TCSS 422 A — Spring 2018 5/8/2018
Institute of Technology

OBJECTIVES

TCSS 422: OPERATING SYSTEMS
| |
‘[: t = Midterm Review

= Assignment 2 - Matrix Task Processor

Three Easy Pieces: =0y
CVs, Concurrency Problems, ; = Condition Variables - Ch. 30
Intro to Memory Virtualization

NG NS = Concurrency Problems - Ch. 32

= Memory Virtuallzatlon Is next...
Wes J. Lloyd = Address Spaces - Ch. 13
Institute of Technology = Memory API - Ch. 14
University of Washington - Tacoma = Address Translation - Ch. 15

= Segmentation - Ch. 15

TCSS422: Operating Sy [Spring 2018] TCSS422: Operating Systems [Spring 2018]
Ly 7 AT (A2 5 e v g, U it G U T~ T Lk Th i) S 1 T, Pt G o e TP L2
0
Scores resemble a normal distribution... " Average: 73.44%
o
= Mode: 81
BELL CURVE... = Median: 73.5

B
g ° = Lower quartile <= 64.75%
2
I = Second quartile <= 73.5%
i
L = Third quartile <=81%

5 = Upper quartile <= 97%

2

I = Curve: +12
il
*iovss 0% s sum w007 om0 M0ss @ 01055 S50 o0 Si08 = Be concerned if you're in the lower quartile
TCSS 422 Midterm = More effort is needed
TCSS422: Operating Systems [Spring 2018] TCSS558: Applied Distributed Computing [Fall 2017]
2D Inttute of Technoloay)Universitylof Washinston=Tacomal | to3 Wi 2 7 201 [eete et Tachnclo U ety orWas hinsfoneacomel L4

CONDITION VARIABLES

= Support a signaling mechanism to alert
threads when preconditions have been satisfied

= Eliminate busy waiting

CHAPTER 30 = = Alert one or more threads to “consume” a result, or
CON DITION VARIABLES respond to state changes in the application

= Threads are placed on an expliclt queue (FIFO) to wait
for signals

= Signal: wakes one thread
broadcast wakes all (ordering by the 0S)

TCSS422: Operating Systems [Spring 2018] May 7, 2018
Institute of Technology, University of Washington - Tacoma Eh Institute of Technology, University of Washington - Tacoma

May7, 2018 TCS5422: Operating Systems [Spring 2018] L0s

Slides by Wes J. Lloyd L10.1

TCSS 422 A — Spring 2018 5/8/2018
Institute of Technology

CONDITION VARIABLES - 3 MATRIX GENERATOR

= Condition variable

pthread cond t c;

= Requires initialization

= Condition API calls
pthread_cond _wait (pthread_cond_t *c, pthread mutex_ t *m); wait () Matrix generation example
pthread _cond_signal (pthread_cond_t *c); signa

Chapter 30
signal.c

= wait() accepts a mutex parameter
= Releases lock, puts thread to sleep

= signal()
= Wakes up thread, awakening thread acquires lock

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

L1108

TCS5422: Operating Systems [Spring 2018] | 107 ‘ May 7, 2018

Wi 2 20T Institute of Technology, University of Washington - Tacoma

SUBTLE RACE CONDITION: PRODUCER / CONSUMER

WITHOUT A WHILE

void thr_exit() {
done = 1;
pthread_cond_signal (&c);

}

void thr_join() {
if (done == 0) Work Queue

Pthread_cond wait (s&c);
| r g
= Parent thread calls thr_join() and executes the comparison %]U

= The context switches to the child

= The child runs thr_exit() and signals the parent, but the parent
is not waiting yet.

