TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

Variables

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

5H ?!3

Condition '5

04/272017

FEEDBACK - 4/25

= Quiz: How to create a thread safe data struct
= Quizzes like these are great, | learn a lot!

= How hybrid approach is implemented?
= Hybrid approach: presumably for linked-list locking

/ HYBRID
q

Tradeoff space:

1 lock : n nodes n locks: n nodes

TCS5422: Operating Systems [Spring 2017)

April 27, 2017 Institute of Technology, University of Washington - Tacoma

FEEDBACK - 2

= Consider the tradeoff space: Concurrent Linked List

= Ratio of locks : Nodes
Tradeoff space: / HYBRID
v

1 lock : n nodes
= Which design is best for fast list traversal?
= Which design is best for optimal concurrency?
= Many threads working within the structure at same time
= |f we add locks:
How does list traversal change?
How does concurrency change?

n locks: n nodes

TCS5422: Operating Systems [Spring 2017)

April 27, 2017 Institute of Technology, University of Washington - Tacoma

| 193 ‘

FEEDBACK - 3

= Quiz 3 verifications

= Program 2
= Posted

= Midterm: Thursday May 4 - Primary Coverage:
= CPU Scheduling (Virtualizing the CPU)
=Chapters 4,6,7, 8,9

= Concurrency
= Chapters 26, 27, 28, 29, 30, 32*
* - deadlocks: common causes, how to avoid

TCS5422: Operating Systems [Spring 2017)

April 27, 2017 Institute of Technology, University of Washington - Tacoma

OBJECTIVES

=Sloppy Counter, demo

= Condition variables

= Consumer/Producer

= Covering condition

TCS5422: Operating Systems [Spring 2017)

April 27, 2017 Institute of Technology, University of Washington - Tacoma

SLOPPY COUNTER

= Provides single logical shared counter
= Implemented using local counters for each ~CPU core
4 CPU cores = 4 local counters & 1 global counter
Local counters are synchronized via local locks
= Global counter is updated periodically
Global counter has lock to protect global counter value

Sloppiness threshold (S):
Update threshold of global counter with local values

Small (S): more updates, more overhead
Large (S): fewer updates, more performant, less synchronized
= Why this implementation?
Why do we want counters local to each CPU Core?

TCS5422: Operating Systems [Spring 2017)

April 25, 2017 Institute of Technology, University of Washington - Tacoma

| 8.6 |

Slides by Wes J. Lloyd

L9.1

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/272017

SLOPPY COUNTER - 2

= Update threshold (S) =5
= Synchronized across four CPU cores
= Threads update local CPU counters

Institute of Technology, University of Washington - Tacoma

Time ‘ Ly ‘ Ly ‘ Ly Ly G
() 0)] () ()
1 0 () 1 1 ()
2 1 [¢) 2 1 ()
3 2) 3 1 ()
4 3 0 3 2 [
5 4 1 3 3 ()
6 5>0 1 3 4 5 (from L,)
7 0 2 4 530 10 (from Ly)

April 25, 2017 TC55422: Operating Systems [Spring 2017] | 87 ‘

THRESHOLD VALUE S

= Consider 4 threads increment a counter 1000000 times each

= Low S > What is the consequence?
= High S > What is the consequence?

— T T ———%
1 2 4 8 16 32 64 128 256 5121024
Sloppiness

TCS5422: Operating Systems [Spring 2017)

LN e S 1 T, Pt G e TP

SLOPPY COUNTER - EXAMPLE

= Example implementation (sloppybasic.c)

= Also with CPU affinity (sloppy.c)

TCS5422: Operating Systems [Spring 2017]

April 25, 2017 Institute of Technology, University of Washington - Tacoma

CONDITION VARIABLES

" There are many cases where a thread wants to
wait for another thread before proceeding with
execution

mConsider when a precondition must be fulfilled
before it is meaningful to proceed ...

TCS5422: Operating Systems [Spring 2017)

LN ZE 0 [See ot Techolo syl niersityofWashinstonmiecome!

19.10

CONDITION VARIABLES - 2

= Support a signaling mechanism to alert
threads when preconditions have been satisfied

= Eliminate busy waiting

respond to state changes in the application

for signals

= Signal: wakes one thread
broadcast wakes all (ordering by the 0S)

= Alert one or more threads to “consume” a result, or

= Threads are placed on an expllclt queue (FIFO) to wait

TCS5422: Operating Systems [Spring 2017)

April 27, 2017 Institute of Technology, University of Washington - Tacoma

| 911

CONDITION VARIABLES - 3

= Condition variable

pthread cond t c;

= Requires initialization

= Condition API calls

pthread _cond wait(pthread cond t *c, pthread mutex t *m); // wa
pthread_cond_signal (pthread_cond_t *c); // signa

= wait() accepts a mutex parameter
= Releases lock, puts thread to sleep

= signal()
= Wakes up thread, awakening thread acquires lock

TCS5422: Operating Systems [Spring 2017)

LN 0 [nsGRueof TechnolokyUniversitylof WashinstonTecoma!

