
TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/20/2017

Slides by Wes J. Lloyd L7.1

Locks

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 What does it mean for a thread to be joinable?

int pthread_create(pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_routine) (void *),

void *arg);

 pthread_attr_t state: PTHREAD_CREATE_JOINABLE,
PTHREAD_CREATE_DETACHED

 Joinable threads: another thread can synchronize on the
thread termination and recover its termination code using
pthread_join(3).

When a joinable thread terminates, some resources are kept
allocated and released only when another thread performs
pthread_join(3) on that thread.

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.2

FEEDBACK FROM 4/20/2017

 pthread_attr_t state: PTHREAD_CREATE_DETACHED

 In the detached state, the thread's resources are released
immediately when it terminates. pthread_join(3) cannot be
used to synchronize detatched threads on termination.

 A thread created in the joinable state can later be put in the
detached thread using pthread_detach(3) .

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.3

FEEDBACK - 2

 What is an atomic
instruction?

 Processors have instructions
that can be used to
implement lock-free and wait-
free algorithms (and locks)

 Atomic instructions CAN NOT
be preempted by a context-
switch

 They represent the lowest
level instructions of the
machine…

 Examples:
 Atomic read-write instruction

 Atomic swap, called (XCHG)

 Test-and-set

 Fetch-and-add

 Compare-and-swap (CAS)

 Compare-and-exchange
(CMPXCHG) – x86

 Theme: One assembly
instruction: loads value from
memory into CPU register,
makes a change, stores back
into memory

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.4

FEEDBACK - 3

 What are some examples of best practices for multithreading
with locks?
 We cover some in Chapter 29 & 32…

 How do you know if a pointer or variable is on the stack,
or the heap?
 All variables are on the stack, unless we explicitly call malloc.
 We typically create a pointer on the stack to point to a variable (or

struct) on the heap.

 What is Void ** ?
 Is a pointer to a void *
 So a void * is a pointer to any memory block on the heap, and a
 Void * *, is a pointer, to a pointer to any memory block on the heap
 By any memory block, we mean, it can be any type of struct or

datatype

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.5

FEEDBACK - 4

 What are attributes for pthread_mutex_t lock?

 pthread_mutex_t is the lock data structure (e.g. it’s struct)

 From :

 /usr/include/bits/pthreadtypes.h

 Ubuntu 16.04

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.6

FEEDBACK - 5

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/20/2017

Slides by Wes J. Lloyd L7.2

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L7.7

typedef union
{

struct __pthread_mutex_s
{

int __lock;
unsigned int __count;
int __owner;

#ifdef __x86_64__
unsigned int __nusers;

#endif
/* KIND must stay at this position in the structure to maintain

binary compatibility. */
int __kind;

#ifdef __x86_64__
short __spins;
short __elision;
__pthread_list_t __list;

define __PTHREAD_MUTEX_HAVE_PREV 1
/* Mutex __spins initializer used by PTHREAD_MUTEX_INITIALIZER. */
define __PTHREAD_SPINS 0, 0
#else

unsigned int __nusers;
__extension__ union
{

struct
{

short __espins;
short __elision;

define __spins __elision_data.__espins
define __elision __elision_data.__elision
define __PTHREAD_SPINS { 0, 0 }

} __elision_data;
__pthread_slist_t __list;

};
#endif

} __data;
char __size[__SIZEOF_PTHREAD_MUTEX_T];
long int __align;

} pthread_mutex_t;

 How does the “Test and Set” lock work?

 How does it spin?

 “Test and Set” is an improvement on the basic spin lock

 “Compare and Swap” is an improvement on “Test and Set”

 Each improvement adds additional checking to verify that the
lock is not held by another thread first.

 For multi-core CPUs, context switching with non-atomic locks,
interrupts the spin lock, causing a race condition where two
threads **think** they’ve acquired the lock at the same time

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.8

FEEDBACK - 6

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.9

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation: Correct? Fair? Performant?

How does test and set work?
What is the advantage provided by

testing and setting the old value?

 Before we assume we have the lock, we test if the lock
wasn’t already held.

 In contrast to basic spin lock which just assumes that
setting the lock int to 1 always works

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.10

FEEDBACK - 7

 Why use fine grained parallelism? Isn’t that the same as just
blocking a whole block of code? Because only one thread can
access that block of code, because they need to acquire the
lock?

