TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

TCSS 422: OPERATING SYSTEMS
| |

Lock

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

04/20/2017

FEEDBACK FROM 4/20/2017

= What does it mean for a thread to be joinable?

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void *(®*start_routine) (void *),
void *arg);

= pthread_attr_t state: PTHREAD_CREATE_JOINABLE,

PTHREAD_CREATE_DETACHED

= Joinable threads: another thread can synchronize on the
thread termination and recover its termination code using
pthread_join(3).

When a joinable thread terminates, some resources are kept
allocated and released only when another thread performs
pthread_join(3) on that thread.

TCS5422: Operating Systems [Spring 2017)

April 20, 2017 Institute of Technology, University of Washington - Tacoma

| 172

FEEDBACK - 2

= pthread_attr_t state: PTHREAD_CREATE_DETACHED

= In the detached state, the thread's resources are released
immediately when it terminates. pthread_join(3) cannot be
used to synchronize detatched threads on termination.

= A thread created in the joinable state can later be put in the
detached thread using pthread_detach(3) .

TCS5422: Operating Systems [Spring 2017)

April 20, 2017 Institute of Technology, University of Washington - Tacoma

FEEDBACK - 3

= What is an atomic
instruction?

= Examples:
= Atomic read-write instruction
= Processors have instructions * Atomic swap, called (XCHG)
that can be used to = Test-and-set
implement lock-free and wait- = Fetch-and-add
free algorithms (and locks) = Compare-and-swap (CAS)

- - = Compare-and-exchange
= Atomic instructions
lc Instructions CAN NOT (CMPXCHG) - x86
be preempted by a context-
switch = Theme: One assembly

instruction: loads value from
memory into CPU register,
makes a change, stores back
into memory

= They represent the lowest
level instructions of the
machine...

TCS5422: Operating Systems [Spring 2017)

April 20, 2017 Institute of Technology, University of Washington - Tacoma

| 74

FEEDBACK - 4

= What are some examples of best practices for multithreading
with locks?
= We cover some in Chapter 29 & 32...

= How do you know if a pointer or variable is on the stack,
or the heap?
= All variables are on the stack, unless we explicitly call malloc.

= We typically create a pointer on the stack to point to a variable (or
struct) on the heap.

= What is Void ** ?
= |Is a pointer to a void *
= So a void * is a pointer to any memory block on the heap, and a
= Void * *, is a pointer, to a pointer to any memory block on the heap

= By any memory block, we mean, it can be any type of struct or
datatype

TCS5422: Operating Systems [Spring 2017)

April 20, 2017 Institute of Technology, University of Washington - Tacoma

[o]

FEEDBACK - 5

= What are attributes for pthread_mutex_t lock?
= pthread_mutex_t is the lock data structure (e.g. it’s struct)
= From :

= /usr/include/bits/pthreadtypes.h
= Ubuntu 16.04

TCS5422: Operating Systems [Spring 2017)

April 20, 2017 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L7.1

TCSS 422: Operating Systems [Spring 2017] 04/20/2017
Institute of Technology, UW-Tacoma

typedef union

struct __pthread_mutex_s

Y _tocks FEEDBACK - 6

unsfgned 1nt __count;

—ownet
#ifdet xB6.64._

unsTgned nt _nusers;
#endi

/* KIND must stay at this position in the structure to maintain = How does the “Test and Set” lock work?
binary compatibility. */
M o = How does it spin?

short _spins;

short _elision;

_p:hreud_ﬂsr_t —1ist; . . . -
';,d;“f;'e': _sms AV PReY, by miw_uumumum - = “Test and Set” is an improvement on the basic spin lock
£ Gl P E TS b0 = “Compare and Swap” is an improvement on “Test and Set”

unsigned 1nt _nusers;

—extensfon__ union

[
S = Each improvement adds additional checking to verify that the
:Rg;: —:;g:;':;” lock is not held by another thread first.
define _spins _elision_data._espins

define __elision __elision_data.__elision
define __PTHREAD_SPINS 0,01}
—elision_data; = For multl-core CPUs, context switching with non-atomic locks,
—pthread_sTistr st . . . e

sendli interrupts the spin lock, causing a race condition where two
} _data; threads **think** they’ve acquired the lock at the same time
char _suel:_sszm: PTHREAD_MUTEX_T] ;
Tong int _alig

