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TCSS 422: OPERATING SYSTEMS

 Assignment 2 – Matrix Task Processor

 Wrap up Concurrency Problems – Ch. 32

 Active reading quiz – to be posted…

 Memory Virtualization

 Address Spaces – Ch. 13

 Memory API – Ch. 14

 Address Translation – Ch. 15

 Segmentation – Ch. 15
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OBJECTIVES

 Assignment 2 questions…

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L11.3

FEEDBACK – 5/7

CHAPTER 32 –
CONCURRENCY 

PROBLEMS
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 Presence of a cycle in code

 Two threads share a resource, prevent each other 
from accessing the resource  both programs BLOCK

 Thread 1 acquires lock L1, waits for lock L2

 Thread 2 acquires lock L2, 
waits for lock L1

 Both threads can block, unless 
one manages to acquire both locks
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DEADLOCK BUGS

 Four conditions are required for dead lock to occur
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CONDITIONS FOR DEADLOCK
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 Build wait-free data structures

 Eliminate locks altogether 

 Build structures using CompareAndSwap atomic CPU (HW) 
instruction

 C pseudo code for CompareAndSwap (as before)

 Hardware executes this code atomically
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PREVENTION – MUTUAL EXCLUSION

 Leverage atomic increment for a counter

Compare and Swap tries over and over until 
successful

CompareAndSwap is guaranteed to be atomic

When it runs it is ALWAYS atomic (at HW level)
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PREVENTION – MUTUAL EXCLUSION - 2

Consider list insertion
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MUTUAL EXCLUSION: LIST INSERTION

Here we’ve added locks to the insert() list method

As in a “Thread-safe” Linked List
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MUTUAL EXCLUSION – LIST INSERTION - 2

Wait free (no lock) implementation

 Leverage CompareAndSwap to ensure that we only
assign the next node **IF** the next node is the 
circular head
Reasign next node to the node we’re inserting
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MUTUAL EXCLUSION – LIST INSERTION - 3

1 void insert(int value) {
2 node_t *n = malloc(sizeof(node_t));
3 assert(n != NULL);
4 n->value = value;
5 do {
6 n->next = head;
7 } while (CompareAndSwap(&head, n->next, n)==0);
8 }

 Four conditions are required for dead lock to occur
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CONDITIONS FOR DEADLOCK
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 Problem: acquire all locks atomically

 Solution: use a “lock” “lock”… (like a guard lock)

 Effective solution – guarantees no race conditions while 
acquiring L1, L2, etc.  

 Order doesn’t matter for L1, L2

 Prevention (GLOBAL) lock decreases concurrency of code
 Acts Lowers lock granularity 

 Encapsulation: consider the Java Vector class…
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PREVENTION LOCK – HOLD AND WAIT

 Four conditions are required for dead lock to occur
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CONDITIONS FOR DEADLOCK

When acquiring locks, don’t BLOCK forever if 
unavailable…

pthread_mutex_trylock() - try once

pthread_mutex_timedlock() - try and wait awhile

Eliminates deadlocks
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PREVENTION – NO PREEMPTION

Can lead to livelock

 Two threads execute code in parallel 
always fail to obtain both locks

 Fix: add random delay

Allows one thread to win the 
livelock race!
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NO PREEMPTION – LIVELOCKS PROBLEM

Four conditions are required for dead lock to occur
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CONDITIONS FOR DEADLOCK

Provide total ordering of lock acquisition 
throughout code
Always acquire locks in same order

L1, L2, L3, …

Never mix: L2, L1, L3; L2, L3, L1; L3, L1, L2….

Must carry out same ordering through entire 
program
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PREVENTION – CIRCULAR WAIT
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Consider a smart scheduler

Scheduler knows which locks threads use

Consider this scenario: 

4 Threads (T1, T2, T3, T4)

2 Locks (L1, L2)

 Lock requirements of threads:
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DEADLOCK AVOIDANCE 
VIA INTELLIGENT SCHEDULING

Scheduler produces schedule:

No deadlock can occur

Consider:
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INTELLIGENT SCHEDULING - 2

 Scheduler produces schedule

 Scheduler must be conservative and not take risks

 Slows down execution – many threads 

 There has been limited use of these approaches given the 
difficulty having intimate lock knowledge about every 
thread
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INTELLIGENT SCHEDULING - 3

 Allow deadlock to occasionally occur and then take some 
action.