 The idea is that we might have many threads (let’s say 10),
and if our code has 10 locks protecting 10 variables
individually…

then it’s possible that some of the threads will be operating in
different parts of the shared code and making progress
because each thread DOES NOT HAVE TO ACQUIRE THE
GLOBAL LOCK…

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.11

FEEDBACK - 8

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.12

FINE GRAINED PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/20/2017

Slides by Wes J. Lloyd L7.3

 Could the assignments be on the calendar… YES

 Grading for assignment 0 – should be posted
 Some students did not submit an answers file which interprets

the output. You may submit as a text file to canvas, and send
and email to the grader and CC Wes to request regrading

 In the future: please read and follow assignment specs

 What can we expect to be on the midterm?
 We will have an in-class mock exam.

 Roughly coverage is from Ch 1-9, 26-32, with a focus on
italicized chapters… more discussion to follow

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.13

FEEDBACK - 9

 Finishing up Chapter 28
 Spin Locks - demonstration

 Spin Locks - review

 Yielding

 Queues and User Control

 Chapter 29 – Lock Based Data Structure

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.14

OBJECTIVES

 Install htop on CentOS7:

 wget http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-
release-7-9.noarch.rpm

 sudo rpm -ihv epel-release-7-9.noarch.rpm

 sudo yum install htop

 Spin locking demo
 CentOS 7 VM

 With 1 CPU core

 With 2 CPU cores

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.15

SPIN LOCKING DEMO

 HW CPU Instruction

 Increment counter atomically-as a unit in one instruction

 Fetch and return value

 Increment by 1

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.16

FETCH-AND-ADD

 Can build Ticket Lock using Fetch-and-Add

 Ensures progress of all threads (fairness)

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.17

TICKET LOCK

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.18

TICKET LOCK - 2

TA myturn=0
ticket=1
turn=0

TA
while (0 != 0)
acquire lock

TB myturn=1
ticket=2
turn=0

TB
while (0 != 1)
spin

TA-unlock
myturn=0
ticket=2
turn=1

TB
while (1 != 1)
acquire lock

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/20/2017

Slides by Wes J. Lloyd L7.4

 Give up the CPU – instead of busy waiting…
 running ready

 Ready relinquishes the CPU for another thread (ctxt. switch)

 How does the thread get the CPU back?
 OS must opportunistically reschedule it: ready running

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.19

YIELD() – SYSTEM CALL

 Simple, correct

 Slow

 With long locks, waiting threads spin for entire timeslice

 Repeat comparison continuously

 Busy waiting

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.20

HARDWARE SPIN LOCKS - SUMMARY

How To Avoid Spinning?
Need both HW & OS Support !

 Don’t allow the OS to control your program
 Use internal Thread Queues

 Allows programmer to maintain control
 Ensure fairness, prevent starvation
 Better for synchronizing large #’s of threads
 Thread pools: track and reuse your own threads…

 Require OS support to add/remove threads to/from
queue(s)

 Solaris API:
 park(): puts thread to sleep
 unpark(threadID): wakes specified thread

 Linux API: futex()

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.21

THREAD QUEUES

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.22

THREAD QUEUES - 2

lock unavailable; add thread to queue

Guard uses a spin-lock to protect the
critical sections in lock() and unlock()

Obtain guard lock

try to obtain actual lock

potential wakeup/waiting race

 Unlock

 Note: no change to m->flag if unparking a thread

 Lock is passed to the unparked thread “directly”

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.23

THREAD QUEUES - 3

Obtain guard lock (spin)

wake up thread from queue

release guard lock

 Thread B: context switch occurs immediately before call to
park()

 Thread A: releases lock, calls unpark, queue is empty

 Thread B: regains context, proceeds to lock itself forever

 Need new system call
 setpark()- informs OS about soon to be parked thread

 Subsequent calls to unpark() are aware that ThreadB is about to park

 ThreadB’s call to park() immediately returns

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.24

WAKEUP/WAITING RACE

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/20/2017

Slides by Wes J. Lloyd L7.5

 Fast Userspace MuTEX

 Linux futex system calls similar to park() and unpark()

