
TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/18/2017

Slides by Wes J. Lloyd L6.1

Concurrency:
An Introduction

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Chapter 9: Scheduling
 How does stride scheduling handle a new job?

 Chapter 26:
 What is the difference between a process and a thread?

 What is volatile?
 In Java, all reads and writes to a variable are guaranteed to be

atomic unless the variable is a long or double
 JVMs determine exact implementation
 When volatile is used in Java, reads and writes to long and

double become atomic

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.2

FEEDBACK FROM 4/13

 What is volatile?

 In C: Qualifier added to variable when declared. Provides
a hint to the compiler that the variable may change at
any time--without action by nearby code.

 Variable should be declared volatile when its value could
change unexpectedly. Three scenarios:
 1. Memory-mapped peripheral registers

 2. Global variables modified by an interrupt service routine

 3. Global variables accessed by multiple threads

 https://barrgroup.com/Embedded-Systems/How -To/C-Volat ile-
Keyword

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.3

FEEDBACK - 2

 How does pthread_join() work?
Waits for specified thread to terminate
 Thread must be joinable
 Copies exit/return data from child worker to pointed addr
 See man page. . .

 How does it wait?
 Blocks main thread from proceeding until child finishes
 Relinquishes the CPU until child exits
 Not a busy wait

What does it wait for?
 pthread_join() waits for child thread to finish

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.4

FEEDBACK - 3

 Chapter 26

 Introduction to threads

 Race condition

 Critical section

 Chapter 27 - Thread API

 Chapter 28 – Locks

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.5

OBJECTIVES

 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplicate of code/heap, lightweight execution threads

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.6

PROCESSES VS. THREADS

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/18/2017

Slides by Wes J. Lloyd L6.2

 Enables a single process (program) to have multiple “workers”

 Supports independent path(s) of execution within a program

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Code segment, memory, and heap are shared

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.7

THREADS - 2

 What is happening with our counter?
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.8

RACE CONDITION

 Code that accesses a shared variable must not be
concurrently executed by more than one thread

 Multiple active threads inside a critical section produces a
race condition .

 Atomic execution (all code executed as a unit) must be
ensured in cr itical sections
 These sections must be mutually exclusive

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.9

CRITICAL SECTION

 To demonstrate how critical section(s) can be executed
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.10

LOCKS

LINUX
THREAD API

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L6.11

 pthread_create

 thread: thread struct

 attr: stack size, scheduling priority… (optional)

 start_routine: function pointer to thread routine

 arg: argument to pass to thread routine (optional)

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.12

THREAD CREATION

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/18/2017

Slides by Wes J. Lloyd L6.3

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.13

PTHREAD_CREATE – PASS ANY DATA

 Here we “cast” the pointer to pass/return a primitive data type

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.14

PASSING A SINGLE VALUE

 Here we “cast” the pointer to pass/return a primitive data type

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.15

PASSING A SINGLE VALUE

Using this approach on your CentOS 7 VM
How large (in bytes) can the primitive data type be?

How large (in bytes) can the primitive data type
be on a 32-bit operating system?

 thread: which thread?

 value_ptr: pointer to return value
type is dynamic / agnostic

 Returned values *must* be on the heap

 Thread stacks destroyed upon thread termination (join)

 Pointers to thread stack memory addresses are invalid

May appear as gibberish or lead to crash (seg fault)

 Not all threads join – What would be Examples ??

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.16

WAITING FOR THREADS TO FINISH

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L6.17

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
struct myarg output;
output.a = 1;
output.b = 2;
return (void *) &output;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

What will this code do?

How can this code be fixed?

$./pthread_struct
a=10 b=20
Segmentation fault (core dumped)

Data on thread stack

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L6.18

struct myarg {
int a;
int b;

};

void *worker(void *arg)
{
struct myarg *input = (struct myarg *) arg;
printf("a=%d b=%d\n",input->a, input->b);
input->a = 1;
input->b = 2;
return (void *) &input;

}

int main (int argc, char * argv[])
{
pthread_t p1;
struct myarg args;
struct myarg *ret_args;
args.a = 10;
args.b = 20;
pthread_create(&p1, NULL, worker, &args);
pthread_join(p1, (void *)&ret_args);
printf("returned %d %d\n", ret_args->a, ret_args->b);
return 0;

}

$./pthread_struct
a=10 b=20
returned 1 2

How about this code?