19.12

Slides by Wes J. Lloyd

L9.2

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

CONDITION VARIABLES - QUESTIONS

= Why would we want to put waiting threads on a queue... why
not use a stack?

= Using condition variables eliminates busy waiting by putting a
thread “sleep” and yielding the CPU. Why do we want to not
busily wait for the lock to become available?

= A program has 10-threads, where 9 threads are waiting. The
working thread finishes and broadcasts that the lock is
available. What happens next?

04/272017

TCS5422: Operating Systems [Spring 2017]

April 27, 2017 Institute of Technology, University of Washington - Tacoma

| 1913

MATRIX GENERATOR

Matrix generation example

Chapter 30
signal.c

TCS5422: Operating Systems [Spring 2017)

L2z 0 S 1 T, Pt G e TP

19.14

MATRIX GENERATOR

= The main thread, and worker thread (generates matrices)
share a single matrix pointer.

= What would happen if we don’t use a condition variable to
coordinate exchange of the lock?

= Let’s try “nosignal.c”

TCS5422: Operating Systems [Spring 2017]

April 27, 2017 Institute of Technology, University of Washington - Tacoma

| 1915

SUBTLE RACE CONDITION:
WITHOUT A WHILE

void thr_exit() (
done = 1;
Pthread_cond_signal (sc);

}

void thr_join() {
if (done == 0)
Pthread_cond wait (sc);

CEI e WN

}

= Parent thread calls thr_join() and executes the comparison
= The context switches to the child

= The child runs thr_exit() and signals the parent, but the parent
is not waiting yet.

= The signal is lost
= The parent deadlocks

TCS5422: Operating Systems [Spring 2017)

LN ZE 0 [See ot Techolo syl niersityofWashinstonmiecome!

19.16

PRODUCER / CONSUMER

Work Queue

<l

TCS5422: Operating Systems [Spring 2017)

April 27, 2017 Institute of Technology, University of Washington - Tacoma

| 1917

PRODUCER / CONSUMER

= Producer
= Produces items - consider the child matrix maker
= Places them in a buffer
Example: the buffer is only 1 element (single array pointer)
= Consumer
= Grabs data out of the buffer
= Our example: parent thread receives dynamically
generated matrices and performs an operation on them
Example: calculates average value of every element (integer)
= Multithreaded web server example
= Http requests placed into work queue; threads process

TCS5422: Operating Systems [Spring 2017)

LN 0 [nsGRueof TechnolokyUniversitylof WashinstonTecoma!

19.18

Slides by Wes J. Lloyd

L9.3

TCSS 422: Operating Systems [Spring 2017] 04/272017
Institute of Technology, UW-Tacoma

PRODUCER / CONSUMER - 2 PUT/GET ROUTINES

= Producer / Consumer is also known as Bounded Buffer = Buffer is a one element shared data structure (int)
= Producer “puts” data
= Bounded buffer = Consumer “gets” data
= Similar to piping output from one Linux process to another ® Shared data structure requires synchronization

int buffer;
int count = 0;

= grep pthread signal.c | wec -1

1

2

= Synchronized access: i void put(int value) {
sends output from grep > wc as it is produced ; assertcomnt == 0

= File stream :

buffer = value;

10 int get() (
1 assert (count == 1);
12 count = 0;
13 buffer;
14)
TCS5422: Operating Systems [Spring 2017] TCS5422: Operating Systems [Spring 2017]
geulzzi2ely \nsmutem?rechnu?ugyy, UniversilySfWashingloanacuma | 19 ‘ L2z 0 Institute of Techno?ogy, Univers‘il(ycsWashingwn—Ta:oma L.20 |

= Producer adds data = The shared data structure needs synchronization!

= Consumer removes data (busy waiting) i S50t 205

= Will this code work (spin locks) with 2-threads? . mutex t mutex:

1. Producer 2. Consumer 4 void *producer (*arg) {
5 nt i;
T void *producer (void *arg) { p s 4w deeEse e 1 Producer
2 int is 7 » Pthread_mutex_lock (smutex) ;
3 int loops = (int) arg; 8 if (count == 1)
4 for (1= 0; 1< loops; i+4) (9 Pthread cond wait(scond, &mutex);
5 put(i); 10 put(i);
3 } 11 Pthread_cond_signal (scond) ;
2 } 12 Pthread_mutex_unlock (smutex) ; pé
12 }
B
10 14 }
11 15
i T ——— 16 void *consumer (void *arg) {
13 printf("sd\n", tmp); 17 i .
12) 18 r (i =0; i< loops; i++) {
15) 19 Pthread_mutex_lock (smutex); c1
TCSS422: Operating Systems [Spring 2017] TCSS422: Operating Systems [Spring 2017]
Bl E) Inttute of Technoloay)Universitylof Washington®Tacomal | 021 ‘ LN ZE 0 [See ot Techolo syl niersityofWashinstonmiecome! 2 |