 Linux uses an in-kernel queue

 Provides a futex() system call

 Provides atomic-as a unit compare-and-block operation

 Futex is a lower-level construct

 Used as building blocks for:
mutex, condition variables, semaphores

 Objective: reduce the number of system calls

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.25

FUTEX

 futex_wait(addr, expected)
 Put calling thread to sleep
 If value @ addr != expected return immediately

 futex_wake(addr)
 Wake one thread that is waiting on the queue

 These are not exposed as C l ibrary calls directly
 Call futex() with FUTEX_WAIT or FUTEX_WAKE

 Use a 32-bit integer
 The lef tmost bit (the +/- sign) tracks the lock state
 0 – free
 1 – locked

 Remaining 31 bits: identifies thread

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.26

FUTEX: WRITE YOUR OWN MUTEX LOCK

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.27

FUTEX: MUTEX_LOCK PSUEDO CODE

Void mutex_lock(int *mutex) {
int v;
/* Bit 31 was clear, we got the mutex (this is a fast lock!)
if (atomic_bit_test_set (mutex, 31) == 0)

return;
// “adds” mutex to queue
atomic_increment (mutex);
while (1) {

// is lock available?
if (atomic_bit_test_set (mutex, 31) ==0 {

// remove mutex from queue – it has the lock now
atomic_decrement (mutex);
return;

}
// Have to wait. Make sure futex value is locked (negative)
v = *mutex;
iv (v >= 0)

continue;
// wait to be woken up when lock is available
// this is not a spin lock… (signal)
futex_wait (mutex, v);

}
}

 Interesting note: Futex bug in Redhat Linux

 https://www.infoq.com/news/2015/05/redhat-futex

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.28

FUTEX: MUTEX UNLOCK PSUEDO CODE

Void mutex_unlock(int *mutex) {

// Adding 0x80000000 to counter results in 0 if and only if
// there are no other interested threads

if (atomic_add_zero (mutex, 0x80000000))
return;

// There are other threads waiting for this lock (mutex)
// wake one of them up..
// (e.g. dequeue it)
futex_wake (mutex);

}

 Hybrid between spin-locks and yielding

 Useful if lock is about to be released

 First phase – spin lock

 Spin for some time waiting for the lock to be released

 If lock is not acquired after time expires enter phase two.

 Second phase - yield

 Thread sleeps (yields)

 Is awoken when the lock becomes free

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.29

HYBRID - TWO PHASE LOCKS

LOCK BASED
DATA STRUCTTURES

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L7.30

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/20/2017

Slides by Wes J. Lloyd L7.6

 Chapter 29
 Concurrent Data Structures

 Performance

 Lock Granularity

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.31

OBJECTIVES

Adding locks to data structures make them
thread safe.

Considerations:

Correctness

Performance

Lock granularity

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.32

LOCK-BASED
CONCURRENT DATA STRUCTURES

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.33

COUNTER STRUCTURE W/O LOCK

 Synchronization weary -- - not thread safe

 Add lock to the counter

 Require lock to change data

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.34

CONCURRENT COUNTER

 Decrease counter

 Get value

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.35

CONCURRENT COUNTER - 2

 iMac: four core Intel 2.7 GHz i5 CPU

 Each thread increments counter 1,000,000 times

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.36

CONCURRENT COUNTERS - PERFORMANCE

Traditional vs. sloppy counter
Sloppy Threshold (S) = 1024

Synchronized counter scales poorly.

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/20/2017

Slides by Wes J. Lloyd L7.7

 Achieve (N) performance gain with (N) additional resources

 Throughput:

 Transactions per second

 1 core

 N = 100 tps

 10 core

 N = 1000 tps

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.37

PERFECT SCALING

 Provides single logical shared counter

 Implemented using local counters for each ~CPU core
 4 CPU cores = 4 local counters & 1 global counter

 Local counters are synchronized via local locks

 Global counter is updated periodically
 Global counter has lock to protect global counter value

 Sloppiness threshold (S):
Update threshold of global counter with local values

 Small (S): more updates, more overhead

 Large (S): fewer updates, more performant, less synchronized

 Why this implementation?
Why do we want counters local to each CPU Core?

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.38

SLOPPY COUNTER

QUESTIONS

April 20, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L7.55

