
TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

4/11/2017

Slides by Wes J. Lloyd L4.1

Scheduling:
Multi-level Feedback Queue,

Proportional Share

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Difference between turnaround time and execution time?
 Turnaround time is typically from the perspective of the user

 Includes time to submit the request, receive the response

 Execution time measures actual time spent executing (in the CPU)

 For fairness, we calculated 62% for the 3 jobs. What is the
significance of this value?
 100% fair indicates perfect fairness

 3 jobs, each receives 33.33%

 n/3 % (33.33%) indicates worst case fairness

 62% fair is approximately half-way between worst case and best case

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.2

FEEDBACK FROM 4/4

 What does starving the CPU mean?
 One or more jobs, because of their characteristics, do not

receive **any** CPU time, and can not finish

 How is SJF different than STCF?
 SJF generally does not feature preemption for newly arriving

jobs
 STCF typically includes job preemption. Newly arriving jobs

trigger reevaluation of times to completion. The current
shortest job is favored for execution potentially triggering a
context switch.

 Why do interactive jobs have higher priority than batch jobs?
 CPU Starvation for an interactive jobs results in UI

unresponsiveness
 The system appears to FREEZE

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.3

FEEDBACK - 2

 Still missing the advantage of one job scheduler vs.
another

We’ve seen FIFO, SJF, STCF, RR, and MLFQ

 Often schedulers perform better with respect to one
metric, while not another. For example RR is performing
great for fairness, but not job turnaround time

MLFQ attempts to balance turnaround time, response
time, and fairness, but fails when both interactive and
batch jobs are being scheduled

 Addition of the “priority boost” corrects this problems:
gaming & starvation

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.4

FEEDBACK - 3

 For MLFQ, how does the OS know when a program uses its
entire time slice, and needs to be moved down to a lower
queue?

 The provides detailed tracking of CPU time per process

 See the struct task_struct data structure:

 line ~1521 of /usr/src/{kernel src}/include/linux/sched.h

 Though CentOS/Ubuntu don’t use MLFQ, it is within means
for the system to provide process accounting to support
knowing when all of an available time slice is used.

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.5

FEEDBACK - 4

Uses/applications of scheduling algorithms

MLFQ, round-robin (2x)

Priority boost

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.6

FEEDBACK TOPICS - 4

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

4/11/2017

Slides by Wes J. Lloyd L4.2

 Review - Multi-level Feedback Queue (Ch. 8)

 Proportional Share Schedulers (Ch. 9)

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.7

OBJECTIVES

Objectives:

 Improve turnaround time:
Run shorter jobs first

Minimize response time:
Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.8

MULTI-LEVEL FEEDBACK QUEUE

 Multiple job queues

 Adjust job priority based on
observed behavior

 Interactive Jobs
 Frequent I/O  keep priority high

 Interactive jobs require fast
response time (GUI/UI)

 Batch Jobs
 Require long periods of CPU

utilization

 Keep priority low

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.9

MLFQ - 2 Round-Robin
within a Queue

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

 Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.10

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

 With priority boost

 Prevents starvation

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.11

RESPONDING TO BEHAVIOR CHANGE - 2

 Improved time accounting:
 Track total job execution time in the queue

 Each job receives a fixed time allotment

 When allotment is exhausted, job priority is lowered

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.12

PREVENTING GAMING

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

4/11/2017

Slides by Wes J. Lloyd L4.3

 Consider the tradeoffs:
 How many queues?

 What is a good time slice?

 How often should we “Boost” priority of jobs?

 What about different time slices to different queues?

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.13

MLFQ: TUNING

 Oracle Solaris MLFQ implementation

 60 Queues 
w/ slowly increasing time slice (high to low priority)

 Provides sys admins with set of editable table(s)

 Supports adjusting time slices, boost intervals, priority
changes, etc.

 Advice

 Provide OS with hints about the process

 Nice command  Linux

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.14

PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the
highest priority.

 Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.15

MLFQ RULE SUMMARY

PROPORTIONAL SHARE
SCHEDULER

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L4.16

 Also called fair-share scheduler
or lottery scheduler

 Guarantee each job receives some percentage of CPU time
based on share of “tickets”

 Each job receives an allotment of tickets

% of tickets corresponds to potential share of a resource

 Can conceptually schedule any resource this way
 CPU, disk I/O, memory

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.17

PROPORTIONAL SHARE SCHEDULER

 Simple implementation

 Just need a random number generator
 Picks the winning ticket

Maintain a data structure of jobs and tickets (list)

 Traverse list to find the owner of the ticket

 Consider sorting the list for speed

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.18

LOTTERY SCHEDULER

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

4/11/2017

Slides by Wes J. Lloyd L4.4

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.19

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;
3
4 // winner: use some call to a random number generator to
5 // get a value, between 0 and the total # of tickets
6 int winner = getrandom(0, totaltickets);
7
8 // current: use this to walk through the list of jobs
9 node_t *current = head;
10
11 // loop until the sum of ticket values is > the winner
12 while (current) {
13 counter = counter + current->tickets;
14 if (counter > winner)
15 break; // found the winner
16 current = current->next;
17 }
18 // ’current’ is the winner: schedule it...