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/18/2017

Slides by Wes J. Lloyd L6.4

 Casting

 Suppresses compiler warnings when passing “typed” data
where (void) or (void *) is called for

 Example: uncasted capture in pthread_join
pthread_int.c: In function ‘main’:

pthread_int.c:34:20: warning: passing argument 2 of ‘pthread_join’
from incompatible pointer type [-Wincompatible-pointer-types]

pthread_join(p1, &p1val);

 Example: uncasted return
In file included from pthread_int.c:3:0:

/usr/include/pthread.h:250:12: note: expected ‘void **’ but argument
is of type ‘int **’

extern int pthread_join (pthread_t __th, void **__thread_return);

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.19

ADDING CASTS

 pthread_join
int * p1val;

int * p2val;

pthread_join(p1, (void *)&p1val);

pthread_join(p2, (void *)&p2val);

 return from thread function
int * counterval = malloc(sizeof(int));

*counterval = counter;

return (void *) counterval;

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.20

ADDING CASTS - 2

 pthread_mutex_t data type

 /usr/include/bits/pthread_types.h

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.21

LOCKS

// Global Address Space
static volatile int counter = 0;
pthread_mutex_t lock;

void *worker(void *arg)
{
int i;
for (i=0;i<10000000;i++) {

int rc = pthread_mutex_lock(&lock);
assert(rc==0);
counter = counter + 1;
pthread_mutex_unlock(&lock);

}
return NULL;

}

 Ensure critical sections are executed atomically -as a unit
 Provides implementation of “Mutual Exclusion”

 API

 Example w/o initialization & error checking

 Blocks forever until lock can be obtained

 Enters critical section once lock is obtained
 Releases lock

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.22

LOCKS - 2

 Assigning the constant

 API call:

 Initializes mutex with attributes specified by 2nd argument

 If NULL, then default attributes are used

 Upon initialization, the mutex is initialized and unlocked

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.23

LOCK INITIALIZATION

 Error checking wrapper

 What if lock can’t be obtained?

 trylock – returns immediately (fails) if lock is unavailable

 timelock – tries to obtain a lock for a specified duration

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.24

LOCKS - 3

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/18/2017

Slides by Wes J. Lloyd L6.5

 Condition variables support “signaling”
between threads

 pthread_cont_t datatype

 pthread_cond_wait()
 Waits (sleeps)

 Listens for a “signal”

 Releases the lock until signaled

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.25

CONDITIONS AND SIGNALS

 pthread_cond_signal()
 Called to send a “signal” to all listeners to wake them up
 The goal is to unblock (at least one) to respond to the signal

 pthread_cond_broadcast()
 Unblocks all threads currently blocked on the specified condition
 Used when all threads should respond to the signal

 Which thread is unblocked first?
 Determined by OS scheduler (based on priority)
 Thread(s) gain the lock individually (based on priority)

as if they called pthread_mutex_lock()

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.26

CONDITIONS AND SIGNALS - 2

int pthread_cond_signal(pthread_cond_t * cond);

int pthread_cond_broadcast(pthread_cond_t * cond);

 Wait example

 wait puts thread to sleep, releases lock

 when awoken, lock reacquired (and released by this code)

 Another thread signals the thread

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.27

CONDITIONS AND SIGNALS - 3

Code performs required
work before other

thread(s) can continue

. . .

 Why do we wait inside a while loop?

 The while ensures upon awakening the condition is rechecked
 A signal may have been raised, but the condition to proceed has

not been satisfied.

 Without checking the condition the thread may proceed to execute
when it should not.