 Example: When OS freezes, reboot…

 How often is this acceptable?
 Once per year

 Once per month

 Once per day

 Consider the effort tradeoff of finding every deadlock bug

 Many database systems employ deadlock detection and 
recovery techniques.
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DETECT AND RECOVER

CHAPTER 13: 
ADDRESS SPACES
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 Chapter 13
 Introduction to memory virtualization
 The address space
 Goals of OS memory virtualization

 Chapter 14
 Memory API
 Common memory errors

 Chapter 15
 Address translation
 Base and bounds
 HW and OS Support

 Chapter 16
 Memory segments, fragmentation
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OBJECTIVES – MEMORY VIRTUALIATION
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 What is memory vir tualization?

 This is not “virtual” memory, 

 Classic use of disk space as additional RAM

When available RAM was low

 Less common recently
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MEMORY VIRTUALIZATION

 Presentation of system memory to each process

 Appears as if each process can access the entire 
machine’s address space

 Each process’s view of memory is isolated from others

 Everyone has their own sandbox
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MEMORY VIRTUALIZATION - 2

Process A Process B Process C

 Easier to program
 Programs don’t need to understand special memory models

 Abstraction enables sophisticated approaches to manage 
and share memory among processes

 Isolation
 From other processes: easier to code

 Protection
 From other processes
 From programmer error (segmentation fault)
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MOTIVATION FOR 
MEMORY VIRTUALIZATION

 Load one process at a time into memory

Poor memory utilization

 Little abstraction
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EARLY MEMORY MANAGEMENT

 Later machines supported running multiple 
processes

 Swap out processes during I/O waits to 
increase system utilization and efficiency

 Swap entire memory of a process to disk 
for context switch

 Too slow, especially for large processes

 Solution
 Leave processes in memory

 Need to protect from errant memory 
accesses in a multiprocessing environment
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MULTIPROGRAMMING 
WITH SHARED MEMORY

Easy-to-use abstraction of physical 
memory for a process

Main elements:

Program code

Stack

Heap

Example: 16KB address space
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ADDRESS SPACE
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 Code
 Program code

 Stack
 Program counter (PC)

 Local variables

 Parameter variables

 Return values (for functions)

 Heap
 Dynamic storage

 Malloc() new()
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ADDRESS SPACE - 2

 Program code
 Static size

 Heap and stack
 Dynamic size

 Grow and shrink during program execution

 Placed at opposite ends

 Addresses are vir tual
 They must be physically mapped by the OS
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ADDRESS SPACE - 3

Every address is virtual

OS translates virtual to physical addresses

EXAMPLE: virtual.c
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VIRTUAL ADDRESSING

 Output from 64-bit Linux:
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VIRTUAL ADDRESSING - 2

location of code: 0x400686
location of heap: 0x1129420
location of stack: 0x7ffe040d77e4

 Transparency

Memory shouldn’t appear virtualized to the program

 OS multiplexes memory among different jobs behind the 
scenes

 Protection

 Isolation among processes

 OS itself must be isolated

 One program should not be able to affect another 
(or the OS)
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GOALS OF 
OS MEMORY VIRTUALIZATION

Efficiency
Time
 Performance: virtualization must be fast

Space
 Virtualization must not waste space
 Consider data structures for organizing memory
 Hardware support TLB: Translation Lookaside Buffer

Goals considered when evaluating memory 
virtualization schemes

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L11.36

GOALS - 2
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CHAPTER 14: THE 
MEMORY API
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 Allocates memory on the heap

 size_t unsigned integer (must be +)

 size size of memory allocation in bytes

 Returns

 SUCCESS: A void * to a memory address

 FAIL: NULL

 sizeof()  often used to ask the system how large a given 
datatype or struct is
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MALLOC

 Not safe to assume 
data type sizes using 
different compilers, 
systems

 Dynamic array of 10 ints

 Static array of 10 ints
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SIZEOF()

 Free memory allocated with malloc()

 Provide: (void *) ptr to malloc’d memory

 Returns: nothing
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FREE()

41

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247; 
return &a;

}

void set_magic_number_b() 
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf(“The magic number is=%d\n“,*x);
return 0;

}

What will this code do?

42

#include<stdio.h>

int * set_magic_number_a()
{

int a =53247; 
return &a;

}

void set_magic_number_b() 
{

int b = 11111;
}

int main()
{

int * x = NULL;
x = set_magic_number_a();
printf("The magic number is=%d\n“,*x);
set_magic_number_b();
printf("The magic number is=%d\n“,*x);
return 0;

}

Output:
$ ./pointer_error
The magic number is=53247
The magic number is=11111

What will this code do?