 Ticket currency / exchange

 User allocates tickets in any desired way

 OS converts user currency into global currency

 Example:

 There are 200 global tickets assigned by the OS

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.20

TICKET MECHANISMS

 Ticket transfer

 Temporarily hand off tickets to another process

 Ticket inflation

 Process can temporarily raise or lower the number of
tickets it owns

 If a process needs more CPU time, it can boost tickets.

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.21

TICKET MECHANISMS - 2

 Scheduler picks a winning ticket

 Load the job with the winning ticket and run it

 Example:

 Given 100 tickets in the pool
 Job A has 75 tickets: 0 - 74

 Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.22

LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of flips!

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.23

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.24

LOTTERY FAIRNESS

 With two jobs
 Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

4/11/2017

Slides by Wes J. Lloyd L4.5

 What is the best approach to assign tickets to jobs?

 Typical approach is to assume users know best

 Users are provided with tickets, which they allocate as
desired

 How should the OS automatically distribute tickets upon
job arrival?

What do we know about incoming jobs a priori ?

 Ticket assignment is really an open problem…

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.25

LOTTERY SCHEDULING CHALLENGES

Addresses statistical probability issues with
lottery scheduling

 Instead of guessing a random number to select a
job, simply count…

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.26

STRIDE SCHEDULER

 Jobs have a “stride” value
 A stride value describes the counter pace when the job should

give up the CPU

 Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

 Total system tickets = 10,000
 Job A has 100 tickets  Astride = 10000/100 = 100

 Job B has 50 tickets  Bstride = 10000/50 = 200

 Job C has 250 tickets  Cstride = 10000/250 = 40

 Stride scheduler tracks “pass” values for each job (A, B, C)

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.27

STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks a job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

 When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job…

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.28

STRIDE SCHEDULER - 3

Stride values

Tickets = priority to select job

Stride is inverse to tickets

Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.29

STRIDE SCHEDULER - EXAMPLE

 Randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.30

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

4/11/2017

Slides by Wes J. Lloyd L4.6

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi-Tasking System
 In perfect system every process of the same priority receives

exactly 1/n th of the CPU time

 Scheduling classes (runqueues)
 Each has specific priority: default, real-time
 Scheduler picks highest priority task in highest scheduling

class
 Time quantum based on proportion of CPU time (%), not fixed

time allotments
 Quantum calculated using NICE value

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.31

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Time slice: Linux “Nice value”

 Nice value predates the CFS scheduler

 Top shows nice values
 Process command: Ps ax -o pid,ni,cmd,%cpu

 Nice Values: from -20 to 19

 Lower is higher priority, default is 0

 Scheduling quantum is calculated using nice value

 Target latency:

 Interval during which task should run at least once

 Automatically increases as number of jobs increases

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.32

COMPLETELY FAIR SCHEDULER - 2

 Challenge:
 How do we map a nice value to an actual CPU timeslice

(ms)

What is the best mapping?

 O(1) scheduler (< 2.6.23)
- tried to map nice value to timeslice (fixed allotment)

 Linux completely fair scheduler
- maps nice value based on time proportion
- with fewer jobs in a runqueue, the time quantum is larger

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.33

COMPLETELY FAIR SCHEDULER - 3

 Nice values become relative for determining time slices

 Proportion of CPU time to allocate is relative to other
queued tasks

 Scheduler tracks vir tual run time in vruntime variable

 The task on a given runqueue (nice value) with the lowest
vruntime is scheduled text

 struct sched_entity contains vruntime parameter

 Describes process execution time in nanoseconds

 Perfect scheduler 
achieve equal vruntime for all processes of same priority

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.34

COMPLETELY FAIR SCHEDULER - 4

 CFS uses weighted fair queueing

 Runqueues are stored using a linux rbtree

 Self balancing binary search tree
 The leftmost node will have the lowest vruntime

Walking the tree to find the left most node is only O(log N)
for N nodes

 If tree is balanced, left most node can be cached

 Key takeaway
identifying the next job to schedule is really fast!

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.35

COMPLETELY FAIR SCHEDULER - 5 QUESTIONS

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L4.36

