TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

04/13/2017

TCSS 422: OPERATING SYSTEMS

Concurrency:
An Introduction

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

FEEDBACK FROM 4/11

= Why “ticketing”? It sounds like a waste to keep track of it?
= Ticket-based schedulers feature a simple implementation
E.g. pick a random number to determine next job to run
= Ticket-based approaches enable proportional time sharing
MLFQ, RR use time quantums (e.g. 10ms, 20ms)
Tickets provide a mechanism for a proportional quantum based
on number of jobs

= Ticket assignment
= User selects number of tickets for their jobs

= 0S converts (currency exchange) user allotment to system
allotment

= Totals user tickets to find proportions

April 13, 2017

TCS5422: Operating Systems [Spring 2017) 152
Institute of Technology, University of Washington - Tacoma i

FEEDBACK - 2

= What are users?
= Any user on a system, with potentially multiple jobs

= Are they (users) the same as jobs?
=No, a user owns and runs one or more jobs on the system
= Not every user is a person
=The “root” user runs most OS jobs (e.g. kernels, daemons,
servers)

= Do all users get the same number of tickets?

= 0S “converts” user tickets to system tickets through
currency exchange mechanism

TCS$422: Operating Systems [Spring 2017] | 153 ‘

April 13, 2017 Institute of Technology, University of Washington - Tacoma

FEEDBACK - 3

= What is the benefit of a stride scheduler? (pros and cons)
= Stride solves the problem with poor fairness for short
running jobs under the lottery scheduler
= Achieves fairness (even time distribution) more quickly

=In general, stride scheduler suffers from similar issues as
ticket schedulers, except for improving on fairness

= Ticket assignhment is still an open problem ...
= Stride value based on number of tickets

TCS$422: Operating Systems [Spring 2017] | 5.4 |

April 13, 2017 Institute of Technology, University of Washington - Tacoma

FEEDBACK - 4

= What is the difference between tickets and strides?

= Ticket represents the proportion of CPU a job should receive
relative to other jobs

= Stride is value counter must reach for scheduler to pass
to the next job.
= Scheduler always chooses jobs with lowest pass value.
= Stride value is inverse in proportion to number of tickets held.
= Jobs with low stride always favored for execution.

April 13, 2017 TCS5422: Operating Systems [Spring 2017] | 155 ‘

Institute of Technology, University of Washington - Tacoma

STRIDE SCHEDULER EXAMPLE

= Randomly pick job A (all pass values=0)
= Set A’s pass value to A’s stride = 100

" Tickets
0 Jickets
Increment counter until > 100 C =250
= Pick a new job A =100
Pass(A) Pass(?) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 o o A 4 initial job selection
100 0 0 is random. All @ 0
100 200 0 c
100 200 40 c 4 C has the most tickets
100 200 80 C and receives a lot of
100 200 120 A opportunities to run...
200 200 120 C
200 200 160 C
200 200 200
April 13, 2017 TCSS422: Operating Systems [Spring 2017] | 156 |

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L5.1

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

OBJECTIVES

= Chapter 26
= Introduction to threads

= Race condition

= Critical section

TCS5422: Operating Systems [Spring 2017)

April 13, 2017 Institute of Technology, University of Washington - Tacoma

04/13/2017

THREADS

Process Multithreaded Process

Process State: PC, Thread | | Thread | | Thread
registers, SP, etc... Sizteg] | State] | State

>

Process State: PC,
registers, SP, et

Single :
Threaded Data Segment 25 SHARED YRS it
Process Heap 2 /|| Process

v U
L] L3 e ¢ €
T | . L

©Alfred Park, http://randu.org/tutorials/threads

TCS5422: Operating Systems [Spring 2017)

‘ G e e S 1 T, Pt G e TP

PROCESSES VS. THREADS

= What’s the difference between forks and threads?
= Forks: duplicate a process
= Think of CLONING - There will be two identical processes at the end
= Threads: no duplicate of code/heap, lightweight execution threads

Process

[Ccone |[ama || wes |

[rogstrs[ogror|

— I o |
=
S < G thrand
¥ <

1
e

single-theeaded procoss mustithraadon prozoss

TCS5422: Operating Systems [Spring 2017)

April 13, 2017 Institute of Technology, University of Washington - Tacoma

| 159 ‘

THREADS - 2

= Enables a single process (program) to have multiple “workers”
= Supports independent path(s) of execution within a program

= Each thread has its own Thread Control Block (TCB)
= PC, registers, SP, and stack

= Code segment, memory, and heap are shared

TCSS422: Operating Systems [Spring 2017]
EIN s 2 [See ot Techolo syl niersityofWashinstonmiecome!