We have not changed *x but 
the value has changed!!

Why?
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 Dangling pointers arise when a variable referred (a) goes 
“out of scope”, and it’s memory is destroyed/overwritten
(by b) without modifying the value of the pointer (*x).

 The pointer still points to the original memory location 
of the deallocated memory (a), 
which has now been reclaimed for (b).

DANGLING POINTER (1/2)
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Fortunately in the case, a compiler warning 
is generated:

$ g++ -o pointer_error -std=c++0x pointer_error.cpp

pointer_error.cpp: In function ‘int* 
set_magic_number_a()’:

pointer_error.cpp:6:7: warning: address of local 
variable ‘a’ returned [enabled by default]

This is a common mistake - - -
accidentally referring to addresses that have 
gone “out of scope”  

DANGLING POINTER (2/2)
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 Allocate “C”lear memory on the heap

 Calloc wipes memory in advance of use…
 size_t num : number of blocks to allocate

 size_t size : size of each block(in bytes)

 Calloc() prevents…
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CALLOC()

char *dest = malloc(20);
printf("dest string=%s\n", dest);

dest string=��F

 Resize an existing memory allocation

 Returned pointer may be same address, or a new address
 New if memory allocation must move

 void *ptr: Pointer to memory block allocated with malloc, 
calloc, or realloc

 size_t size: New size for the memory block(in bytes)

 EXAMPLE: realloc.c
 EXAMPLE: nom.c
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REALLOC()

 Can’t deallocate twice

 Second call core dumps
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DOUBLE FREE

brk(), sbrk()

 Used to change data segment size (the end of the heap)

 Don’t use these

Mmap(), munmap()

 Can be used to create an extra independent “heap” of memory 
for a user program

 See man page
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SYSTEM CALLS
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CHAPTER 15: ADDRESS
TRANSLATION
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 Address translation

 Base and bounds

 HW and OS Support

 Memory segments

 Memory fragmentation
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OBJECTIVES

 64KB 
Address space
example

 Translation:
mapping 
vir tual to
physical
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ADDRESS TRANSLATION

Virtual mapping

Address Space

 Dynamic relocation

 Two registers base & bounds: on the CPU

 OS places program in memory

 Sets base register

 Bounds register
 Stores size of program address space (16KB)

 OS verifies that every address:

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L11.52

BASE AND BOUNDS

0 ≤  𝑣𝑖𝑟𝑡𝑢𝑎𝑙 𝑎𝑑𝑑𝑟𝑒𝑠𝑠 < 𝑏𝑜𝑢𝑛𝑑𝑠

 Base = 32768

 Bounds =16384

 Fetch instruction at 128 (vir t addr) ↑
 Phy addr = virt addr + base reg

 32896 = 128 + 32768 (base)

 Execute instruction
 Load from address (var x is @ 15kb=15360)

 48128 = 15360 + 32768 (base)  -- found x…

 Bounds register: terminate process if
 ACCESS VIOLATION: Virtual address > bounds reg
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INSTRUCTION EXAMPLE

Int x

 MMU
 Portion of the CPU dedicated to address translation

 Contains base & bounds registers 

 Base & Bounds Example:
 Consider address translation

 4 KB (4096 bytes) address space, loaded at 16 KB physical location
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MEMORY MANAGEMENT UNIT

Virtual Address Physical Address

0 16384

1024 17408

3000 19384

4400 20784 (out of bounds)FAULT
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DYNAMIC RELOCATION OF PROGRAMS

 Hardware requirements:

Requirements HW support

Privileged mode CPU modes: kernel, user

Base / bounds registers Registers to support address translation

Translate virtual addr; check if in 
bounds

Translation circuitry, check limits

Privileged instruction(s) to
update base / bounds regs

Instructions for modifying base/bound 
registers

Privileged instruction(s) 
to register exception handlers

Set code pointers to OS code to handle faults

Ability to raise exceptions For out-of-bounds memory access, or
attempts to access privileged instr.

