
TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

4/11/2017

Slides by Wes J. Lloyd L4.1

Scheduling:
Multi-level Feedback Queue,

Proportional Share

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

 Difference between turnaround time and execution time?
 Turnaround time is typically from the perspective of the user

 Includes time to submit the request, receive the response

 Execution time measures actual time spent executing (in the CPU)

 For fairness, we calculated 62% for the 3 jobs. What is the
significance of this value?
 100% fair indicates perfect fairness

 3 jobs, each receives 33.33%

 n/3 % (33.33%) indicates worst case fairness

 62% fair is approximately half-way between worst case and best case

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.2

FEEDBACK FROM 4/4

 What does starving the CPU mean?
 One or more jobs, because of their characteristics, do not

receive **any** CPU time, and can not finish

 How is SJF different than STCF?
 SJF generally does not feature preemption for newly arriving

jobs
 STCF typically includes job preemption. Newly arriving jobs

trigger reevaluation of times to completion. The current
shortest job is favored for execution potentially triggering a
context switch.

 Why do interactive jobs have higher priority than batch jobs?
 CPU Starvation for an interactive jobs results in UI

unresponsiveness
 The system appears to FREEZE

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.3

FEEDBACK - 2

 Still missing the advantage of one job scheduler vs.
another

We’ve seen FIFO, SJF, STCF, RR, and MLFQ

 Often schedulers perform better with respect to one
metric, while not another. For example RR is performing
great for fairness, but not job turnaround time

MLFQ attempts to balance turnaround time, response
time, and fairness, but fails when both interactive and
batch jobs are being scheduled

 Addition of the “priority boost” corrects this problems:
gaming & starvation

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.4

FEEDBACK - 3

 For MLFQ, how does the OS know when a program uses its
entire time slice, and needs to be moved down to a lower
queue?

 The provides detailed tracking of CPU time per process

 See the struct task_struct data structure:

 line ~1521 of /usr/src/{kernel src}/include/linux/sched.h

 Though CentOS/Ubuntu don’t use MLFQ, it is within means
for the system to provide process accounting to support
knowing when all of an available time slice is used.

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.5

FEEDBACK - 4

Uses/applications of scheduling algorithms

MLFQ, round-robin (2x)

Priority boost

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.6

FEEDBACK TOPICS - 4

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

4/11/2017

Slides by Wes J. Lloyd L4.2

 Review - Multi-level Feedback Queue (Ch. 8)

 Proportional Share Schedulers (Ch. 9)

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.7

OBJECTIVES

Objectives:

 Improve turnaround time:
Run shorter jobs first

Minimize response time:
Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.8

MULTI-LEVEL FEEDBACK QUEUE

 Multiple job queues

 Adjust job priority based on
observed behavior

 Interactive Jobs
 Frequent I/O keep priority high

 Interactive jobs require fast
response time (GUI/UI)

 Batch Jobs
 Require long periods of CPU

utilization

 Keep priority low

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.9

MLFQ - 2 Round-Robin
within a Queue

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

 Jobs appears CPU-bound (“batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.10

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

 With priority boost

 Prevents starvation

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.11

RESPONDING TO BEHAVIOR CHANGE - 2

 Improved time accounting:
 Track total job execution time in the queue

 Each job receives a fixed time allotment

 When allotment is exhausted, job priority is lowered

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.12

PREVENTING GAMING

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

4/11/2017

Slides by Wes J. Lloyd L4.3

 Consider the tradeoffs:
 How many queues?

 What is a good time slice?

 How often should we “Boost” priority of jobs?

 What about different time slices to different queues?

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.13

MLFQ: TUNING

 Oracle Solaris MLFQ implementation

 60 Queues
w/ slowly increasing time slice (high to low priority)

 Provides sys admins with set of editable table(s)

 Supports adjusting time slices, boost intervals, priority
changes, etc.

 Advice

 Provide OS with hints about the process

 Nice command Linux

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.14

PRACTICAL EXAMPLE

 The refined set of MLFQ rules:

 Rule 1: If Priority(A) > Priority(B), A runs (B doesn’t).

 Rule 2: If Priority(A) = Priority(B), A & B run in RR.

 Rule 3: When a job enters the system, it is placed at the
highest priority.

 Rule 4: Once a job uses up its time allotment at a given
level (regardless of how many times it has given up the
CPU), its priority is reduced(i.e., it moves down on queue).

 Rule 5: After some time period S, move all the jobs in the
system to the topmost queue.

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.15

MLFQ RULE SUMMARY

PROPORTIONAL SHARE
SCHEDULER

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L4.16

 Also called fair-share scheduler
or lottery scheduler

 Guarantee each job receives some percentage of CPU time
based on share of “tickets”

 Each job receives an allotment of tickets

% of tickets corresponds to potential share of a resource

 Can conceptually schedule any resource this way
 CPU, disk I/O, memory

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.17

PROPORTIONAL SHARE SCHEDULER

 Simple implementation

 Just need a random number generator
 Picks the winning ticket

Maintain a data structure of jobs and tickets (list)

 Traverse list to find the owner of the ticket

 Consider sorting the list for speed

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.18

LOTTERY SCHEDULER

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

4/11/2017

Slides by Wes J. Lloyd L4.4

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.19

LOTTERY SCHEDULER IMPLEMENTATION

1 // counter: used to track if we’ve found the winner yet
2 int counter = 0;
3
4 // winner: use some call to a random number generator to
5 // get a value, between 0 and the total # of tickets
6 int winner = getrandom(0, totaltickets);
7
8 // current: use this to walk through the list of jobs
9 node_t *current = head;
10
11 // loop until the sum of ticket values is > the winner
12 while (current) {
13 counter = counter + current->tickets;
14 if (counter > winner)
15 break; // found the winner
16 current = current->next;
17 }
18 // ’current’ is the winner: schedule it...