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.28

CONDITION AND SIGNALS - 4

 Compilation
 gcc –pthread pthread.c –o pthread

 Requires explicitly linking the library with compiler flag

 List of pthread manpages
 man –k pthread

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.29

PTHREADS LIBRARY

 Example builds multiple single file programs
 All target

 pthread_mult
 Example if multiple source files should produce a single executable

 clean target

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.30

SAMPLE MAKEFILE

CC=gcc
CFLAGS=-pthread -I. -Wall

binaries=pthread pthread_int pthread_lock_cond pthread_struct

all: $(binaries)

pthread_mult: pthread.c pthread_int.c
$(CC) $(CFLAGS) $^ -o $@

clean:
$(RM) -f $(binaries) *.o

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/18/2017

Slides by Wes J. Lloyd L6.6

LOCKS

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L6.31

 Ensure critical section(s) are executed atomically -as a unit
 Only one thread is allowed to execute a critical section at any given

time

 Ensures the code snippets are “mutually exclusive”

 Protect a global counter:

 A “critical section”:

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.32

LOCKS

 Lock variables are called “MUTEX”

 Short for mutual exclusion (that’s what they guarantee)

 Lock variables store the state of the lock

 States

 Locked (acquired or held)

 Unlocked (available or free)

 Only 1 thread can hold a lock

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.33

LOCKS - 2

 pthread_mutex_lock(&lock)

 Try to acquire lock

 If lock is free, calling thread will acquire the lock

 Thread with lock enters critical section
 Thread “owns” the lock

 No other thread can acquire the lock before the owner
releases it.

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.34

LOCKS - 3

 Program can have many mutex (lock) variables to
“serialize” many critical sections

 Locks are also used to protect data structures

 Prevent multiple threads from changing the same data
simultaneously

 Programmer can make sections of code “granular”
 Fine grained – means just one grain of sand at a time through an

hour glass

 Similar to relational database transactions
 DB transactions prevent multiple users from modifying a table,

row, field

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.35

LOCKS - 4

 Is this code a good example of “fine grained parallelism”?

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.36

FINE GRAINED?

pthread_mutex_lock(&lock);
a = b++;
b = a * c;
*d = a + b +c;
FILE * fp = fopen ("file.txt", “r");
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
ListNode *node = mylist->head;
Int i=0
while (node) {
node->title = str1;
node->subheading = str2;
node->desc = str3;
node->end = *e;
node = node->next;
i++

}
e = e – i;
pthread_mutex_unlock(&lock);

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/18/2017

Slides by Wes J. Lloyd L6.7

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.37

GRANULAR PARALLELISM

pthread_mutex_lock(&lock_a);
pthread_mutex_lock(&lock_b);
a = b++;
pthread_mutex_unlock(&lock_b);
pthread_mutex_unlock(&lock_a);

pthread_mutex_lock(&lock_b);
b = a * c;
pthread_mutex_unlock(&lock_b);

pthread_mutex_lock(&lock_d);
*d = a + b +c;
pthread_mutex_unlock(&lock_d);

FILE * fp = fopen ("file.txt", “r");
pthread_mutex_lock(&lock_e);
fscanf(fp, "%s %s %s %d", str1, str2, str3, &e);
pthread_mutex_unlock(&lock_e);

ListNode *node = mylist->head;
int i=0 . . .

 Correctness

 Does the lock work?

 Are critical sections mutually exclusive?
(atomic-as a unit?)

 Fairness

 Are threads competing for a lock have a fair chance of
acquiring it?

 Overhead

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.38

EVALUATING LOCK IMPLEMENTATIONS

 Locks require hardware support

 To minimize overhead, ensure fairness and correctness

 Special “atomic-as a unit” instructions to support lock
implementation

 Atomic-as a unit exchange instruction
 XCHG

 Compare and exchange instruction
 CMPXCHG

 CMPXCHG8B

 CMPXCHG16B

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.39

BUILDING LOCKS

 To implement mutual exclusion
 Disable interrupts upon entering critical sections

 Any thread could disable system-wide interrupt
 What if lock is never released?