= The signal is lost

= The parent deadlocks

Lo ewN

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

May 7, 2018 L1010 |

TCSS422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma Los May 7,2018

PRODUCER / CONSUMER PRODUCER / CONSUMER - 2

= Producer / Consumer is also known as Bounded Buffer

= Producer

= Produces items - consider the child matrix maker

= Places them in a buffer = Bounded buffer

Example: the buffer is only 1 element (single array pointer) =Similar to piping output from one Linux process to another

= Consumer = grep pthread signal.c | wc -1

= Grabs data out of the buffer =Synchronized access:

= Our example: parent thread receives dynamically sends output from grep > wc as it is produced

generated matrices and performs an operation on them =File stream

Example: calculates average value of every element (integer)

= Multithreaded web server example
= Http requests placed into work queue; threads process

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

May 7, 2018

ot TCS$422: Operating Systems [Spring 2018] | 110.12

Institute of Technology, University of Washington - Tacoma

May 7, 2018

Slides by Wes J. Lloyd L10.2

TCSS 422 A — Spring 2018
Institute of Technology

PUT/GET ROUTINES

= Buffer is a one element shared data structure (int)
= Producer “puts” data

= Consumer “gets” data

= Shared data structure requires synchronization

Institute of Technology, University of Washington - Tacoma

1 int buffer;
2 int count =
3
4 void put(int value) (
5 assert (count == 0);
6 count ;
7 buffer =
8 }
9
10 int get() {
11 assert (count == 1);
12 count = 0
13 buff
14 }
May7,2018 TCS5422: Operating Systems [Spring 2018] 013 ‘

PRODUCER / CONSUMER - 3

= Producer adds data

= Consumer removes data (busy waiting)

= Will this code work (spin locks) with 2-threads?
1. Producer 2. Consumer

1 4 *producer (void *arg) {
2
3 (int) arg;
4 for (i = 0; i < loops; i++) {
5 put(i);
3)
i }
8
9 void *consumer(void *arg) {
10
i e {
12 int tmp = get();
13 printf ("sd\n", tmp);
14)
15)
May7, 2018 TCS5422: Operating Systems [Spring 2018] | o014

Institute of Technology, University of Washington - Tacoma

= The shared data structure needs synchronization!
1 cond_t cond;
2 mutex_t mutex;
3
4 *producer (void *arg) {
5 € 11
6 r (i =0; i< loops; i++) { Producer
Z » Pthread mutex_lock(amutex); pl
g if (count == I)
9 Pthread_cond wait(&cond, smutex);
10 put (i) D
11 Pthread_cond_signal (scond) ;
12 Pthread_mutex_unlock (smutex) ;
13 }
14)
15
16 void *consumer(void *arg) {
17 t iy
18 (i =0; i< loops; i++) {
19 9 Pthread_mutex_lock (&mutex) ;
TCSS422: Operating Systems [Spring 2018]
2D \nslitulem?fechnu?ugvy,Unive[rs?wcstasf]\inglonrTacuma L5 ‘

PRODUCER/CONSUMER - 4

20 (count == 0)

21 Pthread_cond_wait (scond, &mutex);

22 nt tmp = get ()7

23 Pthread cond_signal (&cond) ;

24 Pthread mutex_unlock (smutex);

25 printf("sd\n", tmp);

26 } Consumer
27 }

= This code as-is works with just:
(1) Producer
(1) Consumer

= |f we scale to (2+) consumer’s it fails
= How can it be fixed ?

TCS5422: Operating Systems [Spring 2018]

k) Th i [See et Techolo syl nersityofWashinstonSiecome!

| 110.16

EXECUTION TRACE:
NO WHILE, 1 PRODUCER, 2 CONSUMERS
T, | State |To| State [T, | State |Count| Comment
= Two threads ¢l | Running Ready Ready 0
2 | Rumning Ready Ready 0
» 3| sleep Ready Ready 0 Nothing to get
Legend Sleep Ready | pl | Running 0
c1 /p1 - lock Sleep Ready p2 | Running 0
c2/p2- check var Sleep Read p4 | Running 1 Buffer now full
3/p3- wait ;ea:y ;ea:y p: :unnmg 1 7., awoken
eady cady | p unning
c4- put() Ready Ready | pl | Running i
p4- get() Ready Ready | p2 | Running 1
c5/p5- signal Ready Ready» p3 | Sleep 1 Buffer full: sleep
c6/p6- unlock Readylcl | Running Sleep 1 7,y sneaks in ...
Ready | <2 | Rumning Sleep 1
ReacylPc4 | Running Sleep 0 ...and grabs data
Ready | <5 | Rumning Ready 0 7, awoken
Reacy[lP<6 | Running Ready 0
‘ 4 | Runing Ready Ready 0 Oh oh! No data
o |

PRODUCER/CONSUMER

SYNCHRONIZATION

= When producer threads awake, they do not check if there is
any data in the buffer...

