
TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/20/2017

Slides by Wes J. Lloyd L7.1

Locks

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 What does it mean for a thread to be joinable?

int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_routine) (void *),

void *arg);

 pthread_attr_t state: PTHREAD_CREATE_JOINABLE,
PTHREAD_CREATE_DETACHED

 Joinable threads: another thread can synchronize on the
thread termination and recover its termination code using
pthread_join(3).

When a joinable thread terminates, some resources are kept
allocated and released only when another thread performs
pthread_join(3) on that thread.

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.2

FEEDBACK FROM 4/20/2017

 pthread_attr_t state: PTHREAD_CREATE_DETACHED

 In the detached state, the thread's resources are released
immediately when it terminates. pthread_join(3) cannot be
used to synchronize detatched threads on termination.

 A thread created in the joinable state can later be put in the
detached thread using pthread_detach(3) .

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.3

FEEDBACK - 2

 What is an atomic
instruction?

 Processors have instructions
that can be used to
implement lock-free and wait-
free algorithms (and locks)

 Atomic instructions CAN NOT
be preempted by a context-
switch

 They represent the lowest
level instructions of the
machine…

 Examples:
 Atomic read-write instruction

 Atomic swap, called (XCHG)

 Test-and-set

 Fetch-and-add

 Compare-and-swap (CAS)

 Compare-and-exchange
(CMPXCHG) – x86

 Theme: One assembly
instruction: loads value from
memory into CPU register,
makes a change, stores back
into memory

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.4

FEEDBACK - 3

 What are some examples of best practices for multithreading
with locks?
 We cover some in Chapter 29 & 32…

 How do you know if a pointer or variable is on the stack,
or the heap?
 All variables are on the stack, unless we explicitly call malloc.
 We typically create a pointer on the stack to point to a variable (or

struct) on the heap.

 What is Void ** ?
 Is a pointer to a void *
 So a void * is a pointer to any memory block on the heap, and a
 Void * *, is a pointer, to a pointer to any memory block on the heap
 By any memory block, we mean, it can be any type of struct or

datatype

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.5

FEEDBACK - 4

 What are attributes for pthread_mutex_t lock?

 pthread_mutex_t is the lock data structure (e.g. it’s struct)

 From :

 /usr/include/bits/pthreadtypes.h

 Ubuntu 16.04

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.6

FEEDBACK - 5

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/20/2017

Slides by Wes J. Lloyd L7.2

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L7.7

typedef union
{

struct __pthread_mutex_s
{

int __lock;
unsigned int __count;
int __owner;

#ifdef __x86_64__
unsigned int __nusers;

#endif
/* KIND must stay at this position in the structure to maintain

binary compatibility. */
int __kind;

#ifdef __x86_64__
short __spins;
short __elision;
__pthread_list_t __list;

define __PTHREAD_MUTEX_HAVE_PREV 1
/* Mutex __spins initializer used by PTHREAD_MUTEX_INITIALIZER. */
define __PTHREAD_SPINS 0, 0
#else

unsigned int __nusers;
__extension__ union
{

struct
{

short __espins;
short __elision;

define __spins __elision_data.__espins
define __elision __elision_data.__elision
define __PTHREAD_SPINS { 0, 0 }

} __elision_data;
__pthread_slist_t __list;

};
#endif

} __data;
char __size[__SIZEOF_PTHREAD_MUTEX_T];
long int __align;

} pthread_mutex_t;

 How does the “Test and Set” lock work?

 How does it spin?

 “Test and Set” is an improvement on the basic spin lock

 “Compare and Swap” is an improvement on “Test and Set”

 Each improvement adds additional checking to verify that the
lock is not held by another thread first.

 For multi-core CPUs, context switching with non-atomic locks,
interrupts the spin lock, causing a race condition where two
threads **think** they’ve acquired the lock at the same time

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.8

FEEDBACK - 6

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.9

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation: Correct? Fair? Performant?

How does test and set work?
What is the advantage provided by

testing and setting the old value?

