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TCSS 422: OPERATING SYSTEMS

 Difference between turnaround time and execution time?
 Turnaround time is typically from the perspective of the user

 Includes time to submit the request, receive the response

 Execution time measures actual time spent executing (in the CPU)

 For fairness, we calculated 62% for the 3 jobs.  What is the 
significance of this value?
 100% fair indicates perfect fairness

 3 jobs, each receives 33.33%

 n/3 % (33.33%) indicates worst case fairness

 62% fair is approximately half-way between worst case and best case
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FEEDBACK FROM 4/4

 What does starving the CPU mean?
 One or more jobs, because of their characteristics, do not 

receive **any** CPU time, and can not finish

 How is SJF different than STCF?
 SJF generally does not feature preemption for newly arriving 

jobs
 STCF typically includes job preemption.  Newly arriving jobs 

trigger reevaluation of times to completion.  The current 
shortest job is favored for execution potentially triggering a 
context switch.

 Why do interactive jobs have higher priority than batch jobs?
 CPU Starvation for an interactive jobs results in UI 

unresponsiveness
 The system appears to FREEZE
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FEEDBACK - 2

 Still missing the advantage of one job scheduler vs. 
another

We’ve seen FIFO, SJF, STCF, RR, and MLFQ

 Often schedulers perform better with respect to one 
metric, while not another.  For example RR is performing 
great for fairness, but not job turnaround time

MLFQ attempts to balance turnaround time, response 
time, and fairness, but fails when both interactive and 
batch jobs are being scheduled

 Addition of the “priority boost” corrects this problems: 
gaming & starvation
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FEEDBACK - 3

 For MLFQ, how does the OS know when a program uses its 
entire time slice, and needs to be moved down to a lower 
queue?

 The provides detailed tracking of CPU time per process

 See the struct task_struct data structure:

 line ~1521 of /usr/src/{kernel src}/include/linux/sched.h

 Though CentOS/Ubuntu don’t use MLFQ, it is within means 
for the system to provide process accounting to support 
knowing when all of an available time slice is used.
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FEEDBACK - 4

Uses/applications of scheduling algorithms

MLFQ, round-robin (2x)

Priority boost
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FEEDBACK TOPICS - 4
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 Review - Multi-level Feedback Queue (Ch. 8)

 Proportional Share Schedulers (Ch. 9)

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.7

OBJECTIVES

Objectives:

 Improve turnaround time:
Run shorter jobs first

Minimize response time:
Important for interactive jobs (UI)

Achieve without a priori knowledge of job length
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MULTI-LEVEL FEEDBACK QUEUE

 Multiple job queues

 Adjust job priority based on
observed behavior

 Interactive Jobs
 Frequent I/O  keep priority high

 Interactive jobs require fast
response time (GUI/UI)

 Batch Jobs
 Require long periods of CPU

utilization

 Keep priority low
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MLFQ - 2 Round-Robin
within a Queue

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

 Jobs appears CPU-bound ( “batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same
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MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

 With priority boost

 Prevents starvation
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RESPONDING TO BEHAVIOR CHANGE - 2

 Improved time accounting:
 Track total job execution time in the queue

 Each job receives a fixed time allotment

 When allotment is exhausted, job priority is lowered
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PREVENTING GAMING
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 Consider the tradeoffs:
 How many queues?

 What is a good time slice?

 How often should we “Boost” priority of jobs?

 What about different time slices to different queues?
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MLFQ: TUNING

 Oracle Solaris MLFQ implementation

 60 Queues 
w/ slowly increasing time slice (high to low priority)

 Provides sys admins with set of editable table(s)

 Supports adjusting time slices, boost intervals, priority 
changes, etc.

 Advice

 Provide OS with hints about the process

 Nice command  Linux
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PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the 
highest priority.

 Rule 4: Once a job uses up its time allotment at a given 
level (regardless of how many times it has given up the 
CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the 
system to the topmost queue.
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MLFQ RULE SUMMARY

PROPORTIONAL SHARE 
SCHEDULER
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 Also called fair-share scheduler
or lottery scheduler

 Guarantee each job receives some percentage of CPU time 
based on share of “tickets”

 Each job receives an allotment of tickets

% of tickets corresponds to potential share of a resource

 Can conceptually schedule any resource this way
 CPU, disk I/O, memory
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PROPORTIONAL SHARE SCHEDULER

 Simple implementation

 Just need a random number generator
 Picks the winning ticket

Maintain a data structure of jobs and tickets (list)

 Traverse list to find the owner of the ticket

 Consider sorting the list for speed
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LOTTERY SCHEDULER



TCSS 422: Operating Systems [Spring 2017]  
Institute of Technology, UW-Tacoma

4/11/2017

Slides by Wes J. Lloyd L4.4

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.19

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;
3
4 // winner: use some call to a random number generator to
5 // get a value, between 0 and the total # of tickets
6 int winner = getrandom(0, totaltickets);
7
8 // current: use this to walk through the list of jobs
9 node_t *current = head;
10
11 // loop until the sum of ticket values is > the winner
12 while (current) {
13 counter = counter + current->tickets;
14 if (counter > winner)
15 break; // found the winner
16 current = current->next;
17 }
18 // ’current’ is the winner: schedule it...