} ”'hre::"m"z:e;;:' TCS$422: Operating Systems [Spring 2017] April 20, 2017 e e che 2 | 78 |

Institute of Technology, University of Washington - Tacoma 77 Institute of Technology, University of Washington - Tacoma

SPIN LOCK IMPLEMENTATION FEEDBACK - 7

= Operate without atomic-as a unit assembly instructions " How does test and set work?
= “Do-it-yourself” Locks = What is the advantage provided by
= |s this lock implementation: Correct? Fair? Performant? testing and setting the old value?
1 y struct _ lock t { int flag:; } lock t:
2
: T s iy e, 1 > held = Before we assume we have the lock, we test if the lock
e : . mutex->flag = 0; wasn’t already held.
7
8 d lock(lock_t *mutex) {

9 (mitex->flag

1) VL XESERthaRLlag = In contrast to basic spin lock which just assumes that

10 i
B) mutex->flag = setting the lock int to 1 always works
13
14 d unlock(lock_t *mutex) {
15 mutex->flag =
16 }
TCSS422: O ting Syste [Spring 2017] TCS5422: Of ting Systs [Spring 2017]
aitin oy | (SR oS S EN iz | (St v |
. . . s . pthread_mutex_lock(&lock_a);
= Why use fine grained parallelism? Isn’t that the same as just pthread_mutex_lock (&1ock_b) ;
blocking a whole block of code? Because only one thread can a = bt+;
h block of d b th dt . th pthread_mutex_unlock(&lock_b);
access that block of code, because they need to acquire the pthread_mutex_unlock (&lock_a) :

lock?
pthread mutex Tock (&lock_b) ;
a

= The idea is that we might have many threads (let’s say 10), pthread_ mitex. unTock (&lock_b);

and if our code has 10 locks protecting 10 variables pthread_mutex_ 1ock(&1ock d);
n - *d=a+b +c
individually... pthread_mutex_i un10ck(&10ch)
then it's possible that some of the threads will be operating in FILE * fp = fopen ("file.txt”, “r");
. . pthread_mutex_Tlock (&lock_e) ;
different parts of the shared code and making progress fscanf(fp, "%s %s %s %d", strl, str2, str3, &e);
because each thread DOES NOT HAVE TO ACQUIRE THE pthread_mutex_unTock(&lock_e);

GLOBAL LOCK...

ListNode *node = mylist->head;
int i=0 . .

TCS5422: Operating Systems [Spring 2017)
Institute of Technology, University of Washington - Tacoma

TC55422: Operating Systems [Spring 2017)
Bl lety Zii) LI e) Institute of Technology, University of Washington - Tacoma L712

| 7.11

Slides by Wes J. Lloyd L7.2

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

FEEDBACK - 9

= Could the assignments be on the calendar... YES

= Grading for assignment O - should be posted

= Some students did not submit an answers file which interprets
the output. You may submit as a text file to canvas, and send
and email to the grader and CC Wes to request regrading

= |n the future: please read and follow assignment specs

= What can we expect to be on the midterm?
= We will have an in-class mock exam.

= Roughly coverage is from Ch 1-9, 26-32, with a focus on
italicized chapters... more discussion to follow

TCS5422: Operating Systems [Spring 2017]

April 20, 2017 Institute of Technology, University of Washington - Tacoma

[os]

04/20/2017

OBJECTIVES

= Finishing up Chapter 28
= Spin Locks - demonstration
= Spin Locks - review
= Yielding
= Queues and User Control

= Chapter 29 - Lock Based Data Structure

TCS5422: Operating Systems [Spring 2017)

April 20, 2017 Institute of Technology, University of Washington - Tacoma

7.4

SPIN LOCKING DEMO

= |nstall htop on CentOS7:

= wget http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-
release-7-9.noarch.rpm

= sudo rpm -ihv epel-release-7-9.noarch.rpm

= sudo yum install htop

= Spin locking demo
= Cent0OS 7 VM
= With 1 CPU core
= With 2 CPU cores

TCS5422: Operating Systems [Spring 2017]

