TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

TCSS 422: OPERATING SYSTEMS

Scheduling:
Multi-level Feedback Queue,
Proportional Share

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

4/11/2017

FEEDBACK FROM 4/4

= Difference between turnaround time and execution time?
= Turnaround time is typically from the perspective of the user
= Includes time to submit the request, receive the response
= Execution time measures actual time spent executing (in the CPU)

= For fairness, we calculated 62% for the 3 jobs. What is the
significance of this value?
= 100% fair indicates perfect fairness
= 3 jobs, each receives 33.33%
= n/3 % (33.33%) indicates worst case fairness
= 62% fair is approximately half-way between worst case and best case

April 11, 2017 TCS5422: Operating Systems [Spring 2017) | w2 |

Institute of Technology, University of Washington - Tacoma

FEEDBACK - 2

= What does starving the CPU mean?

= One or more jobs, because of their characteristics, do not
receive **any** CPU time, and can not finish

= How is SJF different than STCF?
= SJF generally does not feature preemption for newly arriving
jobs

= STCF typically includes job preemption. Newly arriving jobs
trigger reevaluation of times to completion. The current
shortest job is favored for execution potentially triggering a
context switch.

= Why do interactive jobs have higher priority than batch jobs?
= CPU Starva_\tion for an interactive jobs results in Ul
unresponsiveness
= The system appears to FREEZE

TCS5422: Operating Systems [Spring 2017)

April 11, 2017 Institute of Technology, University of Washington - Tacoma

| u3 ‘

FEEDBACK - 3

= Still missing the advantage of one job scheduler vs.

another

=We’'ve seen FIFO, SJF, STCF, RR, and MLFQ

= Often schedulers perform better with respect to one
metric, while not another. For example RR is performing
great for fairness, but not job turnaround time

= MLFQ attempts to balance turnaround time, response
time, and fairness, but fails when both interactive and
batch jobs are being scheduled

= Addition of the “priority boost” corrects this problems:
gaming & starvation

Apil 12,2017 TCSS422: Operating Systems [Spring 2017] | s |

Institute of Technology, University of Washington - Tacoma

FEEDBACK - 4

= For MLFQ, how does the OS know when a program uses its

entire time slice, and needs to be moved down to a lower

queue?

=The provides detailed tracking of CPU time per process

= See the struct task_struct data structure:

= line ~1521 of /usr/src/{kernel src}/include/linux/sched.h

=Though Cent0S/Ubuntu don’t use MLFQ, it is within means
for the system to provide process accounting to support
knowing when all of an available time slice is used.

TCS5422: Operating Systems [Spring 2017)

April 11, 2017 Institute of Technology, University of Washington - Tacoma

| us ‘

FEEDBACK TOPICS - 4

m Uses/applications of scheduling algorithms

= MLFQ, round-robin (2x)

= Priority boost

April 11, 2017 TCS5422: Operating Systems [Spring 2017) | s |

Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

L4.1

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

OBJECTIVES

= Review - Multi-level Feedback Queue (Ch. 8)

= Proportional Share Schedulers (Ch. 9)

TCS5422: Operating Systems [Spring 2017]
Gl Fi T e a0l 2 U nvers o Washins tonsTace el

4/11/2017

MULTI-LEVEL FEEDBACK QUEUE

®=QObjectives:

=Improve turnaround time:
Run shorter jobs first

=Minimize response time:
Important for interactive jobs (Ul)

= Achieve without a priori knowledge of job length

April 11, 2017 TCS5422: Operating Systems [Spring 2017)

4
Institute of Technology, University of Washington - Tacoma | e |

= Multiple job queues

= Adjust job priority based on
observed behavior

[High Priority] Q8 —> @ —

Q7
= Interactive Jobs Q6
= Frequent 1/0 > keep priority high Qs
= Interactive jobs require fast
response time (GUI/UI) Q4 —>©
= Batch Jobs Q3
= Require long periods of CPU Q2
utilization

