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TCSS 422: OPERATING SYSTEMS

 Quiz: How to create a thread safe data struct
 Quizzes like these are great, I learn a lot!

 How hybrid approach is implemented?

 Hybrid approach: presumably for linked-list locking
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FEEDBACK – 4/25

1 lock : n nodes n locks: n nodes

HYBRIDTradeoff space:

 Consider the tradeoff space: Concurrent Linked List
 Ratio of locks : Nodes

 Which design is best for fast list traversal?
 Which design is best for optimal concurrency?
 Many threads working within the structure at same time

 If we add locks:
How does list traversal change?
How does concurrency change?
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FEEDBACK - 2

1 lock : n nodes n locks: n nodes

HYBRIDTradeoff space:

 Quiz 3 verifications 

 Program 2

 Posted 

 Midterm: Thursday May 4 – Primary Coverage:

 CPU Scheduling (Virtualizing the CPU)

 Chapters 4, 6, 7, 8, 9

 Concurrency

 Chapters 26, 27, 28, 29, 30, 32*
 * - deadlocks: common causes, how to avoid

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.4

FEEDBACK - 3

Sloppy Counter, demo

Condition variables

Consumer/Producer

Covering condition

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.5

OBJECTIVES

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically 
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?  
Why do we want counters local to each CPU Core?
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SLOPPY COUNTER
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 Update threshold (S) = 5

 Synchronized across four CPU cores

 Threads update local CPU counters
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SLOPPY COUNTER - 2

 Consider 4 threads increment a counter 1000000 times each

 Low S  What is the consequence?

 High S  What is the consequence?
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THRESHOLD VALUE S

 Example implementation (sloppybasic.c)

 Also with CPU affinity (sloppy.c)
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SLOPPY COUNTER - EXAMPLE

 There are many cases where a thread wants to 
wait for another thread before proceeding with 
execution

Consider when a precondition must be fulfilled 
before it is meaningful to proceed …
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CONDITION VARIABLES

 Support a signaling mechanism to alert 
threads when preconditions have been satisfied

 Eliminate busy waiting

 Alert one or more threads to “consume” a result, or 
respond to state changes in the application

 Threads are placed on an explicit queue (FIFO) to wait 
for signals

 Signal: wakes one thread
broadcast wakes all (ordering by the OS)
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CONDITION VARIABLES - 2

 Condition variable

 Requires initialization

 Condition API calls

 wait() accepts a mutex parameter
 Releases lock, puts thread to sleep

 signal()
 Wakes up thread, awakening thread acquires lock
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CONDITION VARIABLES - 3

pthread cond t c;
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 Why would we want to put waiting threads on a queue… why 
not use a stack?

 Using condition variables eliminates busy waiting by putting a 
thread “sleep” and yielding the CPU.  Why do we want to not 
busily wait for the lock to become available?

 A program has 10-threads, where 9 threads are waiting.  The 
working thread finishes and broadcasts that the lock is 
available.  What happens next?
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CONDITION VARIABLES - QUESTIONS

Matrix generation example

Chapter 30

signal.c
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MATRIX GENERATOR

 The main thread, and worker thread (generates matrices) 
share a single matrix pointer.

 What would happen if we don’t use a condition variable to 
coordinate exchange of the lock?

 Let’s try “nosignal.c”
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MATRIX GENERATOR

 Parent thread calls thr_join() and executes the comparison

 The context switches to the child

 The child runs thr_exit() and signals the parent, but the parent 
is not waiting yet.  