NO WHILE, 1 PRODUCER, 2 CONSUMERS
T, | State |T,| State [T, | State |Count| Comment
= Two threads "
2 (count — 0) 1 Runnfng Ready Ready 0
21 Pthread cond wait (&cond, &mutex); €2 | Running Ready Ready o
22 int tmp = get(); * 3| Sleep Ready Ready 0 Nothing to get
23 Pthread_cond_signal (&cond) ; i
24 Pthread_mutex_unlock (&mutex) ; Legend Sleep Ready pL | Running 0
25 printf ("sd\n", tmp); Consumer c1/p1_ lock Sleep Ready p2 | Running 0
2 . } onsumel c2/p2- check var Sleep Ready p4 | Running 1 Buffer now full
c3/p3- wait §eajy §eajy pz :unning 1 Ty awoken
eady eady | p unning
. . L c4- put() Ready Ready pl | Running 1
= This code as-is works with just: p4- getQ Ready Ready | p2 | Rumning | 1
(1) Producer c5/p5- signal Ready Rsady» 03 Sleep 1 Buffer full; sleep
c6/p6- unlock Reacy[lpc1 | Running Sleep 1 T,, sneaks in ..
(1) Consumer P g . 2
eady | c2 | Running Sleep 1
Ready[lPc4 | Running Sleep 0 ..and grabs data
A i Read, () Runnin Read! [T, awoken
= |f we scale to (2+) consumer’s it fails v N ‘ ’
Ready[lPc6 | Running Ready 0
= How can it be fixed ? »(4 Running Ready Ready 0 Oh oh! No data
TCSS422: Operating Systems [Spring 2017] TCSS422: Operating Systems [Spring 2017]
Bl Ei) Institute o Technoloay)Universitylof Washington®Tacomal | 023 ‘ LN 0 [nsGRueof TechnolokyUniversitylof WashinstonTecoma! Lo24

Slides by Wes J. Lloyd L9.4

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

PRODUCER/CONSUMER

SYNCHRONIZATION

= When producer threads awake, they do not check if there is
any data in the buffer...

= Need while, not if
= What if T, puts a value, wakes T,; whom consumes the value
® Then T, has a value to put, but T.,’s signal on &cond wakes T,
= There is nothing for T, consume, so T, sleeps

" Te4, Teo, and T, all sleep forever

= T., needs to wake T, to T,

04/272017

TCS5422: Operating Systems [Spring 2017]

April 27, 2017 Institute of Technology, University of Washington - Tacoma

| 1925

EXECUTION TRACE:
WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS
Ty | State |T,| state |7, | state |Count| Comment
<1 | Running Ready Ready 0
2 | Running Ready Ready 0
3 Sleep Ready Ready 0 Nothing to get
Legend Sleep | c1 | Running Ready 0
c1 /p1 - lock Sleep 2 | Running Ready 0
¢2/p2- check var Sleep | 3 Sleep Ready 0 Nothing to get
c3/p3- wait z:eep z:eep p; sunmng g
eep eep | unning
c4- put() Sleep Sleep p4 | Running 1 Buffer now full
p4- get() * Ready Sleep 5 | Running 1 T,y awoken
c5/p5- signal Ready Sleep | p6 | Running 1
c6/p6- unlock Ready Sleep | pl | Running 1
Ready Sleep p2 | Running 1
Ready Sleep | p3 | Sleep 1 Must sleep (full)
<2 | Running Sleep Sleep 1 Recheck condition
4 | Running Sleep Sleep 0 7., grabs data
» 5 | Running Ready Sleep 0 Oops! Woke T,
| . s |

EXECUTION TRACE - 2

WHILE, 1 CONDITION, 1 PRODUCER, 2 CONSUMERS

= T, runs, no data to consume

Ta| state |r,| state |7, | state |cCount| Comment
Legend - T teomt

c1/p1-lock 6 | Running Ready Sleep 0
c2/p2- check var cl | Running Ready Sleep 0
c3/p3- wait 2 | Running Ready Sleep 0
c4- put() 3 Sleep Ready Sleep 0 Nothing to get
p4- get() S:eeP <2 | Running Sleep 0
05/P5' signal Sleep 3 Sleep Sleep 0 Everyone asleep ...
c6/p6- unlock