 Ticket currency / exchange

 User allocates tickets in any desired way

 OS converts user currency into global currency

 Example:

 There are 200 global tickets assigned by the OS

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.20

TICKET MECHANISMS

 Ticket transfer

 Temporarily hand off tickets to another process

 Ticket inflation

 Process can temporarily raise or lower the number of
tickets it owns

 If a process needs more CPU time, it can boost tickets.

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.21

TICKET MECHANISMS - 2

 Scheduler picks a winning ticket

 Load the job with the winning ticket and run it

 Example:

 Given 100 tickets in the pool
 Job A has 75 tickets: 0 - 74

 Job B has 25 tickets: 75 – 99

 But what do we know about probability of a coin flip?

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.22

LOTTERY SCHEDULING

Scheduled job:

 Equality of distribution (fairness) requires a lot of flips!

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.23

COIN FLIPPING

Similarly,
Lottery scheduling requires lots of “rounds” to achieve fairness.

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.24

LOTTERY FAIRNESS

 With two jobs
 Each with the same number of tickets (t=100)

When the job length is not very long,
average unfairness can be quite severe.

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

4/11/2017

Slides by Wes J. Lloyd L4.5

 What is the best approach to assign tickets to jobs?

 Typical approach is to assume users know best

 Users are provided with tickets, which they allocate as
desired

 How should the OS automatically distribute tickets upon
job arrival?

What do we know about incoming jobs a priori ?

 Ticket assignment is really an open problem…

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.25

LOTTERY SCHEDULING CHALLENGES

Addresses statistical probability issues with
lottery scheduling

 Instead of guessing a random number to select a
job, simply count…

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.26

STRIDE SCHEDULER

 Jobs have a “stride” value
 A stride value describes the counter pace when the job should

give up the CPU

 Stride value is inverse in proportion to the job’s number of
tickets (more tickets = smaller stride)

 Total system tickets = 10,000
 Job A has 100 tickets Astride = 10000/100 = 100

 Job B has 50 tickets Bstride = 10000/50 = 200

 Job C has 250 tickets Cstride = 10000/250 = 40

 Stride scheduler tracks “pass” values for each job (A, B, C)

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.27

STRIDE SCHEDULER - 2

 Basic algorithm:

1. Stride scheduler picks a job with the lowest pass value

2. Scheduler increments job’s pass value by its stride and
starts running

3. Stride scheduler increments a counter

4. When counter exceeds pass value of current job, pick a
new job (go to 1)

 When the counter reaches a job’s “PASS” value,
the scheduler passes on to the next job…

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.28

STRIDE SCHEDULER - 3

Stride values

Tickets = priority to select job

Stride is inverse to tickets

Lower stride = more chances to run (higher priority)

Priority

C stride = 40

A stride = 100

B stride = 200

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.29

STRIDE SCHEDULER - EXAMPLE

 Randomly pick job A (all pass values=0)

 Set A’s pass value to A’s stride = 100

 Increment counter until > 100

 Pick a new job

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.30

STRIDE SCHEDULER EXAMPLE - 2

Tickets
C = 250
A = 100
B = 50

C has the most tickets
and receives a lot of
opportunities to run…

Initial job selection
is random. All @ 0

TCSS 422: Operating Systems [Spring 2017]
Institute of Technology, UW-Tacoma

4/11/2017

Slides by Wes J. Lloyd L4.6

 Loosely based on the stride scheduler

 CFS models system as a Perfect Multi-Tasking System
 In perfect system every process of the same priority receives

exactly 1/n th of the CPU time

 Scheduling classes (runqueues)
 Each has specific priority: default, real-time
 Scheduler picks highest priority task in highest scheduling

class
 Time quantum based on proportion of CPU time (%), not fixed

time allotments
 Quantum calculated using NICE value

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.31

LINUX: COMPLETELY FAIR SCHEDULER (CFS)

 Time slice: Linux “Nice value”

 Nice value predates the CFS scheduler

 Top shows nice values
 Process command: Ps ax -o pid,ni,cmd,%cpu

 Nice Values: from -20 to 19

 Lower is higher priority, default is 0

 Scheduling quantum is calculated using nice value

 Target latency:

 Interval during which task should run at least once

 Automatically increases as number of jobs increases

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.32

COMPLETELY FAIR SCHEDULER - 2

 Challenge:
 How do we map a nice value to an actual CPU timeslice

(ms)

What is the best mapping?

 O(1) scheduler (< 2.6.23)
- tried to map nice value to timeslice (fixed allotment)

 Linux completely fair scheduler
- maps nice value based on time proportion
- with fewer jobs in a runqueue, the time quantum is larger

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.33

COMPLETELY FAIR SCHEDULER - 3

 Nice values become relative for determining time slices

 Proportion of CPU time to allocate is relative to other
queued tasks

 Scheduler tracks vir tual run time in vruntime variable

 The task on a given runqueue (nice value) with the lowest
vruntime is scheduled text

 struct sched_entity contains vruntime parameter

 Describes process execution time in nanoseconds

 Perfect scheduler
achieve equal vruntime for all processes of same priority

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.34

COMPLETELY FAIR SCHEDULER - 4

 CFS uses weighted fair queueing

 Runqueues are stored using a linux rbtree

 Self balancing binary search tree
 The leftmost node will have the lowest vruntime

Walking the tree to find the left most node is only O(log N)
for N nodes

 If tree is balanced, left most node can be cached

 Key takeaway
identifying the next job to schedule is really fast!

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L4.35

COMPLETELY FAIR SCHEDULER - 5 QUESTIONS

April 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L4.36