= Need while, not if
= What if T, puts a value, wakes T,; whom consumes the value
= Then T, has a value to put, but T,,’s signal on &cond wakes T,
= There is nothing for T, consume, so T, sleeps

" Tcq, Tco, and T, all sleep forever

= T., needs to wake T, to T,

TCS5422: Operating Systems [Spring 2018]

Lk Th i [nsRueor TechnolosyUniversitylof WashinstonSiacoma!

| 110.18

Slides by Wes J. Lloyd

5/8/2018

L10.3

TCSS 422 A — Spring 2018
Institute of Technology

EXECUTION TRACE:

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS
T, | State |To| State |7, | state |Count| Comment
<1 | Running Ready Ready 0
2 | Running Ready Ready 0
=) Sleep Ready Ready 0 Nothing to get
Legend Sleep | c1 | Running Ready 0
C1/p1— lock Sleep <2 | Runmning Ready 0
c2/p2- check var Sleep | 3 Sleep Ready o Nothing to get
c3/p3- wait Z:eep Z:eep p; :unning 2
eep ecp | P unning
c4- put() Sleep Sleep | p4 | Running i Buffer now full
p4- get() * Ready Sleep | p5 | Running 1 T, awoken
¢5/p5- signal Ready Sleep | p6 | Running 1
c6/p6- unlock Ready Sleep | pl | Running 1
Ready Sleep 02 | Running 1
Ready Sleep | p3 | Sleep 1 Must sleep (ful)
» 2 | Running Sleep Sleep 1 Recheck condition
¢4 | Running Sleep Sleep 0 T,y grabs data
* 5 | Running Ready Sleep o Oops! Woke T,
o |

EXECUTION TRACE - 2

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

= T, runs, no data to consume

T | state [r;| state |7, | state |Count| Comment
—g_Le end - (cont)

c1/p1-lock 6 | Running Ready Sleep 0
c2/p2- check var 1 | Rumning Ready Sleep 0
c3/p3- wait 2 | Rumning Ready Sleep 0
c4- put() 3 Sleep Ready Sleep 0 Nothing to get
p4_ get() S:sep c2 Running Sleep 0
c5/p5— signal Sleep| 3 Sleep Sleep 0 Everyone asleep ...
c6/p6- unlock

TCS5422: Operating Systems [Spring 2018]

Lk Th i) S 1 T, Pt G o e TP

| 110.20

TWO CONDITIONS

= Use two condition variables: empty & full
= One condition handles the producer
= the other the consumer

1
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i;
6 (i = 0; i < loops; i++) {
7 Pthread_mutex_lock (&mutex) ;
8 {count == 1)
9 Pthread_cond_wait (&empty, smutex);
10 put (i) ;
11 ad_cond_signal(, &full);
12 Pthread_mutex_unlock (&mutex) ;
13 }
14 }
15
May 7, 2018 TCS$422: Operating Systems [Spring 2018] 021

Institute of Technology, University of Washington - Tacoma

FINAL PRODUCER/CONSUMER

= Change buffer from int, to int buffer[MAX]
= Add indexing variables

FINAL P/C - 2

' mutexi-t mutex;

¥

2

=

4 void *producer(void *arg) (
5 int i;
6

7

8

for (i =0; i < loops; i++) {
pthread_mutex_lock (smutex) ;

while (count == MAX)
9 Pthread_cond wait (sempty, &mutex);
10 put (i)
11 Pthread_cond_signal (&full);
12 Pthread_mutex_unlock (smutex);
13 }
14 7
15
16 void *consumer(void *arg) {
17 int i;
18 for (i = 0; i < loops; i++) {
19 Pthread_mutex_lock (smutex) ; /e
20 while (count == 0) 1/ c
21 Pthread cond wait(sfull, smutex); // c3
22 int tmp = get():) ca
May 7, 2018 TCSS5422: Operating Systems [Spring 2018] 1023

