
TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/25/2017

Slides by Wes J. Lloyd L8.1

Lock-based
Data structures

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 What are synchronization primitives?
 Synchronization primitives are the datatypes provided by the

Thread API to support the coordination of shared memory between
threads

 Memory is “synchronized” so that no two threads change a shared
variable at the same time

 Absence of synchronization results in programs with unpredictable
/ non-deterministic behavior

 Locks: pthread_mutex_t, Condition variable: pthread_cond_t,
Semaphore: sem_t

 How do they work?
 Primitives are the datatypes used by pthread locks, wait, and signals,

which support thread coordination
 Locks are built using atomic HW (CPU) instructions to ensure mutual

exclusion for critical sections of code which modify shared data

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.2

FEEDBACK FROM 4/20/2017

 What is a dead lock?

 A deadlock results when a pthread is blocked waiting for a lock
that is never released, or for a signal which is missed or never
sent.

 The program typically freezes unexpectedly, and does not finish

 Example: Test-and-Set spin lock implementation

 Does the C pseudocode implementation for spin locks
translate to one line of assembly, or is it multiple lines?

 Is the C pseudocode implementation for spin locks atomic?

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.3

FEEDBACK - 2

 What is the purpose of a sloppy counter?
 The sloppy counter provides a more performant shared counter data

structure

 The sloppy counter implementation trades accuracy for speed

 If you need an atomic instruction, have researchers tried to
implement locking in hardware? If you need an atomic
instruction to implement test-and-set for example, it seems
like a CPU manufacturer could add some instruction to their
instruction set architecture (ISA) on multicore CPUs.
 HW approach to locking is to avoid them with:

lock-free data structures
 Data structures implemented using atomic CPU instructions

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.4

FEEDBACK - 3

 Lock-free data structures in Java

 Java.util.concurrent.atomic package
 Classes:

 AtomicBoolean
 AtomicInteger
 AtomicIntegerArray
 AtomicIntegerFieldUpdater
 AtomicLong
 AtomicLongArray
 AtomicLongFieldUpdater
 AtomicReference

 See: https://docs.oracle.com/javase/7/docs/api/java
/uti l/concurrent/atomic/package-summary.html

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.5

LOCK-FREE DATA STRUCTURES

 What is the difference between a thread pool and a
thread queue?

 Thread pool:

 Group of pre-instantiated, idle threads which stand ready for
work.

 Pay for initialization time just once, reduce overhead

 Recycle threads for future use by returning to the pool when
work completes

 Excellent design for programs with a large number of short
tasks

 Less applicable for programs with a small number of long tasks

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.6

FEEDBACK: THREAD POOLS VS. QUEUES

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/25/2017

Slides by Wes J. Lloyd L8.2

 Locks with thread queues offer an alternative to spin locks

 Used to track which threads are waiting to acquire the lock

 Goal: improve fairness for acquiring locks

 Lock with thread queue:

 Spin briefly to acquire outer guard lock

 Park() thread if main lock is unavailable

 When lock is released a thread is removed from the queue
using unpark() in a first-in first-out (FIFO) manner

 Without Queues/FIFO, there is no guarantee of fairness for
which thread will acquire the lock next compared to standard
unlock()

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.7

THREAD QUEUES

 Improves overall fairness for sharing of locks
 Fairness improved due to FIFO nature of Queues
 Standard HW/OS lock()/unlock() implementation

doesn’t guarantee fairness
 Thread acquiring the lock next is left to chance

 Programmer using thread queues is allowed control
 Ensure fairness, prevents starvation
Prioritize which thread should acquire lock next
Better approach for synchronizing large #’s of threads

See chapter 28, section 14…

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.8

THREAD QUEUES - 2

 Requires OS support to add/remove threads to/from
queue(s)

 Solaris API:

park(): adds thread to queue, puts thread to sleep
 unpark(threadID): removes next thread from queue, lock is

passed to awoken thread

 Linux API: implemented with futex()

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.9

THREAD QUEUES - 3

LOCK BASED
DATA STRUCTTURES

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L8.11

 Chapter 29
 Concurrent Data Structures

 Performance

 Lock Granularity

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.12

OBJECTIVES

Adding locks to data structures make them
thread safe.

Considerations:

Correctness

Performance

Lock granularity

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.13

LOCK-BASED
CONCURRENT DATA STRUCTURES

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/25/2017

Slides by Wes J. Lloyd L8.3

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.14

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Simplification - only basic list operations shown

 Structs and initialization:

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.15

CONCURRENT LINKED LIST - 1

 Insert – adds item to list

 Everything is critical!
 There are two unlocks

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.16

CONCURRENT LINKED LIST - 2

 Lookup – checks list for existence of item with key

 Once again everything is critical
 Note - there are also two unlocks

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.17

CONCURRENT LINKED LIST - 3

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding
practice

 There is nothing specifically wrong with this example however

 Second Implementation …

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.18

CONCURRENT LINKED LIST

 Init and Insert

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.19

CCL – SECOND IMPLEMENTATION

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/25/2017

Slides by Wes J. Lloyd L8.4

 Lookup

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.20

CCL – SECOND IMPLEMENTATION - 2

 How many locks to add?

 Where should we lock? Unlock?

 If lock is broad (e.g. lock many lines), concurrency is
restricted. More waiting…

 If lock is narrow (e.g. few lines), execution with multiple
threads can be more concurrent. Less waiting…

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.21

KEYS TO ADDING LOCKS
TO DATA STRUCTURE

 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.22

CONCURRENT LINKED LIST PERFORMANCE

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the
same time

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.23

MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.24

CONCURRENT QUEUE

 Add to queue

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.25

CONCURRENT QUEUE - 2

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/25/2017

Slides by Wes J. Lloyd L8.5

Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list

 One lock per hash (bucket)

 Hash bucket is a linked lists

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.26

CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.27

INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales
magnificently.

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.28

CONCURRENT HASH TABLE QUESTIONS

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L8.33