 The s ignal is  lost

 The parent deadlocks
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SUBTLE RACE CONDITION: 
WITHOUT A WHILE
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PRODUCER / CONSUMER

 Producer

 Produces items – consider the child matrix maker

 Places them in a buffer
 Example: the buffer is only 1 element (single array pointer)

 Consumer

 Grabs data out of the buffer

 Our example: parent thread receives dynamically 
generated matrices and performs an operation on them 
 Example: calculates average value of every element (integer)

 Multithreaded web server example

 Http requests placed into work queue; threads process
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PRODUCER / CONSUMER
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 Producer / Consumer is also known as Bounded Buffer

 Bounded buffer

 Similar to piping output from one Linux process to another

 grep pthread signal.c | wc –l

 Synchronized access:
sends output from grep  wc as it is produced

 File stream
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PRODUCER / CONSUMER - 2

 Buffer is a one element shared data structure (int)

 Producer “puts” data

 Consumer “gets” data

 Shared data structure requires synchronization
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PUT/GET ROUTINES

1 int buffer;
2 int count = 0; // initially, empty
3
4 void put(int value) {
5 assert(count == 0);
6 count = 1;
7 buffer = value;
8 }
9
10 int get() {
11 assert(count == 1);
12 count = 0;
13 return buffer;
14 }

 Producer adds data

 Consumer removes data (busy waiting)

 Will this code work (spin locks) with 2-threads?
1. Producer  2. Consumer
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PRODUCER / CONSUMER - 3

 The shared data structure needs synchronization!
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PRODUCER / CONSUMER - 3

Producer

 This code as-is works with just:

(1) Producer

(1) Consumer

 If we scale to (2+) consumer’s it fails 
 How can it be fixed ?
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PRODUCER/CONSUMER - 4

20 if (count == 0) // c2
21 Pthread_cond_wait(&cond, &mutex); // c3
22 int tmp = get(); // c4
23 Pthread_cond_signal(&cond); // c5
24 Pthread_mutex_unlock(&mutex); // c6
25 printf("%d\n", tmp);
26 }
27 }

Consumer

 Two threads
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EXECUTION TRACE: 
NO WHILE, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock
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 When producer threads awake, they do not check if there is 
any data in the buffer…

 Need while, not if

 What if Tp puts a value, wakes Tc1 whom consumes the value 

 Then Tp has a value to put, but Tc1’s signal on &cond wakes Tc2

 There is nothing for Tc2 consume, so Tc2 sleeps

 Tc1, Tc2, and Tp all sleep forever

 Tc1 needs to wake Tp to Tc2
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PRODUCER/CONSUMER 
SYNCHRONIZATION
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EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Tc2 runs, no data to consume
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EXECUTION TRACE – 2
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

Legend
c1/p1- lock
c2/p2- check var
c3/p3- wait
c4- put()
p4- get()
c5/p5- signal
c6/p6- unlock

 Use two condition variables: empty & full

 One condition handles the producer

 the other the consumer
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TWO CONDITIONS

1 cond_t empty, fill;
2 mutex_t mutex;
3
4 void *producer(void *arg) {
5 int i;
6 for (i = 0; i < loops; i++) {
7 Pthread_mutex_lock(&mutex);
8 while (count == 1)
9 Pthread_cond_wait(&empty, &mutex);
10 put(i);
11 Pthread_cond_signal(&fill);
12 Pthread_mutex_unlock(&mutex);
13 }
14 }
15

full;

&full);

 Change buffer from int, to int buffer[MAX]

 Add indexing variables
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FINAL PRODUCER/CONSUMER
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FINAL P/C - 2

full

(&full);

&full,
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 Producer: only sleeps when buffer is full

 Consumer: only sleeps if buffers are empty

April 27, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L9.31

FINAL P/C - 3

 A condition that covers all cases (conditions):

 Excellent use case for pthread_cond_broadcast

 Consider memory allocation:

What if a program deals with huge memory 
allocation/deallocation on the heap

 Access to the heap must be managed when memory is 
scarce 

PREVENT: Out of memory:
- queue requests until memory is free
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COVERING CONDITIONS
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COVERING CONDITIONS - 2

Broadcast

Check available memory

 Broadcast awakens all blocked threads requesting 
memory

 Each thread evaluates if there’s enough memory: 
(bytesLeft < size)
 Reject: requests that cannot be fulfilled- go back to sleep
 Insufficient memory

 Run: requests which can be fulfilled
 with newly available memory!

 Overhead
Many threads may be awoken which can’t execute
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COVER CONDITIONS - 3

QUESTIONS
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