Institute of Technology, University of Washington - Tacoma

Institute of Technology, University of Washington - Tacoma

T int buffer[MAX];
2 07
3 0;
4 0;
5
3 void put(int value) {
7 buffer[fill] = value;
8 £ill = (fill + 1) % MAX;
9 count++;
10 }
11
12 int get() {
13 int tmp = buffer(use];
14 use = (use + 1) % MAX;
15 count--;
16 return tmp;
iz § }
TCSS5422: Operating Systems [Spring 2018]
k) Th i |ns(i(u(euf?rechno?o;Unive[rs‘ilxycsWasr]\ingwn—ra:oma | to22 |
(Cont.)
23 Pthread_cond_signal (sempty) ;
24 Pthread_mutex_unlock (smutex);
25 printf("sd\n", tmp);
26 }
27 }
= Producer: only sleeps when buffer is full
= Consumer: only sleeps if buffers are empty
May 7, 2018 TCSS422: Operating Systems [Spring 2018] | 11024

Slides by Wes J. Lloyd

5/8/2018

L10.4

TCSS 422 A — Spring 2018
Institute of Technology

COVERING CONDITIONS

= A condition that covers all cases (conditions):
= Excellent use case for pthread_cond_broadcast

= Consider memory allocation:

=When a program deals with huge memory
allocation/deallocation on the heap

scarce

PREVENT: Out of memory:
- queue requests until memory is free

= Which thread should be woken up?

= Access to the heap must be managed when memory is

TCS5422: Operating Systems [Spring 2018]
Wi 2 20T T e e ol 2 U nvers o Washin tonsrace el

11025

COVERING CONDITIONS - 2

1 / how many of the heap are free?
2! int bytesLeft = MAX_HEAP SIZE;

3

4 / need loc ondition too

5 cond_t c;

3 mutex_t m;

7

8 void *

9 allocate (int size) {

10 Pthread mutex_lock(&m);
* c (bytesLeft < size)

s Check available memory
12 thread_cond_wait (sc, &m);
13 v *ptr = ...; / get mem from hea
14 bytesLeft -= size;
15 Pthread_mutex_unlock (&m);
16 return ptr;
17 }
18
19 void free(void *ptr, int size) {
20 Pthread mutex_lock (sm) 7

bytesLeft ize;
22 <Pthread cond signal (c1Z Broadcast
23

Pthread mutex_unlock (&m) 7
24 1

TCS5422: Operating Systems [Spring 2018]

Lk Th i) S 1 T, Pt G o e TP

| 110.26

COVER CONDITIONS - 3

memory

= Each thread evaluates if there’s enough memory:
(bytesLeft < size)

Insufficient memory
= Run: requests which can be fulfilled
with newly available memory!

= Overhead
= Many threads may be awoken which can’t execute

= Broadcast awakens all blocked threads requesting

= Reject: requests that cannot be fulfilled- go back to sleep

TCS5422: Operating Systems [Spring 2018]
2D Inttute of Technoloay)Universitylof Washinston=Tacomal

11027

CHAPTER 32 -
CONCURRENCY
PROBLEMS

TCSS422; Operating Systems [Spring 2018]
UEy izt Institute of Technology, University of Washington - Tacoma

OBJECTIVES

= Chapter 32:
= Non-deadlock concurrency bugs

= Deadlock causes

= Deadlock prevention

TCS5422: Operating Systems [Spring 2018]
Wi 2 TS Institute o Technoloay)Universitylof Washington®Tacomal

11029

CONCURRENCY BUGS IN

OPEN SOURCE SOFTWARE

= ‘“Learning from Mistakes - A Comprehensive Study on
Real World Concurrency Bug Characteristics”

=Shan Lu et al.