 Before we assume we have the lock, we test if the lock
wasn’t already held.

 In contrast to basic spin lock which just assumes that
setting the lock int to 1 always works

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.10

FEEDBACK - 7

 Why use fine grained parallelism? Isn’t that the same as just
blocking a whole block of code? Because only one thread can
access that block of code, because they need to acquire the
lock?

 The idea is that we might have many threads (let’s say 10),
and if our code has 10 locks protecting 10 variables
individually…

then it’s possible that some of the threads will be operating in
different parts of the shared code and making progress
because each thread DOES NOT HAVE TO ACQUIRE THE
GLOBAL LOCK…

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.11

FEEDBACK - 8

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.12

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/20/2017

Slides by Wes J. Lloyd L7.3

 Could the assignments be on the calendar… YES

 Grading for assignment 0 – should be posted
 Some students did not submit an answers file which interprets

the output. You may submit as a text file to canvas, and send
and email to the grader and CC Wes to request regrading

 In the future: please read and follow assignment specs

 What can we expect to be on the midterm?
 We will have an in-class mock exam.

 Roughly coverage is from Ch 1-9, 26-32, with a focus on
italicized chapters… more discussion to follow

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.13

FEEDBACK - 9

 Finishing up Chapter 28
 Spin Locks - demonstration

 Spin Locks - review

 Yielding

 Queues and User Control

 Chapter 29 – Lock Based Data Structure

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.14

OBJECTIVES

 Install htop on CentOS7:

 wget http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-
release-7-9.noarch.rpm

 sudo rpm -ihv epel-release-7-9.noarch.rpm

 sudo yum install htop

 Spin locking demo
 CentOS 7 VM

 With 1 CPU core

 With 2 CPU cores

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.15

SPIN LOCKING DEMO

 HW CPU Instruction

 Increment counter atomically-as a unit in one instruction

 Fetch and return value

 Increment by 1

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.16

FETCH-AND-ADD

 Can build Ticket Lock using Fetch-and-Add

 Ensures progress of all threads (fairness)

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.17

TICKET LOCK

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.18

TICKET LOCK - 2

TA myturn=0
ticket=1
turn=0

TA
while (0 != 0)
acquire lock

TB myturn=1
ticket=2
turn=0

TB
while (0 != 1)
spin

TA-unlock
myturn=0
ticket=2
turn=1

TB
while (1 != 1)
acquire lock

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/20/2017

Slides by Wes J. Lloyd L7.4

 Give up the CPU – instead of busy waiting…
 running ready

 Ready relinquishes the CPU for another thread (ctxt. switch)

 How does the thread get the CPU back?
 OS must opportunistically reschedule it: ready  running

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.19

YIELD() – SYSTEM CALL

 Simple, correct

 Slow

 With long locks, waiting threads spin for entire timeslice

 Repeat comparison continuously

 Busy waiting

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.20

HARDWARE SPIN LOCKS - SUMMARY

How To Avoid Spinning?
Need both HW & OS Support !

 Don’t allow the OS to control your program
 Use internal Thread Queues

 Allows programmer to maintain control
 Ensure fairness, prevent starvation
 Better for synchronizing large #’s of threads
 Thread pools: track and reuse your own threads…

 Require OS support to add/remove threads to/from
queue(s)

 Solaris API:
 park(): puts thread to sleep
 unpark(threadID): wakes specified thread

 Linux API: futex()

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.21

THREAD QUEUES

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.22

THREAD QUEUES - 2

lock unavailable; add thread to queue

Guard uses a spin-lock to protect the
critical sections in lock() and unlock()

Obtain guard lock

try to obtain actual lock

potential wakeup/waiting race

 Unlock

 Note: no change to m->flag if unparking a thread

 Lock is passed to the unparked thread “directly”

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.23

THREAD QUEUES - 3

Obtain guard lock (spin)

wake up thread from queue

release guard lock

 Thread B: context switch occurs immediately before call to
park()

