
TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/13/2017

Slides by Wes J. Lloyd L5.1

Concurrency:
An Introduction

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Why “ticketing”? It sounds like a waste to keep track of it?
 Ticket-based schedulers feature a simple implementation

 E.g. pick a random number to determine next job to run

 Ticket-based approaches enable proportional time sharing

 MLFQ, RR use time quantums (e.g. 10ms, 20ms)

 Tickets provide a mechanism for a proportional quantum based
on number of jobs

 Ticket assignment
 User selects number of tickets for their jobs

 OS converts (currency exchange) user allotment to system
allotment

 Totals user tickets to find proportions

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.2

FEEDBACK FROM 4/11

 What are users?

 Any user on a system, with potentially multiple jobs

 Are they (users) the same as jobs?

 No, a user owns and runs one or more jobs on the system

 Not every user is a person

 The “root” user runs most OS jobs (e.g. kernels, daemons,
servers)

 Do all users get the same number of tickets?

 OS “converts” user tickets to system tickets through
currency exchange mechanism

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.3

FEEDBACK - 2

 What is the benefit of a stride scheduler? (pros and cons)

 Stride solves the problem with poor fairness for short
running jobs under the lottery scheduler

 Achieves fairness (even time distribution) more quickly

 In general, stride scheduler suffers from similar issues as
ticket schedulers, except for improving on fairness

 Ticket assignment is still an open problem …

 Stride value based on number of tickets

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.4

FEEDBACK - 3

 What is the difference between tickets and strides?

 Ticket represents the proportion of CPU a job should receive
relative to other jobs

 Stride is value counter must reach for scheduler to pass
to the next job.

 Scheduler always chooses jobs with lowest pass value.

 Stride value is inverse in proportion to number of tickets held.

 Jobs with low stride always favored for execution.

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.5

FEEDBACK - 4

 Randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.6

STRIDE SCHEDULER EXAMPLE

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/13/2017

Slides by Wes J. Lloyd L5.2

 Chapter 26

 Introduction to threads

 Race condition

 Critical section

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.7

OBJECTIVES

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.8

THREADS

©Alfred Park, http://randu.org/tutorials/threads

Single
Threaded
Process

Multiple
Threaded
Process

SHARED

 What’s the difference between forks and threads?
 Forks: duplicate a process

 Think of CLONING - There will be two identical processes at the end

 Threads: no duplicate of code/heap, lightweight execution threads

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.9

PROCESSES VS. THREADS

 Enables a single process (program) to have multiple “workers”

 Supports independent path(s) of execution within a program

 Each thread has its own Thread Control Block (TCB)
 PC, registers, SP, and stack

 Code segment, memory, and heap are shared

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.10

THREADS - 2

 Thread Control Block vs. Process Control Block

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.11

PROCESS AND THREAD METADATA

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.12

SHARED ADDRESS SPACE

 Every thread has it’s own stack / PC

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/13/2017

Slides by Wes J. Lloyd L5.3

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.13

THREAD CREATION EXAMPLE

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2

Runs

Prints ‘B’

Returns

Prints ‘main: end’

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.14

POSSIBLE ORDERINGS OF EVENTS

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Runs

Prints ‘A’

Returns

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1 Returns immediately

Waits for T2 Returns immediately

Prints ‘main: end’

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.15

POSSIBLE ORDERINGS OF EVENTS - 2

int main() Thread 1 Thread 2
Starts running

Prints ‘main: begin’

Creates Thread 1

Creates Thread 2

Runs

Prints ‘B’

Returns

Waits for T1

Runs

Prints ‘A’

Returns

Waits for T2 Immediately returns

Prints ‘main: end’

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.16

POSSIBLE ORDERINGS OF EVENTS - 3

What if execution order of
events in the program matters?

 Show example

 A + B : ordering

 Counter: incrementing global variable by two threads

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.17

COUNTER EXAMPLE

 What is happening with our counter?
 When counter=50, consider code: counter = counter + 1

 If synchronized, counter will = 52

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.18

RACE CONDITION

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/13/2017

Slides by Wes J. Lloyd L5.4

 Code that accesses a shared variable must not be
concurrently executed by more than one thread

 Multiple active threads inside a critical section produces a
race condition .

 Atomic execution (all code executed as a unit) must be
ensured in cr itical sections
 These sections must be mutually exclusive

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.19

CRITICAL SECTION

 To demonstrate how critical section(s) can be executed
“atomically -as a unit” Chapter 27 & beyond introduce locks

 Counter example revisited

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L5.20

LOCKS

LINUX
THREAD API

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L5.21

QUESTIONS

April 13, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L5.22

