
6 n->next = head;
7 } while (CompareAndSwap(&head, n->next, n)==0);
8 }

 Four conditions are required for dead lock to occur
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CONDITIONS FOR DEADLOCK
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 Problem: acquire all  locks atomically

 Solution: use a “lock” “lock”… ( l ike a guard lock)

 Effective solution – guarantees no race conditions while 
acquiring L1, L2, etc.  

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code
 Acts Lowers lock granularity 

 Encapsulation: consider the Java Vector class…
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PREVENTION LOCK – HOLD AND WAIT

 Four conditions are required for dead lock to occur
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CONDITIONS FOR DEADLOCK
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When acquiring locks, don’t BLOCK forever if 
unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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PREVENTION – NO PREEMPTION

Can lead to livelock

 Two threads execute code in parallel 
always fail to obtain both locks

 Fix: add random delay

Allows one thread to win the 
livelock race!

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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NO PREEMPTION – LIVELOCKS PROBLEM
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 Four conditions are required for dead lock to occur

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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CONDITIONS FOR DEADLOCK

Provide total ordering of lock acquisition 
throughout code
Always acquire locks in same order

L1, L2, L3, …

Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire 
program

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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PREVENTION – CIRCULAR WAIT



TCSS 422 A – Spring 2018
Institute of Technology

5/10/2018

L11.10Slides by Wes J. Lloyd

Consider a smart scheduler

Scheduler knows which locks threads use

Consider this scenario: 

4 Threads (T1, T2, T3, T4)

2 Locks (L1, L2)

 Lock requirements of threads:

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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DEADLOCK AVOIDANCE 
VIA INTELLIGENT SCHEDULING

Scheduler produces schedule:

No deadlock can occur

Consider:

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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INTELLIGENT SCHEDULING - 2
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 Scheduler produces schedule

 Scheduler must be conservative and not take risks

 Slows down execution – many threads 

 There has been limited use of these approaches given the 
difficulty having intimate lock knowledge about every 
thread

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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INTELLIGENT SCHEDULING - 3

 Allow deadlock to occasionally occur and then take some 
action.

 Example: When OS freezes, reboot…

 How often is this acceptable?
 Once per year

 Once per month

 Once per day

 Consider the effort tradeoff of finding every deadlock bug

 Many database systems employ deadlock detection and 
recovery techniques.

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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DETECT AND RECOVER
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CHAPTER 13: 
ADDRESS SPACES

May 9, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L11.23

 Chapter 13
 Introduction to memory virtualization
 The address space
 Goals of OS memory virtualization

 Chapter 14
 Memory API
 Common memory errors

 Chapter 15
 Address translation
 Base and bounds
 HW and OS Support

 Chapter 16
 Memory segments, fragmentation

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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 What is memory virtualization?

 This is not “virtual” memory, 

 Classic use of disk space as additional RAM

When available RAM was low

 Less common recently

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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MEMORY VIRTUALIZATION

 Presentation of system memory to each process

 Appears as if each process can access the entire 
machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L11.26

MEMORY VIRTUALIZATION - 2

Process A Process B Process C
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 Easier to program
 Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage 
and share memory among processes

 Isolation
 From other processes: easier to code

 Protection
 From other processes
 From programmer error (segmentation fault)

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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MOTIVATION FOR 
MEMORY VIRTUALIZATION

 Load one process at a time into memory

Poor memory utilization

 Little abstraction

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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EARLY MEMORY MANAGEMENT
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 Later machines supported running multiple 
processes

 Swap out processes during I/O waits to 
increase system uti lization and ef ficiency

 Swap entire memory of a process to disk 
for context switch

 Too slow, especially for large processes

 Solution
 Leave processes in memory

 Need to protect from errant memory 
accesses in a multiprocessing environment

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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MULTIPROGRAMMING 
WITH SHARED MEMORY

Easy-to-use abstraction of physical 
memory for a process

Main elements:

Program code

Stack

Heap

Example: 16KB address space

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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 Code
 Program code

 Stack
 Program counter (PC)

 Local variables

 Parameter variables

 Return values (for functions)

 Heap
 Dynamic storage

 Malloc() new()

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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ADDRESS SPACE - 2

 Program code
 Static size

 Heap and stack
 Dynamic size

 Grow and shrink during program execution

 Placed at opposite ends

 Addresses are vir tual
 They must be physically mapped by the OS

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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ADDRESS SPACE - 3
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Every address is virtual

OS translates virtual to physical addresses

EXAMPLE: virtual.c

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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VIRTUAL ADDRESSING

 Output from 64-bit Linux:
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VIRTUAL ADDRESSING - 2

location of code: 0x400686
location of heap: 0x1129420
location of stack: 0x7ffe040d77e4
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 Transparency

Memory shouldn’t appear virtualized to the program

 OS multiplexes memory among different jobs behind the 
scenes

 Protection

 Isolation among processes

 OS itself must be isolated

 One program should not be able to affect another 
(or the OS)

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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GOALS OF 
OS MEMORY VIRTUALIZATION

Efficiency
Time
 Performance: virtualization must be fast

Space
 Virtualization must not waste space
 Consider data structures for organizing memory
 Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluating memory 
virtualization schemes

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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CHAPTER 14: THE 
MEMORY API

May 9, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L11.37

 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof() often used to ask the system how large a given 
datatype or struct is

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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 Not safe to assume 
data type sizes using 
different compilers, 
systems

 Dynamic array of 10 ints

 Static array of 10 ints

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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FREE()
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41

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247; 
return &a;

}

void set_magic_number_b() 
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

42

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247; 
return &a;

}

void set_magic_number_b() 
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$ ./pointer_error
The magic number is=53247
The magic number is=11111

What will this code do?