= Architectural Support For Programming Languages and
Operating Systems (ASPLOS 2008), Seattle WA

Application What it does Non-Deadlock Deadlock
MySQL Database Server 14 9
Apache Web Server 13 4
Mozilla Web Browser 41 16

Open Office Office Suite 6 2

Total 74 31
May7, 2018 TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma | L1030

Slides by Wes J. Lloyd

5/8/2018

L10.5

TCSS 422 A — Spring 2018 5/8/2018

Institute of Technology

NON-DEADLOCK BUGS

= Majority of concurrency bugs

= Most common:
= Atomicity violation: forget to use locks

ATOMICITY VIOLATION - MY

= Two threads access the proc_info field in struct thd
" NULLis 0in C

= Serialized access to shared memory among separate
threads is not enforced (e.g. non-atomic)

= Simple example:

=Qrder violation: failure to initialize lock/condition - AN
before use 3 R
. 4 fputs (thd->proc_info , .);
Programmer intended 5
variable to be accessed ‘ 6 }
atomically... 7
8 Thread2::
9 thd->proc_info = NULL;
TCS5422: Operating Systems [Spring 2018] TCS$422: Operating Systems [Spring 2018]
Wi 2 20T T e e ol 2 U nvers o Washin tonsrace el L1031 Lk Th i) S 1 T, Pt G o e TP 1032

ATOMICITY VIOLATION - SOLUTION

® Add locks for all uses of: thd->proc_info

pthread mutex_t lock = PTHREAD MUTEX_INITTALIZER;

12 Thread2::
13 pthread mutex_lock(slock);
14 thd->proc_info = NULL;

15 pthread mutex_unlock (slock);

TCS5422: Operating Systems [Spring 2018]

2D Institute of Technology, University of Washington - Tacoma

11033

ORDER VIOLATION BUGS

= Desired order between memory accesses is flipped
mE.g. something is checked before it is set
= Example:

mState = mThread->State

3
2
3 Threadi::
4 pthread mutex_lock(slock);
5 if(thd->proc_info) { 1 Threadl::
6 i 2 void init(){
7 fputs (thd->proc_info , ..); 5] mThread = PR_CreateThread (mMain, ..);
8 4 b
9) 5
10 pthread_mutex_unlock (&lock); 6 Thread2::
11 7 void mMain(.){
8
9

}

= What if mThread is not initialized?

TCS5422: Operating Systems [Spring 2018]

k) Th i [See et Techolo syl nersityofWashinstonSiecome! | L1034

= Use condition variable to enforce order

1 pthread mutex_t mtLock = PTHREAD_MUTEX_INITIALIZER;

2 pthread_cond_t mtCond = PTHREAD_COND_INITIALIZER; . <

3 int mtInit = 0; 21 // wa e alize.
4 22 pthread_mutex_lock (smtLock) ;

5 Thread 1:: 23 while (mtInit == 0)

6 oid init () { 24 pthread_cond_wait (émtCond, &mtLock):
7 25 pthread mutex unlock (&mtLock);

8 mThread = PR_CreateThread (mMain,..); 26

9 = 27 mState = mThread->State;

10 /1 sig at the thread has been 28

11 pthread mutex_lock (smtLock) ; 22 i

12 mtInit = 1;

13 pthread_cond_signal (smtCond) ;

14 pthread_mutex_unlock(&mtLock) ;

15

16 }

sk

18 Thread2::

19 void mMain(.) {

20

TCSS422: Operating Systems [Spring 2018] TCSS5422: Operating Systems [Spring 2018]

Wi 2 TS \nsliluleo!flfechnu?ugvy,Unive[rs?wcffWasf]\inglonrTacuma L1035 Lk Th i |nsxi(u(euf?rechno?o;Univs[rs‘i’xycsWasr]\ingwn—Ta:oma | to3e

Slides by Wes J. Lloyd

L10.6

TCSS 422 A — Spring 2018
Institute of Technology

NON-DEADLOCK BUGS - 1

2 97% of Non-Deadlock Bugs were
=Atomicity
=Order violations

= Consider what is involved in “spotting” these
bugs in code

= Desire for automated tool support (IDE)

May7,2018 TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma L1037

NON-DEADLOCK BUGS - 2

= Atomicity
=How can we tell if a given variable is shared?
Can search the code for uses
=How do we know if all instances of its use are shared?
Can some non-synchronized (non-atomic) uses be legal?
Before threads are created, after threads exit
Must verify the scope

= Order violation
= Must consider all variable accesses
= Must known desired order

May7, 2018 TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma | Hoss

DEADLOCK BUGS

&

= Presence of a cycle in code
= Thread 1 acquires lock L1, waits for lock L2
= Thread 2 acquires lock L2, waits for lock L1