April 20, 2017 Institute of Technology, University of Washington - Tacoma

[os]

FETCH-AND-ADD

= HW CPU Instruction

= Increment counter atomically-as a unit in one instruction

int FetchAndAdd(int *ptr) {
int old = *ptr;
*ptr = old + 1;
old:

e wn e

}

= Fetch and return value
=Increment by 1

TCS5422: Operating Systems [Spring 2017)

April 20, 2017 Institute of Technology, University of Washington - Tacoma

17.16

TICKET LOCK

= Can build Ticket Lock using Fetch-and-Add
= Ensures progress of all threads (fairness)

T struct _ lock_t {
2 ticket;

3 int turn;

4) lock t;
5

6

7

8

d lock_init(lock_t *lock) {
lock->ticket
lock->turn = 0;

0;

lock(lock_t *lock) {
myturn = FetchAndAdd (slock->ticket) ;

nt

13 (lock->turn != myturn)
14 ;
15)
16 void unlock(lock_t *lock) {
17 FetchAndAdd (slock->turn) ;
18}
April 20, 2017 TCSS422: Operating Systems [Spring 2017] | 1y ‘

Institute of Technology, University of Washington - Tacoma

TICKET LOCK - 2

1 struct lock_t {

2 int ticket:

3 int .turn: TB

4 } lock t: while (11=1)

5 o acquire lock

6 lock_init (lock_t *lock) {

7 lock->ticket H TB myturn=1

8 lock->turn = 0; ticket=2 TA myturn=0

9 } turn=0 ticket=1

10 turn=0

11 woid lock(lock_t *lock) {

12 int myturn = FetchaAn d (s1lock->ticket) ;

13 (lock-»turn != myturn) €= | whil

14 7 AL spin acquire lock

15 B TA-unlock

16 wvoid unlock(lock t *lock) { hile (0 1= 1 myturn=0

17 FetchAndAdd (&lock->turn); w Ie(=1 ticket=2
<« spin

18 o} turn=1

Slides by Wes J. Lloyd

TCS5422: Operating Systems [Spring 2017)

April 20, 2017 Institute of Technology, University of Washington - Tacoma

17.18

L7.3

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

YIELD() - SYSTEM CALL

1 void init() {

2 flag = 0;

3 }

4

5 lock() {

6 (Testandset (sflag, 1)
7 yield(); // give up the
8 }

9

10 unlock() {

11 flag = 0;

12)

= Give up the CPU - instead of busy waiting...

= running >ready
= Ready relinquishes the CPU for another thread (ctxt. switch)
= How does the thread get the CPU back?

= 0S must opportunistically reschedule it: ready = running

TCS5422: Operating Systems [Spring 2017]
Bl Zi) T e a0l 2 U nvers o Washins tonsTace el 1719

04/20/2017

HARDWARE SPIN LOCKS - SUMMARY

= Simple, correct

= Slow

= With long locks, waiting threads spin for entire timeslice
= Repeat comparison continuously
= Busy waiting

HW & OS Support

TCS5422: Operating Systems [Spring 2017]
EINAL, Y S 1 T, Pt G e TP

17.20

THREAD QUEUES

= Don’t allow the OS to control your program
= Use internal Thread Queues

= Allows programmer to maintain control

= Ensure fairness, prevent starvation

= Better for synchronizing large #'s of threads

= Thread pools: track and reuse your own threads...
= Require OS support to add/remove threads to/from

queue(s)
= Solaris API:

= park(): puts thread to sleep

=unpark(threadID): wakes specified thread
= Linux API: futex()

TCS5422: Operating Systems [Spring 2017]
G|ty Zi) Inttute of Technoloay)Universitylof Washington®Tacomal 721

THREAD QUEUES - 2

ruct __lock_t { int flag; int guard; queue_t *q; } lock_ts

ock_init (lock_t *m) {
>flag = 0;

&

2

3

4

5 * m->guard = 0;

6 queue_init (m->q) ; Guard uses a spin-lock to protect the
T @) critical sections in lock() and unlock()
8

&

lock(lock_t *m) {
(Testandset (sm->guard, 1)

=p " Obtain guard lock

ock is acquired try to obtain actual lock

m->guard = 0;

