
TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/25/2017

Slides by Wes J. Lloyd L8.1

Lock-based
Data structures

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 What are synchronization primitives?
 Synchronization primitives are the datatypes provided by the

Thread API to support the coordination of shared memory between
threads

 Memory is “synchronized” so that no two threads change a shared
variable at the same time

 Absence of synchronization results in programs with unpredictable
/ non-deterministic behavior

 Locks: pthread_mutex_t, Condition variable: pthread_cond_t,
Semaphore: sem_t

 How do they work?
 Primitives are the datatypes used by pthread locks, wait, and signals,

which support thread coordination
 Locks are built using atomic HW (CPU) instructions to ensure mutual

exclusion for critical sections of code which modify shared data

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.2

FEEDBACK FROM 4/20/2017

 What is a dead lock?

 A deadlock results when a pthread is blocked waiting for a lock
that is never released, or for a signal which is missed or never
sent.

 The program typically freezes unexpectedly, and does not finish

 Example: Test-and-Set spin lock implementation

 Does the C pseudocode implementation for spin locks
translate to one line of assembly, or is it multiple lines?

 Is the C pseudocode implementation for spin locks atomic?

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.3

FEEDBACK - 2

 What is the purpose of a sloppy counter?
 The sloppy counter provides a more performant shared counter data

structure

 The sloppy counter implementation trades accuracy for speed

 If you need an atomic instruction, have researchers tried to
implement locking in hardware? If you need an atomic
instruction to implement test-and-set for example, it seems
like a CPU manufacturer could add some instruction to their
instruction set architecture (ISA) on multicore CPUs.
 HW approach to locking is to avoid them with:

lock-free data structures
 Data structures implemented using atomic CPU instructions

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.4

FEEDBACK - 3

 Lock-free data structures in Java

 Java.util.concurrent.atomic package
 Classes:

 AtomicBoolean
 AtomicInteger
 AtomicIntegerArray
 AtomicIntegerFieldUpdater
 AtomicLong
 AtomicLongArray
 AtomicLongFieldUpdater
 AtomicReference

 See: https://docs.oracle.com/javase/7/docs/api/java
/uti l/concurrent/atomic/package-summary.html

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.5

LOCK-FREE DATA STRUCTURES

 What is the difference between a thread pool and a
thread queue?

 Thread pool:

 Group of pre-instantiated, idle threads which stand ready for
work.

 Pay for initialization time just once, reduce overhead

 Recycle threads for future use by returning to the pool when
work completes

 Excellent design for programs with a large number of short
tasks

 Less applicable for programs with a small number of long tasks

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.6

FEEDBACK: THREAD POOLS VS. QUEUES

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/25/2017

Slides by Wes J. Lloyd L8.2

 Locks with thread queues offer an alternative to spin locks

 Used to track which threads are waiting to acquire the lock

 Goal: improve fairness for acquiring locks

 Lock with thread queue:

 Spin briefly to acquire outer guard lock

 Park() thread if main lock is unavailable

 When lock is released a thread is removed from the queue
using unpark() in a first-in first-out (FIFO) manner

 Without Queues/FIFO, there is no guarantee of fairness for
which thread will acquire the lock next compared to standard
unlock()

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.7

THREAD QUEUES

 Improves overall fairness for sharing of locks
 Fairness improved due to FIFO nature of Queues
 Standard HW/OS lock()/unlock() implementation

doesn’t guarantee fairness
 Thread acquiring the lock next is left to chance

 Programmer using thread queues is allowed control
 Ensure fairness, prevents starvation
Prioritize which thread should acquire lock next
Better approach for synchronizing large #’s of threads

See chapter 28, section 14…

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.8

THREAD QUEUES - 2

 Requires OS support to add/remove threads to/from
queue(s)

 Solaris API:

park(): adds thread to queue, puts thread to sleep
 unpark(threadID): removes next thread from queue, lock is

passed to awoken thread

 Linux API: implemented with futex()

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.9

THREAD QUEUES - 3

LOCK BASED
DATA STRUCTTURES

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L8.11

 Chapter 29
 Concurrent Data Structures

 Performance

 Lock Granularity

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.12

OBJECTIVES

Adding locks to data structures make them
thread safe.

Considerations:

Correctness

Performance

Lock granularity

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.13

LOCK-BASED
CONCURRENT DATA STRUCTURES

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/25/2017

Slides by Wes J. Lloyd L8.3

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.14

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

 Simplification - only basic list operations shown

 Structs and initialization:

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.15

CONCURRENT LINKED LIST - 1

 Insert – adds item to list

 Everything is critical!
 There are two unlocks

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.16

CONCURRENT LINKED LIST - 2

 Lookup – checks list for existence of item with key

 Once again everything is critical
 Note - there are also two unlocks

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.17

CONCURRENT LINKED LIST - 3

 First Implementation:

 Lock everything inside Insert() and Lookup()

 If malloc() fails lock must be released
 Research has shown “exception-based control flow” to be error

prone

 40% of Linux OS bugs occur in rarely taken code paths

 Unlocking in an exception handler is considered a poor coding
practice

 There is nothing specifically wrong with this example however

 Second Implementation …

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.18

CONCURRENT LINKED LIST

 Init and Insert

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.19

CCL – SECOND IMPLEMENTATION

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/25/2017

Slides by Wes J. Lloyd L8.4

 Lookup

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.20

CCL – SECOND IMPLEMENTATION - 2

 How many locks to add?

 Where should we lock? Unlock?

 If lock is broad (e.g. lock many lines), concurrency is
restricted. More waiting…

 If lock is narrow (e.g. few lines), execution with multiple
threads can be more concurrent. Less waiting…

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.21

KEYS TO ADDING LOCKS
TO DATA STRUCTURE

 Using a single lock for entire list is not very performant

 Users must “wait” in line for a single lock to access/modify
any item

 Hand-over-hand-locking (lock coupling)
 Introduce a lock for each node of a list

 Traversal involves handing over previous node’s lock,
acquiring the next node’s lock…

 Improves lock granularity

 Degrades traversal performance

 Consider hybrid approach
 Fewer locks, but more than 1

 Best lock-to-node distribution?

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.22

CONCURRENT LINKED LIST PERFORMANCE

 Improvement beyond a single master lock for a queue (FIFO)

 Two locks:
 One for the head of the queue

 One for the tail

 Synchronize enqueue and dequeue operations

 Add a dummy node
 Allocated in the queue initialization routine

 Supports separation of head and tail operations

 Items can be added and removed by separate threads at the
same time

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.23

MICHAEL AND SCOTT CONCURRENT QUEUES

 Remove from queue

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.24

CONCURRENT QUEUE

 Add to queue

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.25

CONCURRENT QUEUE - 2

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/25/2017

Slides by Wes J. Lloyd L8.5

Consider a simple hash table

Fixed (static) size

Hash maps to a bucket
 Bucket is implemented using a concurrent linked list

 One lock per hash (bucket)

 Hash bucket is a linked lists

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.26

CONCURRENT HASH TABLE

 Four threads – 10,000 to 50,000 inserts
 iMac with four-core Intel 2.7 GHz CPU

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.27

INSERT PERFORMANCE –
CONCURRENT HASH TABLE

The simple concurrent hash table scales
magnificently.

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L8.28

CONCURRENT HASH TABLE QUESTIONS

April 25, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L8.33