 For base and bounds OS support required

When process starts running
 Allocate address space in physical memory

When a process is terminated
 Reclaiming memory for use

When context switch occurs
 Saving and storing the base-bounds pair

 Exception handlers
 Function pointers set at OS boot time
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OS SUPPORT FOR MEMORY 
VIRTUALIZATION

 OS searches for free space for new process
 Free list: data structure that tracks available memory slots
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OS: WHEN PROCESS STARTS RUNNING

 OS places memory back on the free list
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OS: WHEN PROCESS IS TERMINATED

 OS must save base and bounds registers
 Saved to the Process Control Block PCB (task_struct in Linux)
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OS: WHEN CONTEXT SWITCH OCCURS

 OS can move process data when not running

1. OS deschedules process from scheduler

2. OS copies address space from current to new location

3. OS updates PCB (base and bounds registers)

4. OS reschedules process

 When process runs new base register is restored to CPU

 Process doesn’t know it  was even moved!
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DYNAMIC RELOCATION
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CHAPTER 16: 
SEGMENTATION
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 Address space 

 Contains significant unused memory

 Is relatively large
 Preallocates space to handle stack/heap growth

 Large address spaces
 Hard to fit in memory

 How can these issues be addressed?
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BASE AND BOUNDS INEFFICIENCIES

Memory segmentation

Address space has (3) segments

Contiguous portions of address space 

Logically separate segments for: code, stack, heap

Each segment can placed separately

 Track base and bounds for each segment 
(registers)
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MULTIPLE SEGMENTS

 Consider 3 segments:
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SEGMENTS IN MEMORY

Much smaller

Virtual Address Space Physical Address Space

 Code segment - physically starts at 32KB (base)

 Starts at “0” in vir tual address space
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ADDRESS TRANSLATION: CODE SEGMENT

Bounds check:
Is virtual address within 2KB 

address space?

 Heap starts at vir tual address 4096

 The data is at 4200

 Offset= 4200 – 4096 = 104   (vir t addr – virt heap start)

 Physical address = 104 + 34816  (offset + heap base)

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L11.66

ADDRESS TRANSLATION: HEAP

𝑽𝒊𝒓𝒕𝒖𝒂𝒍 𝒂𝒅𝒅𝒓𝒆𝒔𝒔 + 𝒃𝒂𝒔𝒆 is not the correct physical address.
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 Access beyond the address space

 Heap starts at virtual address: 4096

 Data pointer is to 7KB (7168)

 Is data pointer valid?

 Heap starts at 4096 + 2 KB seg size = 6144

 Offset= 7168 > 4096 + 2048 (6144)
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SEGMENTATION FAULT

 Used to dereference memory during translation

 First two bits identify segment type

 Remaining bits identify memory offset 

 Example: vir tual heap address 4200 (01000001101000)
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SEGMENT REGISTERS

 VIRTUAL ADDRESS = 01000001101000                     (on heap)
 SEG_MASK = 0x3000 (11000000000000)
 SEG_SHIFT = 01  heap            (mask gives us segment code)
 OFFSET_MASK = 0xFFF (00111111111111)
 OFFSET = 000001101000 = 104        (isolates segment offset)
 OFFSET < BOUNDS :  104 < 2048
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SEGMENTATION DEREFERENCE

Stack grows backwards (FILO)

Requires hardware support:

Direction bit: tracks direction segment grows
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STACK SEGMENT

 Code sharing: enabled with HW support

 Supports storing shared libraries in memory only once

 DLL: dynamic linked library 

 .so (linux): shraed object in Linux (under /usr/lib)

 Many programs can access them

 Protection bits: track permissions to segment
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SHARED CODE SEGMENTS

Coarse-grained

Manage memory as large purpose
based segments:

Code segment

Heap segment

Stack segment
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SEGMENTATION GRANULARITY
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 Fine-grained

 Manage memory as list of segments

 Code, heap, stack segments composed
of multiple smaller segments

 Segment table

 On early systems

 Stored in memory

 Tracked large number of segments
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SEGMENTATION GRANULARITY - 2

 Consider how much free space?

 We’ll say about 24 KB

 Request arrives to allocate a 20 KB heap
segment

 Can we fulfil the request for 20 KB of
contiguous memory?

May 9, 2018 TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L11.74

MEMORY FRAGMENTATION

 Supports rearranging memory

 Can we fulfil the request for 20 KB of 
contiguous memory?

 Drawback: Compaction is slow
 Rearranging memory is time consuming

 64KB is fast

 4GB+ … slow

 Algorithms: 
 Best fit: keep list of free spaces, allocate the

most snug segment for the request

 Others: worst fit, first fit… (in future chapters)
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COMPACTION QUESTIONS