15 {
16 i queue_add (m->q, gettid()); lock unavailable; add thread to queue
park() ; potential wakeup/waiting race

TCS5422: Operating Systems [Spring 2017)

April 20, 2017 Institute of Technology, University of Washington - Tacoma

.22

THREAD QUEUES - 3

= Unlock
22 woid unlock(lock_t *m) {
2: (TestAndset (&m->guard, 1) == 1) " "
24 e e o by spinning Obtain guard lock (spin)
25 (queue_empty (m->q))
26 m->flag = 0; le

go of lock; no one wants it
217 wake up thread from queue

28 » unpark (queue_remove (m->q)) ; hold lock (for next thread!)
2 » n>guard = 07 release guard lock

= Note: no change to m->flag if unparking a thread
= Lock is passed to the unparked thread “directly”

April 20,2017 TCS5422: Operating Systems [Spring 2017)

7.
Institute of Technology, University of Washington - Tacoma | 1723 ‘

WAKEUP/WAITING RACE

= Thread B: context switch occurs immediately before call to
park()

= Thread A: releases lock, calls unpark, queue is empty

= Thread B: regains context, proceeds to lock itself forever

= Need new system call
= setpark()- informs OS about soon to be parked thread
= Subsequent calls to unpark() are aware that ThreadB is about to park
= ThreadB’s call to park() immediately returns

April 20, 2017 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma 1724

Slides by Wes J. Lloyd

L7.4

TCSS 422: Operating Systems [Spring 2017] 04/20/2017
Institute of Technology, UW-Tacoma

FUTEX | FUTEX: WRITE YOUR OWN MUTEX LOCK
|
= Fast Userspace MuTEX = futex_wait(addr, expected)
= Linux futex system calls similar to park() and unpark() - (P callmg tiiead i dep _)
. . = If value @ addr != expected - return immediately
= Linux uses an in-kernel queue u futex_wake(addr)
= Provides a futex() system call = Wake one thread that is waiting on the queue
= Provides atomic-as a unit compare-and-block operation ® These are not exposed as C library calls directly
= Call futex() with FUTEX_WAIT or FUTEX_WAKE
= Futex Is a lower-level construct
= Used as building blocks for: " Us:ha ?f;b't Itn;igfr: o N e TR e
s . - e leftmos’ e - sign) tracks e lock state
mutex, condition variables, phores e I3 (e 7= egi)
= 1 - locked
= Objective: reduce the number of system calls * Remaining 31 bits: identifies thread
TCSS422: Of ting Syste [Spring 2017] TCS5422: Of ting Systs [Spring 2017]
L) FLE itz et ol linwer oot Weshte e Teeerte | w25 \ B A58 it te echmoloal eratyof Washimssongreconts b2

FUTEX: MUTEX_LOCK PSUEDO CODE

FUTEX: MUTEX UNLOCK PSUEDO CODE

void mutex_Tock(int *mutex) {
int v;

void mutex_unlock(int *mutex) {

if (atomic_bit_test_set (mutex, 31) == 0)
return;

atomic_increment (mutex);

while (1) { if (atomic_add_zero (mutex, 0x80000000))
turn:

if (atomic_bit_test_set (mutex, 31) ==0 { returms

atomic_decrement (mutex);

return;

3 futex_wake (mutex);
v = *mutex;
iv (v >= 0) }

continue;

= Interesting note: Futex bug in Redhat Linux
futex_wait (mutex, v); = https://www.infoq.com/news/2015/05/redhat-futex
}
TCSS422: Operating Systems [Spring 2017] TCSS422: Operating Systems [Spring 2017]
G|ty Zi) Inttute of Technoloay)Universitylof Washington®Tacomal | 27 ‘ EIAL e [See ot Techolo syl niersityofWashinstonmiecome! 1728

HYBRID - TWO PHASE LOCKS

= Hybrid between spin-locks and yielding
= Useful if lock is about to be released

= First phase - spin lock

= Spin for some time waiting for the lock to be released LOCK BASE D
= If lock is not acquired after time expires enter phase two. DA A STRUCTTU RES

= Second phase - yield
=Thread sleeps (yields)
= |s awoken when the lock becomes free

TC55422: Operating Systems [Spring 2017] N : TCSS422; Operating Systems [Spring 2017]
April 20, 2017 Institute of Technology, University of Washington - Tacoma 1729 (A A EDH Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd L7.5

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

OBJECTIVES

= Chapter 29
= Concurrent Data Structures

= Performance

= Lock Granularity

TCS5422: Operating Systems [Spring 2017]

April 20, 2017 Institute of Technology, University of Washington - Tacoma

[oa]

04/20/2017

LOCK-BASED

CONCURRENT DATA STRUCTURES

mAdding locks to data structures make them
thread safe.