We have not changed *x but 
the value has changed!!

Why?
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 Dangling pointers arise when a variable referred (a) goes 
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location 
of the deallocated memory (a), 
which has now been reclaimed for (b).

DANGLING POINTER (1/2)

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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Fortunately in the case, a compiler warning 
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int* 
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local 
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have 
gone “out of scope”  

DANGLING POINTER (2/2)

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…
 size_t num :  number of blocks to allocate

 size_t size :  size of each block(in bytes)

 Calloc() prevents…

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L11.45

CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address
 New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc, 
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c
 EXAMPLE: nom.c

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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REALLOC()
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 Can’t deallocate twice

 Second call  core dumps

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory 
for a user program

 See man page

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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SYSTEM CALLS
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CHAPTER 15: ADDRESS
TRANSLATION

May 9, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L11.49

 Address translation

 Base and bounds

 HW and OS Support

 Memory segments

 Memory fragmentation

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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OBJECTIVES
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 64KB 
Address space
example

 Translation:
mapping 
vir tual to
physical

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register
 Stores size of program address space (16KB)

 OS verifies that every address:

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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BASE AND BOUNDS

0 ≤  𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠
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 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr) ↑
 Phy addr = virt addr + base reg

 32896 = 128 + 32768 (base)

 Execute instruction
 Load from address (var x is @ 15kb=15360)

 48128 = 15360 + 32768 (base)  -- found x…

 Bounds register: terminate process if
 ACCESS VIOLATION: Virtual address > bounds reg

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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INSTRUCTION EXAMPLE

Int x

 MMU
 Portion of the CPU dedicated to address translation

 Contains base & bounds registers 

 Base & Bounds Example:
 Consider address translation

 4 KB (4096 bytes) address space, loaded at 16 KB physical location

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT
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May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in 
bounds

Translation circuitry, check limits

Privileged instruction(s) to
update base / bounds regs

Instructions for modifying base/bound 
registers

Privileged instruction(s) 
to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.

 For base and bounds OS support required

When process starts running
 Allocate address space in physical memory

When a process is terminated
 Reclaiming memory for use

When context switch occurs
 Saving and storing the base-bounds pair

 Exception handlers
 Function pointers set at OS boot time

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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OS SUPPORT FOR MEMORY 
VIRTUALIZATION
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 OS searches for free space for new process
 Free list: data structure that tracks available memory slots

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free l ist

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma
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OS: WHEN PROCESS IS TERMINATED
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 OS must save base and bounds registers
 Saved to the Process Control Block PCB (task_struct in Linux)

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS deschedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it  was even moved!

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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DYNAMIC RELOCATION
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CHAPTER 16: 
SEGMENTATION

May 9, 2018
TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma L11.61

 Address space 

 Contains significant unused memory

 Is relatively large
 Preallocates space to handle stack/heap growth

 Large address spaces
 Hard to fit in memory

 How can these issues be addressed?

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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BASE AND BOUNDS INEFFICIENCIES
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Memory segmentation

Address space has (3) segments

Contiguous portions of address space 

Logically separate segments for: code, stack, heap

Each segment can placed separately

 Track base and bounds for each segment 
(registers)

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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MULTIPLE SEGMENTS

 Consider 3 segments:

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
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SEGMENTS IN MEMORY

Much smaller
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Virtual Address Space Physical Address Space

 Code segment - physically star ts at 32KB (base)

 Starts at “0” in vir tual address space
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ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB 

address space?

 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104   (vir t addr – virt heap star t)

 Physical address = 104 + 34816  (of fset + heap base)
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ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.
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 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)
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SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset 

 Example: vir tual heap address 4200 (01000001101000)
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SEGMENT REGISTERS
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 VIRTUAL ADDRESS = 01000001101000                     (on heap)
 SEG_MASK = 0x3000 (11000000000000)
 SEG_SHIFT = 01  heap            (mask gives us segment code)
 OFFSET_MASK = 0xFFF (00111111111111)
 OFFSET = 000001101000 = 104        (isolates segment offset)
 OFFSET < BOUNDS :  104 < 2048
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SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows
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STACK SEGMENT
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 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic l inked l ibrary 

 .so (l inux): shraed object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment
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SHARED CODE SEGMENTS

Coarse-grained

Manage memory as large purpose
based segments:

Code segment

Heap segment

Stack segment
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SEGMENTATION GRANULARITY
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 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed
of multiple smaller segments

 Segment table

 On early systems

 Stored in memory

 Tracked large number of segments
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SEGMENTATION GRANULARITY - 2

 Consider how much free space?

 We’ll  say about 24 KB

 Request arrives to allocate a 20 KB heap
segment

 Can we fulfil  the request for 20 KB of
contiguous memory?
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MEMORY FRAGMENTATION
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 Supports rearranging memory

 Can we fulfil  the request for 20 KB of 
contiguous memory?

 Drawback: Compaction is slow
 Rearranging memory is time consuming

 64KB is fast

 4GB+ … slow

 Algorithms: 
 Best fit: keep list of free spaces, allocate the

most snug segment for the request

 Others: worst fit, first fit… (in future chapters)
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COMPACTION

QUESTIONS


