
TCSS422: Operating Systems [Spring 2017]  
Institute of Technology, University of Washington - Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.1

CPU Scheduling

Wes J. Lloyd
Institute of Technology

University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS

April 4, 2017
TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.1

 Slides:

 PDFs posted on Course website (canvas)

 RIGHT-CLICK to open

 If something is unclear on a particular post, 
please email, and will repost

 Examples:

 Posted on schedule page

 Video:

 Students are welcome to record the lecture, if someone 
provides files, I will post online…

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.2

FEEDBACK FROM 3/30

 Can you explain how you run programs once in the appropriate 
directories?

 What’s the difference between the two?  
 gcc –o fork fork.c
 ./fork

 Where do we enter value for arg?
int main(int argc, char * argv[]) { . . . }

./pthread 100000

argc=2

argv[0] = ‘pthread’

argv[1] = ‘100000’

 Is there a difference between allocating a global variable 
outside of main() vs inside main() using malloc?

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.3

FEEDBACK - 2

 Please explain what “bash” is :

 Bash is the default unix-shell for Linux

 A unix shell:

 command-line interpreter 

 provides command line user interface

 Users enter commands as text, interpreted for execution

 Users can provide scripts of one or more commands

 Users interact with a shell using a terminal session (ssh) 

 Direct operation via serial hardware is possible 

 All Unix shells provide filename wildcards, process piping, 
variables, output redirection, and control structures for 
condition-testing (if) and iteration (loops)…

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.4

FEEDBACK - 3

 Virtualizing the CPU:

 How we manage and share the CPU among many 
programs?

 Multiprocessing:
“How does transfer of control work in code?”

 Preemptive multitasking operating systems:
A timer-interrupt fires and changes the context to the OS 

 The OS then determines which task to run next in the CPU

 What is OS overhead?

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.5

FEEDBACK FROM – 4

 Use of fork()

 How do parent and child processes interact with each 
other?

 The parent starts the child, and can wait() until it finishes.

 Nothing prevents the parent from exiting while a child 
continues to execute – they are separate processes

 Can you give a scenario in which forks might be preferred 
to threads, even though they seem to be less efficient?

Writing a “shell” - - - fork to run user commands

 Any program that launches an entirely separate program

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.6

FEEDBACK – 5



TCSS422: Operating Systems [Spring 2017]  
Institute of Technology, University of Washington - Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.2

 Can we have a child process wait for its parent?

 EXAMPLE

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.7

FEEDBACK – 6

 Don’t understand parameters for the exec commands, what 
are the differences between execl, execv, execvp?

 From the man pages:
execl,execlp,execle – the argument list is provided as a list of 
one or more pointers to null terminated string (const char 
*).  The list must be null terminated.
execv, execvp,execvpe – the argument list is provided as an 
array:
of null terminated strings  const *char argv[]

 execle,execvpe – include an extra parameter to allow the 
environment to be passed in
 To see your environment try “printenv”  or “export”

 execl, execle, execv – allow the “path” which is searched to find 
the executable program to be provided
 To see your path, type echo $PATH

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.8

FEEDBACK - 7

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.9

“CENTOS 7 INSTALL LOOKS LIKE TERMINAL”

 Ch. 7

 Scheduling Introduction

 Scheduling Metrics

 Scheduling Methods

 Ch. 8

Multi-level feedback queue (MLFQ)

OBJECTIVES

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.10

SCHEDULING:
INTRODUCTION

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.11

 For simplicity, consider job scheduling with limitations:
 Each job requires the same CPU time

 All jobs arrive at the same time

 All jobs only use the CPU (no I/O)

 The run-time of each job is known a priori 

April 4, 2017 TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

L3.12

SCHEDULING INTRODUCTION



TCSS422: Operating Systems [Spring 2017]  
Institute of Technology, University of Washington - Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.3

 Metrics: A standard measure to quantify to what degree a 
system possesses some property.  Metrics provide repeatable
techniques to quantify and compare systems.

 Measurements are the numbers derived from the application 
of metrics

 Scheduling Metric: Turnaround time

 The time at which the job completes minus the time at which 
the job arrived in the system

 How is turnaround time different than execution time?

April 4, 2017 TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

L3.13

SCHEDULING METRICS

ࢊ࢔࢛࢕࢘ࢇ࢔࢛࢚࢘ࢀ = ࢔࢕࢏࢚ࢋ࢒࢖࢓࢕ࢉࢀ − ࢒ࢇ࢜࢏࢘࢘ࢇࢀ

 Scheduling Metric: Fairness
 Jain’s fairness index
 Quantifies if jobs receive a fair share of system resources

 n processes
 xi is time share of each process
 worst case = 1/n
 best case = 1

 Consider n=3, worst case = .333, best case=1
 With n=3 and x1=.2, x2=.7, x3=.1, fairness=.62
 With n=3 and x1=.33, x2=.33, x3=.33, fairness=1