= Considerations:
=Correctness
=Performance
=Lock granularity

TCS5422: Operating Systems [Spring 2017)

April 20, 2017 Institute of Technology, University of Washington - Tacoma

1732

COUNTER STRUCTURE W/0 LOCK

= Synchronization weary --- not thread safe

1 typedef ct __counter_t {
2 value;

3 } counter_t;

4

5 void init (counter_t *c) {

6 c->value = 0;

7 }

8

9 void increment (counter t *c) {
10 c->value++;

11)

12

13 void decrement (counter_t *c) {
14 c->value--;

15)

16

17 int get(counter_t *c) {

18 eturn c->value;

19)

TCS5422: Operating Systems [Spring 2017]

April 20, 2017 Institute of Technology, University of Washington - Tacoma

| 1733

CONCURRENT COUNTER

1 ruct __counter_t {

2 int value;

3 pthread lock t lock:

4 } counter_t;

5

3 void init (counter_t *c) {

7 c->value = 0;

8 Pthread mutex_init(sc->lock, NULL);
9 i

10

11 void increment (counter_t *c) {

12 Pthread_mutex_lock(&c->lock);
13 c->valuet+;

14 Pthread mutex_unlock(sc->lock) ;
15) - -

16

= Add lock to the counter
= Require lock to change data

TCS5422: Operating Systems [Spring 2017)

April 20, 2017 Institute of Technology, University of Washington - Tacoma

1734

CONCURRENT COUNTER - 2

= Decrease counter
= Get value

(Cont.)
17 void decrement (counter_t *c) {
18 Pthread mutex_lock (sc->1lock) i
19 c->value--;
20 Pthread mutex_unlock (sc->lock) 7
21)
22
23 int get(counter_t *c) {
24 pthread mutex_lock (&c->lock) 7
25 int rc = c->value;
26 Pthread_mutex_unlock (&c->lock) ;
27 return rc;
28)

April 20,2017 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma

| 1735

Slides by Wes J. Lloyd

CONCURRENT COUNTERS - PERFORMANCE

= iMac: four core Intel 2.7 GHz i5 CPU
= Each thread increments counter 1,000,000 times

15
X Precise
3 Sioppy
B0
8
8
H
E 5
Traditional vs. sloppy counter
1 2 3 4

Sloppy Threshold (S) = 1024
Threads

scales poorly

TCS5422: Operating Systems [Spring 2017)
Institute of Technology, University of Washington - Tacoma

‘ April 20, 2017 17.36

L7.6

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

PERFECT SCALING

= Throughput:
= Transactions per second

= 1 core
= N =100 tps

= 10 core
= N =1000 tps

= Achieve (N) performance gain with (N) additional resources

04/20/2017

TCS5422: Operating Systems [Spring 2017)

Bl Zi) T e a0l 2 U nvers o Washins tonsTace el

| 1737

SLOPPY COUNTER

= Provides single logical shared counter
= Implemented using local counters for each ~CPU core
= 4 CPU cores = 4 local counters & 1 global counter
= Local counters are synchronized via local locks
= Global counter is updated periodically
= Global counter has lock to protect global counter value

= Sloppiness threshold (S):
Update threshold of global counter with local values

= Small (S): more updates, more overhead
= Large (S): fewer updates, more performant, less synchronized
= Why this implementation?
Why do we want counters local to each CPU Core?

TCS5422: Operating Systems [Spring 2017)

Gzl 2y Institute of Technology, University of Washington- Tacoma

1738

QUESTIONS

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

April 20,2017

Slides by Wes J. Lloyd

L7.7