= Keep priority low

[Low Priority] Ql —— @

April 11, 2017 TCS5422: Operating Systems [Spring 2017]

Institute of Technology, University of Washington - Tacoma | e ‘

MLFQ: DETERMINING JOB PRIORITY

= New arriving jobs are placed into highest priority queue

= If a job uses its entire time slice, priority is reduced (|)

= Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

= |f a job relinquishes the CPU for I/0 priority stays the same

MLFQ approximates SJF

April 11, 2017 TCS5422: Operating Systems [Spring 2017)

a;
Institute of Technology, University of Washington - Tacoma .10

RESPONDING TO BEHAVIOR CHANGE - 2

= With priority boost
= Prevents starvation

Boost
Bogst

100 150 200

Without(Left) and With(Right) Priority Boost A] B:Y B

April 11, 2017 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma | i

PREVENTING GAMING

= Improved time accounting:
= Track total job execution time in the queue
= Each job receives a fixed time allotment
= When allotment is exhausted, job priority is lowered

52 DDIIIIININNNY o, ¥
Q a M

@ w 1 i
CLLLLLERLRRLLLERL. = L ANN
o 50 100 150 200 o

Without(Left) and With(Right) Gaming Tolerance

TCS5422: Operating Systems [Spring 2017)

LI e [nsGRueof TechnolokyUniversitylof WashinstonTecoma!

.12

Slides by Wes J. Lloyd

L4.2

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

MLFQ: TUNING

= Consider the tradeoffs:
= How many queues?
= What is a good time slice?
= How often should we “Boost” priority of jobs?
= What about different time slices to different queues?

=

200

Example) 10ms for the highest queue, 20ms for the middle,
40ms for the lowest

4/11/2017

TCS5422: Operating Systems [Spring 2017)

Gl Fi T e a0l 2 U nvers o Washins tonsTace el

| 413

PRACTICAL EXAMPLE

= Oracle Solaris MLFQ implementation
=60 Queues >
w/ slowly increasing time slice (high to low priority)
= Provides sys admins with set of editable table(s)

= Supports adjusting time slices, boost intervals, priority
changes, etc.

= Advice
= Provide OS with hints about the process
= Nice command -> Linux

TCS5422: Operating Systems [Spring 2017)

April 11, 2017 Institute of Technology, University of Washington - Tacoma

La.14

MLFQ RULE SUMMARY

= The refined set of MLFQ rules:
= Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).
= Rule 2: If Priority(A) = Priority(B), A & B run in RR.

= Rule 3: When a job enters the system, it is placed at the
highest priority.

= Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

= Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

TCS5422: Operating Systems [Spring 2017)

Bl Zi Inttute of Technoloay)Universitylof Washington®Tacomal

| 1415

PROPORTIONAL SHARE
SCHEDULER

TCSS422: Operating Systems [Spring 2017]

April 11, 2017 Institute of Technology, University of Washington - Tacoma

PROPORTIONAL SHARE SCHEDULER

= Also called fair-share scheduler
or lottery scheduler

= Guarantee each job receives some percentage of CPU time
based on share of “tickets”

= Each job receives an allotment of tickets
= % of tickets corresponds to potential share of a resource

= Can conceptually schedule any resource this way
CPU, disk I/0, memory

TCS5422: Operating Systems [Spring 2017)

Bt Zi) Institute o Technoloay)Universitylof Washington®Tacomal

| a7

LOTTERY SCHEDULER

= Simple implementation

= Just need a random number generator
Picks the winning ticket

= Maintain a data structure of jobs and tickets (list)
= Traverse list to find the owner of the ticket

= Consider sorting the list for speed

TCS5422: Operating Systems [Spring 2017)

April 11, 2017 Institute of Technology, University of Washington - Tacoma

La.18

Slides by Wes J. Lloyd

L4.3

TCSS 422: Operating Systems [Spring 2017] 4/11/2017
Institute of Technology, UW-Tacoma