 On a multiprocessor processor each CPU has its own interrupts
 Do we disable interrupts for all cores simultaneously?

 While interrupts are disabled, they could be lost
 If not queued…

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.40

HISTORICAL IMPLEMENTATION

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.41

SPIN LOCK IMPLEMENTATION

 Operate without atomic-as a unit assembly instructions

 “Do-it-yourself” Locks

 Is this lock implementation: Correct? Fair? Performant?

 Correctness requires luck… (e.g. DIY lock is incorrect)

 Here both threads have “acquired” the lock simultaneously

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.42

DIY: CORRECT?

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/18/2017

Slides by Wes J. Lloyd L6.8

 What is wrong with while(<cond>); ?

 Spin-waiting wastes time actively waiting for another thread

 while (1); will “peg” a CPU core at 100%
 Continuously loops, and evaluates mutex->flag value…

 Generates heat…

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.43

DIY: PERFORMANT?

void lock(lock_t *mutex)
{
while (mutex->flag == 1); // while lock is unavailable, wait…
mutex->flag = 1;

}

 C implementation: not atomic
 Adds a simple check to basic spin lock

 One a single core CPU system with preemptive scheduler:

 Try this…

 lock() method checks that TestAndSet doesn’t return 1

 Comparison is in the caller

 Single core systems are becoming scarce

 Try on a one-core VM

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.44

TEST-AND-SET INSTRUCTION

 Requires a preemptive scheduler on single CPU core system

 Lock is never released without a context switch

 1-core VM: occasionally will deadlock, doesn’t miscount

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.45

DIY: TEST-AND-SET - 2

 Correctness:
 Spin locks guarantee: critical sections won’t be executed

simultaneously by (2) threads

 Fairness:
 No fairness guarantee. Once a thread has a lock, nothing forces it to

relinquish it…

 Performance:
 Spin locks perform “busy waiting”

 Spin locks are best for short periods of waiting

 Performance is slow when multiple threads share a CPU
 Especially for long periods

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.46

SPIN LOCK EVALUATION

 Checks that the lock variable has the expected value FIRST,
before changing its value
 If so, make assignment

 Return value at location

 Adds a comparison to TestAndSet

 Useful for wait-free synchronization
 Supports implementation of shared data structures which can be

updated atomically (as a unit) using the HW support
CompareAndSwap instruction

 Shared data structure updates become “wait-free”

 Upcoming in Chapter 32

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.47

COMPARE AND SWAP

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.48

COMPARE AND SWAP

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/18/2017

Slides by Wes J. Lloyd L6.9

 Compare and Swap

 Spin lock usage

 X86 provides “cmpxchgl” compare-and-exchange instruction
 cmpxchg8b

 cmpxchg16b

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.49

COMPARE AND SWAP

1-core VM:
Count is correct, no deadlock

 Cooperative instructions used together to support
synchronization on RISC systems

 No support on x86 processors
 Supported by RISC: Alpha, PowerPC, ARM

 Load-linked (LL)
 Loads value into register
 Same as typical load
 Used as a mechanism to track competition

 Store-conditional (SC)
 Performs “mutually exclusive” store
 Allows only one thread to store value

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.50

TWO MORE “LOCK BUILDING”
CPU INSTRUCTIONS

 LL instruction loads pointer value (ptr)

 SC only stores if the load link pointer has not changed

 Requires HW support

 C code is psuedo code

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.51

LL/SC LOCK

 Two instruction lock

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L7.52

LL/SC LOCK - 2

QUESTIONS

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L6.53

 “initialized” - - global variable shared by multiple threads

 Wait (client thread):

 Signal (parent thread): when ready…

 How is this “wait” different that pthread_cond_wait() ?
 Wastes CPU cycles effectively pegs a core at 100%

 Potential synchronization errors with changing the value of
“initialized”

 Thread API is provided to advance the DO-IT-YOURSELF approach

April 18, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L6.54

DO-IT-YOURSELF LOCK