 Thread A: releases lock, calls unpark, queue is empty

 Thread B: regains context, proceeds to lock itself forever

 Need new system call
 setpark()- informs OS about soon to be parked thread

 Subsequent calls to unpark() are aware that ThreadB is about to park

 ThreadB’s call to park() immediately returns

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.24

WAKEUP/WAITING RACE

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/20/2017

Slides by Wes J. Lloyd L7.5

 Fast Userspace MuTEX

 Linux futex system calls similar to park() and unpark()

 Linux uses an in-kernel queue

 Provides a futex() system call

 Provides atomic-as a unit compare-and-block operation

 Futex is a lower-level construct

 Used as building blocks for:
mutex, condition variables, semaphores

 Objective: reduce the number of system calls

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.25

FUTEX

 futex_wait(addr, expected)
 Put calling thread to sleep
 If value @ addr != expected  return immediately

 futex_wake(addr)
 Wake one thread that is waiting on the queue

 These are not exposed as C l ibrary calls directly
 Call futex() with FUTEX_WAIT or FUTEX_WAKE

 Use a 32-bit integer
 The lef tmost bit (the +/- sign) tracks the lock state
 0 – free
 1 – locked

 Remaining 31 bits: identifies thread

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.26

FUTEX: WRITE YOUR OWN MUTEX LOCK

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.27

FUTEX: MUTEX_LOCK PSUEDO CODE

Void mutex_lock(int *mutex) {
int v;
/* Bit 31 was clear, we got the mutex (this is a fast lock!)
if (atomic_bit_test_set (mutex, 31) == 0)

return;
// “adds” mutex to queue
atomic_increment (mutex);
while (1) {

// is lock available?
if (atomic_bit_test_set (mutex, 31) ==0 {

// remove mutex from queue – it has the lock now
atomic_decrement (mutex);
return;

}
// Have to wait. Make sure futex value is locked (negative)
v = *mutex;
iv (v >= 0)

continue;
// wait to be woken up when lock is available
// this is not a spin lock… (signal)
futex_wait (mutex, v);

}
}

 Interesting note: Futex bug in Redhat Linux

 https://www.infoq.com/news/2015/05/redhat-futex

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.28

FUTEX: MUTEX UNLOCK PSUEDO CODE

Void mutex_unlock(int *mutex) {

// Adding 0x80000000 to counter results in 0 if and only if
// there are no other interested threads

if (atomic_add_zero (mutex, 0x80000000))
return;

// There are other threads waiting for this lock (mutex)
// wake one of them up..
// (e.g. dequeue it)
futex_wake (mutex);

}

 Hybrid between spin-locks and yielding

 Useful if lock is about to be released

 First phase – spin lock

 Spin for some time waiting for the lock to be released

 If lock is not acquired after time expires enter phase two.

 Second phase - yield

 Thread sleeps (yields)

 Is awoken when the lock becomes free

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.29

HYBRID - TWO PHASE LOCKS

LOCK BASED
DATA STRUCTTURES

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L7.30

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/20/2017

Slides by Wes J. Lloyd L7.6

 Chapter 29
 Concurrent Data Structures

 Performance

 Lock Granularity

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.31

OBJECTIVES

Adding locks to data structures make them
thread safe.

Considerations:

Correctness

Performance

Lock granularity

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.32

LOCK-BASED
CONCURRENT DATA STRUCTURES

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.33

COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe

 Add lock to the counter

 Require lock to change data

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.34

CONCURRENT COUNTER

 Decrease counter

 Get value

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.35

CONCURRENT COUNTER - 2

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.36

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/20/2017

Slides by Wes J. Lloyd L7.7

 Achieve (N) performance gain with (N) additional resources

 Throughput:

 Transactions per second

 1 core

 N = 100 tps

 10 core

 N = 1000 tps

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.37

PERFECT SCALING

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?
Why do we want counters local to each CPU Core?

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.38

SLOPPY COUNTER

QUESTIONS

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L7.55