Thread 1: Thread 2:

Holds
lock (L1) ; lock (L2) —
lock (L2) ; lock(Ll);

= Both threads can block, unless
one manages to acquire both locks

Lock L2
Holds

Wanted by
. =
Aq payuepy, -

May7,2018 TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma 11039

REASONS FOR DEADLOCKS

= Complex code

= Must avoid circular dependencies - can be hard to find...
= Encapsulation hides potential locking conflicts

= Easy-to-use APIs embed locks inside

= Programmer doesn’t know they are there

= Consider the Java Vector class:

1 Vector v1,v2;
2 v1.AddAll(v2);

= Vector is thread safe (synchronized) by design

= If there is a v2.AddAll(v1); call at nearly the same time
deadlock could result

May7, 2018 TCS5422: Operating Systems [Spring 2018]

a
Institute of Technology, University of Washington - Tacoma | todo

CONDITIONS FOR DEADLOCK

= Four conditions are required for dead lock to occur

Description

Mutual Exclusion | Threads claim exclusive control of resources that they require.

Threads hold resources allocated to them while waiting for additional
resources

Hold-and-wait

No preemption | Resources cannot be forcibly removed from threads that are holding them.

There exists a circular chain of threads such that each thread holds one more

Cireular wait 4 3 3
resources that are being requested by the next thread in the chain
TCS5422: Operating Systems [Spring 2018]
Wi 2 TS Institute o Technoloay)Universitylof Washington®Tacomal Lio41

PREVENTION - MUTUAL EXCLUSION

= Build wait-free data structures
= Eliminate locks altogether

= Build structures using CompareAndSwap atomic CPU (HW)
instruction

= C pseudo code for CompareAndSwap
= Hardware executes this code atomically

1 int CompareAndSwap(int *address, int expected, int new)(
2 if(*address == expected) {
3 *address = news
4 return 1; //
5 }
6 ety 0
7 }
May7)2018 TCSS422: Operating Systems [Spring 2018] | 042 |

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

5/8/2018

L10.7

TCSS 422 A — Spring 2018
Institute of Technology

PREVENTION - MUTUAL EXCLUSION - 2

MUTUAL EXCLUSION: LIST INSERTION

= Recall atomic increment

void AtomicIncrement (int *value, int amount)
do{
int old = *value;
}while (CompareAndswap (value, old, old+amount)==0);

o wn e

= Compare and Swap tries over and over until
successful

= CompareAndSwap is guaranteed to be atomic
=When it runs it is ALWAYS atomic (at HW level)

TCS5422: Operating Systems [Spring 2018]

Institute of Technology, University of Washington - Tacoma L1043

May 7, 2018

® Consider list insertion

void insert(int value){
node t * n = malloc(sizeof (node_t)):
assert(n != NULL);
n->value = value ;
n->next = head;
head =n;

Some wo e

May 7, 2018

TCS5422: Operating Systems [Spring 2018] 044
Institute of Technology, University of Washington - Tacoma i

MUTUAL EXCLUSION - LIST INSERTION - 2

MUTUAL EXCLUSION - LIST INSERTION - 3

= Lock based implementation

: void insert(int value){

2 node_t * n = malloc(sizeof (node_t));
3 assert(n != NULL);

4 n->value = value

5 lock(listlock) ;
6

7

8

9

gin critical section

n->next = head;
head =n;
unlock(listlock) ; //end

TCS5422: Operating Systems [Spring 2018]
Institute of Technology, University of Washington - Tacoma

May 7, 2018 110.45 ‘

= Wait free (no lock) implementation

void insert (int value) {
node_t *n = malloc (sizeof (node_t));
assert(n != NULL);

n->value = value;
{
n->next = head;
} while (CompareAndSwap (shead, n->next, n));

©ao e wn e

b

= Assign &head to n (new node ptr)
= 0Only when head = n->next

TCS$422: Operating Systems [Spring 2018] | 110.46

k) Th i [See et Techolo syl nersityofWashinstonSiecome!

QUESTIONS

Slides by Wes J. Lloyd

5/8/2018

L10.8

