
TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/272017

Slides by Wes J. Lloyd L9.1

Condition
Variables

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Quiz: How to create a thread safe data struct
 Quizzes like these are great, I learn a lot!

 How hybrid approach is implemented?

 Hybrid approach: presumably for linked-list locking

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.2

FEEDBACK – 4/25

1 lock : n nodes n locks: n nodes

HYBRIDTradeoff space:

 Consider the tradeoff space: Concurrent Linked List
 Ratio of locks : Nodes

 Which design is best for fast list traversal?
 Which design is best for optimal concurrency?
 Many threads working within the structure at same time

 If we add locks:
How does list traversal change?
How does concurrency change?

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.3

FEEDBACK - 2

1 lock : n nodes n locks: n nodes

HYBRIDTradeoff space:

 Quiz 3 verifications

 Program 2

 Posted

 Midterm: Thursday May 4 – Primary Coverage:

 CPU Scheduling (Virtualizing the CPU)

 Chapters 4, 6, 7, 8, 9

 Concurrency

 Chapters 26, 27, 28, 29, 30, 32*
 * - deadlocks: common causes, how to avoid

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.4

FEEDBACK - 3

Sloppy Counter, demo

Condition variables

Consumer/Producer

Covering condition

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.5

OBJECTIVES

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?
Why do we want counters local to each CPU Core?

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.6

SLOPPY COUNTER

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/272017

Slides by Wes J. Lloyd L9.2

 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.7

SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S What is the consequence?

 High S What is the consequence?

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.8

THRESHOLD VALUE S

 Example implementation (sloppybasic.c)

 Also with CPU affinity (sloppy.c)

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.9

SLOPPY COUNTER - EXAMPLE

 There are many cases where a thread wants to
wait for another thread before proceeding with
execution

Consider when a precondition must be fulfilled
before it is meaningful to proceed …

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.10

CONDITION VARIABLES

 Support a signaling mechanism to alert
threads when preconditions have been satisfied

 Eliminate busy waiting

 Alert one or more threads to “consume” a result, or
respond to state changes in the application

 Threads are placed on an explicit queue (FIFO) to wait
for signals

 Signal: wakes one thread
broadcast wakes all (ordering by the OS)

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.11

CONDITION VARIABLES - 2

 Condition variable

 Requires initialization

 Condition API calls

 wait() accepts a mutex parameter
 Releases lock, puts thread to sleep

 signal()
 Wakes up thread, awakening thread acquires lock

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.12

CONDITION VARIABLES - 3

pthread cond t c;

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/272017

Slides by Wes J. Lloyd L9.3

 Why would we want to put waiting threads on a queue… why
not use a stack?

 Using condition variables eliminates busy waiting by putting a
thread “sleep” and yielding the CPU. Why do we want to not
busily wait for the lock to become available?

 A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.13

CONDITION VARIABLES - QUESTIONS

Matrix generation example

Chapter 30

signal.c

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.14

MATRIX GENERATOR

 The main thread, and worker thread (generates matrices)
share a single matrix pointer.

 What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

 Let’s try “nosignal.c”

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.15

MATRIX GENERATOR

 Parent thread calls thr_join() and executes the comparison

 The context switches to the child

 The child runs thr_exit() and signals the parent, but the parent
is not waiting yet.

 The s ignal is lost

 The parent deadlocks

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.16

SUBTLE RACE CONDITION:
WITHOUT A WHILE

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.17

PRODUCER / CONSUMER

 Producer

 Produces items – consider the child matrix maker

 Places them in a buffer
 Example: the buffer is only 1 element (single array pointer)

 Consumer

 Grabs data out of the buffer

 Our example: parent thread receives dynamically
generated matrices and performs an operation on them
 Example: calculates average value of every element (integer)

 Multithreaded web server example

 Http requests placed into work queue; threads process

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.18

PRODUCER / CONSUMER

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/272017

Slides by Wes J. Lloyd L9.4

 Producer / Consumer is also known as Bounded Buffer

 Bounded buffer

 Similar to piping output from one Linux process to another

 grep pthread signal.c | wc –l

 Synchronized access:
sends output from grep wc as it is produced

 File stream

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.19

PRODUCER / CONSUMER - 2

 Buffer is a one element shared data structure (int)

 Producer “puts” data

 Consumer “gets” data

 Shared data structure requires synchronization

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.20

PUT/GET ROUTINES

1 int buffer;
2 int count = 0; // initially, empty
3
4 void put(int value) {
5 assert(count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert(count == 1);
12 count = 0;
13 return buffer;
14 }

 Producer adds data

 Consumer removes data (busy waiting)

 Will this code work (spin locks) with 2-threads?
1. Producer 2. Consumer

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.21

PRODUCER / CONSUMER - 3

 The shared data structure needs synchronization!

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.22

PRODUCER / CONSUMER - 3

Producer

 This code as-is works with just:

(1) Producer

(1) Consumer

 If we scale to (2+) consumer’s it fails
 How can it be fixed ?

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.23

PRODUCER/CONSUMER - 4

20 if (count == 0) // c2
21 Pthread_cond_wait(&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread_cond_signal(&cond); // c5
24 Pthread_mutex_unlock(&mutex); // c6
25 printf("%d\n", tmp);
26 }
27 }

Consumer

 Two threads

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.24

EXECUTION TRACE:
NO WHILE, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/272017

Slides by Wes J. Lloyd L9.5

 When producer threads awake, they do not check if there is
any data in the buffer…

 Need while, not if

 What if Tp puts a value, wakes Tc1 whom consumes the value

 Then Tp has a value to put, but Tc1’s signal on &cond wakes Tc2

 There is nothing for Tc2 consume, so Tc2 sleeps

 Tc1, Tc2, and Tp all sleep forever

 Tc1 needs to wake Tp to Tc2

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.25

PRODUCER/CONSUMER
SYNCHRONIZATION

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.26

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Tc2 runs, no data to consume

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.27

EXECUTION TRACE – 2
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Use two condition variables: empty & full

 One condition handles the producer

 the other the consumer

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.28

TWO CONDITIONS

1 cond_t empty, fill;
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock(&mutex);
8 while (count == 1)
9 Pthread_cond_wait(&empty, &mutex);
10 put(i);
11 Pthread_cond_signal(&fill);
12 Pthread_mutex_unlock(&mutex);
13 }
14 }
15

full;

&full);

 Change buffer from int, to int buffer[MAX]

 Add indexing variables

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.29

FINAL PRODUCER/CONSUMER

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.30

FINAL P/C - 2

full

(&full);

&full,

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/272017

Slides by Wes J. Lloyd L9.6

 Producer: only sleeps when buffer is full

 Consumer: only sleeps if buffers are empty

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.31

FINAL P/C - 3

 A condition that covers all cases (conditions):

 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:

What if a program deals with huge memory
allocation/deallocation on the heap

 Access to the heap must be managed when memory is
scarce

PREVENT: Out of memory:
- queue requests until memory is free

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.32

COVERING CONDITIONS

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.33

COVERING CONDITIONS - 2

Broadcast

Check available memory

 Broadcast awakens all blocked threads requesting
memory

 Each thread evaluates if there’s enough memory:
(bytesLeft < size)
 Reject: requests that cannot be fulfilled- go back to sleep
 Insufficient memory

 Run: requests which can be fulfilled
 with newly available memory!

 Overhead
Many threads may be awoken which can’t execute

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.34

COVER CONDITIONS - 3

QUESTIONS

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L9.35

