
TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/13/2017

Slides by Wes J. Lloyd L5.1

Concurrency:
An Introduction

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Why “ticketing”? It sounds like a waste to keep track of it?
 Ticket-based schedulers feature a simple implementation

 E.g. pick a random number to determine next job to run

 Ticket-based approaches enable proportional time sharing

 MLFQ, RR use time quantums (e.g. 10ms, 20ms)

 Tickets provide a mechanism for a proportional quantum based
on number of jobs

 Ticket assignment
 User selects number of tickets for their jobs

 OS converts (currency exchange) user allotment to system
allotment

 Totals user tickets to find proportions

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.2

FEEDBACK FROM 4/11

 What are users?

 Any user on a system, with potentially multiple jobs

 Are they (users) the same as jobs?

 No, a user owns and runs one or more jobs on the system

 Not every user is a person

 The “root” user runs most OS jobs (e.g. kernels, daemons,
servers)

 Do all users get the same number of tickets?

 OS “converts” user tickets to system tickets through
currency exchange mechanism

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.3

FEEDBACK - 2

 What is the benefit of a stride scheduler? (pros and cons)

 Stride solves the problem with poor fairness for short
running jobs under the lottery scheduler

 Achieves fairness (even time distribution) more quickly

 In general, stride scheduler suffers from similar issues as
ticket schedulers, except for improving on fairness

 Ticket assignment is still an open problem …

 Stride value based on number of tickets

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.4

FEEDBACK - 3

 What is the difference between tickets and strides?

 Ticket represents the proportion of CPU a job should receive
relative to other jobs

 Stride is value counter must reach for scheduler to pass
to the next job.

 Scheduler always chooses jobs with lowest pass value.

 Stride value is inverse in proportion to number of tickets held.

 Jobs with low stride always favored for execution.

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.5

FEEDBACK - 4

 Randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.6

STRIDE SCHEDULER EXAMPLE

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/13/2017

Slides by Wes J. Lloyd L5.2

 Chapter 26

 Introduction to threads

 Race condition

 Critical section

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.7

OBJECTIVES

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.8

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplicate of code/heap, lightweight execution threads

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.9

PROCESSES VS. THREADS

 Enables a single process (program) to have multiple “workers”

 Supports independent path(s) of execution within a program

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Code segment, memory, and heap are shared

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.10

THREADS - 2

 Thread Control Block vs. Process Control Block

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.11

PROCESS AND THREAD METADATA

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.12

SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/13/2017

Slides by Wes J. Lloyd L5.3

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.13

THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.14

POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.15

POSSIBLE ORDERINGS OF EVENTS - 2

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.16

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

 Show example

 A + B : ordering

 Counter: incrementing global variable by two threads

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.17

COUNTER EXAMPLE

 What is happening with our counter?
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.18

RACE CONDITION

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/13/2017

Slides by Wes J. Lloyd L5.4

 Code that accesses a shared variable must not be
concurrently executed by more than one thread

 Multiple active threads inside a critical section produces a
race condition .

 Atomic execution (all code executed as a unit) must be
ensured in cr itical sections
 These sections must be mutually exclusive

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.19

CRITICAL SECTION

 To demonstrate how critical section(s) can be executed
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.20

LOCKS

LINUX
THREAD API

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L5.21

QUESTIONS

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L5.22