TWO CONDITIONS

= Use two condition variables: empty & full
= One condition handles the producer
= the other the consumer

L

2 mutex_t mutex;

3

4 oid *producer (void *arg) {

5 int i;

6 (i = 0; i < loops; i++) {

7 Pthread mutex_lock (smutex) ;

8 (count == 1)

9 Pthread_cond_wait (&empty, &mutex);
10 put (i)

11 Pthread_cond_signal(. &full);
12 Pthread mutex_unlock (smutex);
13 }

14 }

15

TCS5422: Operating Systems [Spring 2017]

April 27, 2017 Institute of Technology, University of Washington - Tacoma

| 1927

TCS5422: Operating Systems [Spring 2017)

FINAL PRODUCER/CONSUMER

= Change buffer from int, to int buffer[MAX]
= Add indexing variables

1
2
3
4
5
6 void put(int value) {
7 buffer(fill] = value;
8 £i1l = (£ill + 1) % MAX:
9 count++;
10 }
11
12 et() {
13 tmp = buffer[use];
14 = (use + 1) % MAX;
15 count--;
16 tmp;
17)
April 27, 2017 TCSS422: Operating Systems [Spring 2017] | 1929 ‘

Institute of Technology, University of Washington - Tacoma

LN ZE 0 [See ot Techolo syl niersityofWashinstonmiecome! 1928
!
5 mutex_t mutexs
3
4 void *producer(void *arg) {
5 int
6 ;1< loops; i++) {
7 Pthread_mutex_lock (smutex) ; pl
8 while (count == MAX) P2
9 Pthread_cond_wait (sempty, smutex); p3
10 put (i) ; p4
11 Pthread_cond_signal (&full); p5
12 Pthread_mutex_unlock (smutex); pé
13 }
14 }
is
16 *consumer (void *arg) (
g ¥] (o
18 (i =07 i< loops: i++) {
19 Pthread mutex_lock (&mutex); cl
20 while (Count = 0) c2
21 Pthread_cond_wait(sfull, smutex); c
22 int tmp = get ()) c4

TCSS5422: Operating Systems [Spring 2017]
LN 0 Institute of ?rechno?o;, Univs[rs‘i’(y o Wasr]\ingwn - Tacoma L.30

Slides by Wes J. Lloyd

L9.5

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

FINAL P/C - 3

(cont.)

23 Pthread_cond_signal (sempty) ;
24 Pthread_mutex_unlock (smutex);
25 printf("sd\n", tmp);

26)

27)

= Producer: only sleeps when buffer is full
= Consumer: only sleeps if buffers are empty

TCS5422: Operating Systems [Spring 2017]
Bl H) T e a0l 2 U nvers o Washins tonsTace el

| 1931 ‘

04/272017

COVERING CONDITIONS

= A condition that covers all cases (conditions):
= Excellent use case for pthread_cond_broadcast

= Consider memory allocation:

= What if a program deals with huge memory
allocation/deallocation on the heap

= Access to the heap must be managed when memory is
scarce

PREVENT: Out of memory:
- queue requests until memory is free

TCSS422: Operating Systems [Spring 2017]
L2z 0 S 1 T, Pt G e TP

1932

COVERING CONDITIONS - 2

i / w many of the heap are free?
2 int bytesLeft = MAX HEAP_SIZE;

3

4 // need lock an: too

5 cond_t c;

6 mutex_t m;

7

8 void *

9 allocate (int size) {

10 Pthread mutex_lock (&m) ;
»-Amu (bytesLeft < size)

Check available memory

12 Pthread_cond wait (&c, &m);

13 void *ptr = ...: // get mem from heap
14 bytesLeft -= size;

15 Pthread mutex_unlock (sm);

16 return ptr;

17)

18

19 void free(void *ptr, int size) {

20 Pthread mutex_lock(sm) ;

21 i

bytesLeft size;

22 hread cond signal (&c] %
23 Pthread mutex_unlock (sm)
24 }

:

TCS5422: Operating Systems [Spring 2017)

Bl E) Inttute of Technoloay)Universitylof Washington®Tacomal

| 1933 ‘

COVER CONDITIONS - 3

= Broadcast awakens all blocked threads requesting
memory

= Each thread evaluates if there’s enough memory:
(bytesLeft < size)

= Reject: requests that cannot be fulfilled- go back to sleep

= Insufficient memory
= Run: requests which can be fulfilled
= with newly available memory!

= Overhead
= Many threads may be awoken which can’t execute

TCSS422: Operating Systems [Spring 2017]
LN ZE 0 [See ot Techolo syl niersityofWashinstonmiecome!

1934

QUESTIONS

. TCSS422; Operating Systems [Spring 2017]
LI 2 2 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L9.6