LOTTERY SCHEDULER IMPLEMENTATION TICKET MECHANISMS

e = Ticket currency / exchange
o
= User allocates tickets in any desired way

head

Tix:100

= OS converts user currency into global currency
3
:) = Example:
6 W: = ge . t, e B . .
: pner = gErmAndon (s, reraitickers) =There are 200 global tickets assigned by the 0S
8
o node_t *current = head;
w User A > 500 (A's currency) to AL > 50 (global currency)
12 (current) (> 500 (A's currency) to A2 > 50 (global currency)
13 counter = counter + current->tickets;
1 (counter 5 wimner)
1 current = current->next: User B > I10(B's currency) to B1 - 100 (global currency)
;8) ’
TCSS422: Of iting Syste [Spring 2017] TCS5422: Of iting Syste [Spring 2017]
Bl L itz et ol linwer oot Weshte e Teeerte | w19 ‘) B 258 it te echmoloal eratyof Washimssongreconts 120

TICKET MECHANISMS - 2 LOTTERY SCHEDULING

= Ticket transfer

= Scheduler picks a winnlng ticket
= Temporarily hand off tickets to another process

= Load the job with the winning ticket and run it
= Ticket inflation = Example:

= Given 100 tickets in the pool
Job A has 75 tickets: 0 - 74
Job B has 25 tickets: 75 - 99

= Process can temporarily raise or lower the number of
tickets it owns

= If a process needs more CPU time, it can boost tickets.

Scheduler’s winning tickets: 63 85 70 39 76 17 29 41 36 39 10 99 68 83 63
Scheduledjob: A B A A B A A A A AAB ABA

= But what do we know about probability of a coin flip?

TCS5422: Operating Systems [Spring 2017] TCSS422: Operating Systems [Spring 2017]
Bl Zi Inttute of Technoloay)Universitylof Washington®Tacomal 21 EI e [See ot Techolo syl niersityofWashinstonmiecome!

122

COIN FLIPPING LOTTERY FAIRNESS

= Equality of distribution (fairness) requires a lot of flips!

= With two jobs

100 = Each with the same number of tickets (t=100)
e 1l ™ Alheads o -
80 o8
70)
60 g 0s
=0 E’ 04
40 g
5
] 02
Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness. 00

|

—
Increasing number of coin tosses

1000

10 100
Job Length

TCS5422: Operating Systems [Spring 2017)

April 11, 2017 Institute of Technology, University of Washington - Tacoma | 123 ‘

424

Slides by Wes J. Lloyd L4.4

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

LOTTERY SCHEDULING CHALLENGES

= What is the best approach to assign tickets to jobs?
= Typical approach is to assume users know best

= Users are provided with tickets, which they allocate as
desired

= How should the OS automatically distribute tickets upon
job arrival?

= What do we know about incoming jobs a priori ?
= Ticket assignment is really an open problem...

4/11/2017

April 11, 2017 TCS5422: Operating Systems [Spring 2017]

Institute of Technology, University of Washington - Tacoma | s

STRIDE SCHEDULER

= Addresses statistical probability issues with
lottery scheduling

= Instead of guessing a random number to select a
job, simply count...

April 11, 2017 TCS5422: Operating Systems [Spring 2017)

.
Institute of Technology, University of Washington - Tacoma L.26

STRIDE SCHEDULER - 2

= Jobs have a “stride” value

= A stride value describes the counter pace when the job should
give up the CPU

= Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

= Total system tickets = 10,000
= Job A has 100 tickets > A,,;so = 10000/100 = 100
= Job B has 50 tickets > By, = 10000/50 = 200
= Job C has 250 tickets > Cg,4e = 10000/250 = 40

= Stride scheduler tracks “pass” values for each job (A, B, C)

April 11, 2017 TCS5422: Operating Systems [Spring 2017]

Institute of Technology, University of Washington - Tacoma | “7

STRIDE SCHEDULER - 3

= Basic algorithm:
1. Stride scheduler picks a job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

= When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job...