15.10 |

PROCESS AND THREAD METADATA

= Thread Control Block vs. Process Control Block

Thread identification Process identification
Thread state Process status
CPU information: Process state:
Program counter ;ra:ess status word
Registis cotants Megvster contents
b 3in memory
Thread priority Resources
Pointer to process that created this thread Process priority
Pointers to all other threads created by this thread Accounting
April 13, 2017 TCS5422: Operating Systems [Spring 2017] | st ‘

Institute of Technology, University of Washington - Tacoma

SHARED ADDRESS SPACE

= Every thread has it’s own stack / PC

OKB The code segment: OKB
Program Code where instructions live Program Code
1K The h t 148
e heap segment:
Heap contains mallocd data S Heap
2kB dynamic data structures
(it grows downward)
(free)
(free)
Stack (2)
(it grows upward)
The stack segment: (free)
15k8 contains local variables 15kB
stack (1) arguments to routines, Stack (1)
16K8 return values, etc 16KB

Two threaded
Address Space

A single-Threaded
Address Space

TCSS422: Operating Systems [Spring 2017]
LN e e [nsGRueof TechnolokyUniversitylof WashinstonTecoma!

1512 |

Slides by Wes J. Lloyd

L5.2

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

THREAD CREATION EXAMPLE

#include <stdie.h»
tinclude <assert.h»
tinclude <pthread.h>

void smythread(void sarg) (
printf ("$s\n", (char «) arg);
return NULL;

arge, char rargvil) {
ad_t pl, p2;

ain: begin\n®);
hread_create(spl, N
hread_create (sp2, NUL
aits for the threads t
hread_join(pl, NU:
ead_join(p2, NULL
E main: end\n");
return 0;

mythread, "A"); assert(rc == 0);
mythread, "B"); assert(rc == 0);

0);
ssert (rc == 0);

April 13, 2017 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma | 113 ‘

POSSIBLE ORDERINGS OF EVENTS - 2

Starts running

Prints ‘main: begin’

["Creates Thread 1 7
Runs
Prints ‘A'
Retums
] creates Thread 2 -
Runs
Prints ‘B'
Retums
| Waits forT1 Returns immediately §
Waits for T2 Returns immediately
Prints ‘main: end’
April 13, 2017 TCS5422: Operating Systems [Spring 2017] | 515 ‘

Institute of Technology, University of Washington - Tacoma

04/13/2017

POSSIBLE ORDERINGS OF EVENTS

Starts running
Prints ‘main: begin’
»Crea!es Thread 1
Creates Thread 2
Waits for TL
Runs

» Prints ‘A

Returns

» Waits for T2

Runs
Prints ‘B’

Returns

* Prints ‘main: end’

TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma Lo.14

‘ April 13, 2017

POSSIBLE ORDERINGS OF EVENTS - 3

Starts running
Prints ‘main: begin’
[Creates Thread 1

Creates Thread 2

What if execution order of

pie events in the program matters?
Runs
Prints ‘A"
L Returns
Waits for T2 Immediately returns

Prints ‘main: end”

TCSS422: Operating Systems [Spring 2017]

G 2 2 Institute of Technology, University of Washington - Tacoma

[s

COUNTER EXAMPLE

= Show example

= A + B: ordering
= Counter: incrementing global variable by two threads

April 13, 2017 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma | a7 ‘

RACE CONDITION

= What is happening with our counter?
= When counter=50, consider code: counter = counter + 1

= If synchronized, counter will = 52
(after instruction)
os Threadl Thread2 P eax counter
before critical section 100 0 50
mov 0x8049%alc, %eax 105 50 50
add $0x1, %eax 108 51 50

save T1's state

restore T2's state 100 0 50
mov 0x8049alc, %eax 105 50 50
add $0x1, %eax 108 51 50
mov %eax, 0x8049%alc 113 51 51

restore T1's state 108 51 50
mov %eax, 0x8049%alc 1131 5%

{ saqve 27s state

-

TCS5422: Operating Systems [Spring 2017)

‘ LN e e [nsGRueof TechnolokyUniversitylof WashinstonTecoma!

15.18 |

Slides by Wes J. Lloyd

L5.3

TCSS 422: Operating Systems [Spring 2017] 04/13/2017
Institute of Technology, UW-Tacoma

CRITICAL SECTION LOCKS

= Code that accesses a shared variable must not be = To demonstrate how critical section(s) can be executed
concurrently executed by more than one thread “atomically-as a unit” Chapter 27 & beyond introduce locks

= Multiple active threads inside a critical section produces a
race condltion.

= Atomic executlon (all code executed as a unit) must be lock_t mutex;

ensured in critical sections
= These sections must be mutually exclusive

lock (smutex) :
lbalance = balance + 1; | Critical section
unlock (smutex) i

G W e

= Counter example revisited

15.20

TCS5422: Operating Systems [Spring 2017] TCSS422: Operating Systems [Spring 2017]
Bl Hi (AT SR T T L T A T 1519 G e e S 1 T, Pt G e TP

QUESTIONS

LINUX

THREAD API

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2017]

April 13,2017 Institute of Technology, University of Washington - Tacoma

April 13,2017

Slides by Wes J. Lloyd L5.4