 Ticket currency / exchange

 User allocates tickets in any desired way

 OS converts user currency into global currency

 Example:

 There are 200 global tickets assigned by the OS
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TICKET MECHANISMS

 Ticket transfer

 Temporarily hand off tickets to another process

 Ticket inflation

 Process can temporarily raise or lower the number of 
tickets it owns

 If a process needs more CPU time, it can boost tickets.
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TICKET MECHANISMS - 2

 Scheduler picks a winning ticket

 Load the job with the winning ticket and run it

 Example:

 Given 100 tickets in the pool
 Job A has 75 tickets: 0 - 74

 Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?
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LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of flips!
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COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.24

LOTTERY FAIRNESS

 With two jobs 
 Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.
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 What is the best approach to assign tickets to jobs?

 Typical approach is to assume users know best

 Users are provided with tickets, which they allocate as 
desired

 How should the OS automatically distribute tickets upon 
job arrival?

What do we know about incoming jobs a priori ?

 Ticket assignment is really an open problem…
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LOTTERY SCHEDULING CHALLENGES

Addresses statistical probability issues with 
lottery scheduling

 Instead of guessing a random number to select a 
job, simply count…
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STRIDE SCHEDULER

 Jobs have a “stride” value
 A stride value describes the counter pace when the job should 

give up the CPU

 Stride value is inverse in proportion to the job’s number of 
tickets  (more tickets = smaller stride)

 Total system tickets = 10,000
 Job A has 100 tickets  Astride = 10000/100 = 100

 Job B has 50 tickets  Bstride = 10000/50 = 200

 Job C has 250 tickets  Cstride = 10000/250 = 40

 Stride scheduler tracks “pass” values for each job (A, B, C)
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STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks a job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and 
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a 
new job (go to 1)

 When the counter reaches a job’s “PASS” value, 
the scheduler passes on to the next job…
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STRIDE SCHEDULER - 3

Stride values

Tickets = priority to select job

Stride is inverse to tickets

Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200
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STRIDE SCHEDULER - EXAMPLE

 Randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job
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STRIDE SCHEDULER EXAMPLE - 2

Tickets
C  = 250
A  = 100
B  =   50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection 
is random. All @ 0
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 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi-Tasking System
 In perfect system every process of the same priority receives 

exactly 1/n th of the CPU time

 Scheduling classes (runqueues)
 Each has specific priority: default, real-time
 Scheduler picks highest priority task in highest scheduling 

class
 Time quantum based on proportion of CPU time (%), not fixed 

time allotments
 Quantum calculated using NICE value
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LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Time slice: Linux “Nice value”

 Nice value predates the CFS scheduler

 Top shows nice values
 Process command:  Ps ax -o pid,ni,cmd,%cpu

 Nice Values: from -20 to 19

 Lower is higher priority, default is 0

 Scheduling quantum is calculated using nice value

 Target latency: 

 Interval during which task should run at least once

 Automatically increases as number of jobs increases
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COMPLETELY FAIR SCHEDULER - 2

 Challenge:
 How do we map a nice value to an actual CPU timeslice

(ms)

What is the best mapping?

 O(1) scheduler (< 2.6.23) 
- tried to map nice value to timeslice (fixed allotment)

 Linux completely fair scheduler
- maps nice value based on time proportion  
- with fewer jobs in a runqueue, the time quantum is larger
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COMPLETELY FAIR SCHEDULER - 3

 Nice values become relative for determining time slices

 Proportion of CPU time to allocate is relative to other 
queued tasks

 Scheduler tracks vir tual run time in vruntime variable

 The task on a given runqueue (nice value) with the lowest 
vruntime is scheduled text

 struct sched_entity contains vruntime parameter

 Describes process execution time in nanoseconds

 Perfect scheduler 
achieve equal vruntime for all processes of same priority
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COMPLETELY FAIR SCHEDULER - 4

 CFS uses weighted fair queueing

 Runqueues are stored using a linux rbtree

 Self balancing binary search tree
 The leftmost node will have the lowest vruntime

Walking the tree to find the left most node is only O(log N) 
for N nodes

 If tree is balanced, left most node can be cached

 Key takeaway
identifying the next job to schedule is really fast!
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COMPLETELY FAIR SCHEDULER - 5 QUESTIONS

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L4.36