April 11, 2017 TCS5422: Operating Systems [Spring 2017)

.
Institute of Technology, University of Washington - Tacoma .28

STRIDE SCHEDULER - EXAMPLE

= Stride values
=Tickets = priority to select job
=Stride is inverse to tickets
=Lower stride = more chances to run (higher priority)

Priority
C stride = 40
A stride = 100
B stride = 200

April 11, 2017 TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma | 2

STRIDE SCHEDULER EXAMPLE - 2

= Randomly pick job A (all pass values=0)
= Set A’s pass value to A’s stride = 100

" Tickets
0 Jickets
Increment counter until > 100 C =250
= Pick a new job A =100
Pass(A) Pass(?) Pass(C) Who Runs? B = 50
(stride=100) (stride=200) (stride=40)
0 o o A 4 initial job selection
100 0 0 is random. All @ 0
100 200 0 c
100 200 40 c 4 C has the most tickets
100 200 80 C and receives a lot of
100 200 120 A opportunities to run...
200 200 120 C
200 200 160 C
200 200 200
AR, 20 gy Untrsryof Woshinglon-Tacoms

Slides by Wes J. Lloyd

L4.5

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

4/11/2017

= Loosely based on the stride scheduler

exactly 1/n th of the CPU time

= Scheduling classes (runqueues)
= Each has specific priority: default, real-time

class

time allotments
= Quantum calculated using NICE value

= CFS models system as a Perfect Multi-Tasking System
= In perfect system every process of the same priority receives

= Scheduler picks highest priority task in highest scheduling

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

= Time quantum based on proportion of CPU time (%), not fixed

COMPLETELY FAIR SCHEDULER - 2

= Time slice: Linux “Nice value”
= Nice value predates the CFS scheduler
=Top shows nice values
=Process command: Ps ax -o pid,ni,cmd, %cpu

= Nice Values: from -20 to 19
= Lower is higher priority, default is O
= Scheduling quantum is calculated using nice value
= Target latency:
Interval during which task should run at least once
Automatically increases as number of jobs increases

TCS5422: Operating Systems [Spring 2017)

Gl Fi T e a0l 2 U nvers o Washins tonsTace el

| 1431

TCS5422: Operating Systems [Spring 2017)

4.
Institute of Technology, University of Washington - Tacoma .32

April 11, 2017

= Challenge:

(ms)
= What is the best mapping?
0(1) scheduler (< 2.6.23)

Linux completely fair scheduler
- maps nice value based on time proportion

COMPLETELY FAIR SCHEDULER - 3

=How do we map a nice value to an actual CPU timeslice

- tried to map nice value to timeslice (fixed allotment)

- with fewer jobs in a runqueue, the time quantum is larger

COMPLETELY FAIR SCHEDULER - 4

= Nice values become relative for determining time slices

= Proportion of CPU time to allocate is relative to other
queued tasks

= Scheduler tracks virtual run time in vruntime variable

= The task on a given runqueue (nice value) with the lowest
vruntime is scheduled text

" struct sched_entity contains vruntime parameter
= Describes process execution time in nanoseconds

= Perfect scheduler >
achieve equal vruntime for all processes of same priority

TCS5422: Operating Systems [Spring 2017)

Bl Zi Inttute of Technoloay)Universitylof Washington®Tacomal

| 33

TCS5422: Operating Systems [Spring 2017)

4.
Institute of Technology, University of Washington - Tacoma L34

April 11, 2017

= CFS uses weighted fair queueing

= Runqueues are stored using a linux rbtree
= Self balancing binary search tree
= The leftmost node will have the lowest vruntime

for N nodes
= |f tree is balanced, left most node can be cached

= Key takeaway
identifying the next job to schedule is really fast!

COMPLETELY FAIR SCHEDULER - 5

= Walking the tree to find the left most node is only O(log N)

TCS5422: Operating Systems [Spring 2017)

Bt Zi) Institute o Technoloay)Universitylof Washington®Tacomal

| u3s

QUESTIONS

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

April 11,2017

Slides by Wes J. Lloyd

L4.6