April 4, 2017 TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

L3.14

SCHEDULING METRICS - 2

 FIFO: first in, first out
 Very simple, easy to implement

 Consider
 3 x 10sec jobs, arrival: A B C

April 4, 2017 TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

L3.15

SCHEDULERS

ࢋ࢓࢏࢚ ࢊ࢔࢛࢕࢘ࢇ࢔࢛࢚࢘ ࢋࢍࢇ࢘ࢋ࢜࡭ =
૚૙ + ૛૙ + ૜૙

૜
= ૛૙ ࢙ࢉࢋ

 FIFO with different jobs lengths

 Consider
 Alen=100sec, Blen=10sec, Clen=10sec

April 4, 2017 TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

L3.16

FIFO: CONVOY EFFECT

ࢋ࢓࢏࢚ ࢊ࢔࢛࢕࢘ࢇ࢔࢛࢚࢘ ࢋࢍࢇ࢘ࢋ࢜࡭ =
૚૙૙ + ૚૚૙ + ૚૛૙

૜
= ૚૚૙ ࢙ࢉࢋ

 Given that we know execution times in advance:
 Run in order of duration, shortest to longest

 Non preemptive scheduler

 This is not realistic

 Arrival: A B C

April 4, 2017 TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

L3.17

SJF: SHORTEST JOB FIRST

ࢋ࢓࢏࢚ ࢊ࢔࢛࢕࢘ࢇ࢔࢛࢚࢘ ࢋࢍࢇ࢘ࢋ࢜࡭ =
૚૙ + ૛૙ + ૚૛૙

૜
= ૞૙ ࢙ࢉࢋ

 If jobs arrive at any time:

 A @ t=0sec, B @ t=10sec, C @ t=10sec

April 4, 2017 TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

L3.18

SJF: WITH RANDOM ARRIVAL

ࢋ࢓࢏࢚ ࢊ࢔࢛࢕࢘ࢇ࢔࢛࢚࢘ ࢋࢍࢇ࢘ࢋ࢜࡭ =
૚૙૙ + ૚૚૙ − ૚૙ + (૚૛૙ − ૚૙)

૜
= ૚૙૜. ૜૜ ࢙ࢉࢋ



TCSS422: Operating Systems [Spring 2017]  
Institute of Technology, University of Washington - Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.4

 Add preemption to the Shortest Job First scheduler
 Also called preemptive shortest job first (PSJF)

 When a new job enters the system:
 Of all jobs, Which has the least time left?

 PREMPT job execution, and schedule the new shortest job

 More realistic, but how do we know execution time in 
advance?
 Oracle: All knowing one

 Only schedule static (fixed size) batch workloads

 Can we predict execution time?

April 4, 2017 TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

L3.19

STCF – SHORTEST TIME TO COMPLETION FIRST

 Consider:
 Alen=100 Aarrival=0

 Blen=10, Barrival=10, Clen=10, Carrival=10

April 4, 2017 TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

L3.20

STCF - 2

ࢋ࢓࢏࢚ ࢊ࢔࢛࢕࢘ࢇ࢔࢛࢚࢘ ࢋࢍࢇ࢘ࢋ࢜࡭ =
(૚૛૙ − ૙) + ૛૙ − ૚૙ + (૜૙ − ૚૙)

૜
= ૞૙ ࢙ࢉࢋ

 Scheduling Metric: Response Time

 Time from when job arrives until it starts execution

 STCF, SJF, FIFO 
 can perform poorly with respect to response time

April 4, 2017 TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

L3.21

ࢋ࢙࢔࢕࢖࢙ࢋ࢘ࢀ = ࢔࢛࢚࢙࢘࢘࢏ࢌࢀ − ࢒ࢇ࢜࢏࢘࢘ࢇࢀ

SCHEDULING METRICS - 3

What scheduling algorithm(s) can help 
minimize response time?

 Run each job awhile, then switch to another distributing the 
CPU evenly (fairly)

 Scheduling Quantum
is called a time slice

 Time slice must be
a multiple of the
timer interrupt
period.

April 4, 2017 TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

L3.22

RR: ROUND ROBIN

Scheduling 
Quantum    = 5 seconds

 Run each job awhile, then switch to another distributing the 
CPU evenly (fairly)

 Scheduling Quantum
is called a time slice

 Time slice must be
a multiple of the
timer interrupt
period.

April 4, 2017 TCSS422: Operating Systems [Fall 2016]
Institute of Technology, University of Washington - Tacoma

L3.23

RR: ROUND ROBIN

Scheduling 
Quantum    = 5 seconds

RR is fair, but performs poorly on metrics
such as turnaround time

 ABC arrive at time=0, each run for 5 seconds

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.24

RR EXAMPLE

ࢋ࢙࢔࢕࢖࢙ࢋ࢘ ࢋࢍࢇ࢘ࢋ࢜ࢇࢀ =
૙ + ૞ + ૚૙

૜
= ૞࢙ࢉࢋ

ࢋ࢙࢔࢕࢖࢙ࢋ࢘ ࢋࢍࢇ࢘ࢋ࢜ࢇࢀ =
૙ + ૚ + ૛

૜
= ૚࢙ࢉࢋ

OVERHEAD not 
considered



TCSS422: Operating Systems [Spring 2017]  
Institute of Technology, University of Washington - Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.5

 Time slice impact:
Average turnaround time: 

ts(1,2,3,4,5)=14,14,13,14,10
Fairness: round robin is always fair, J=1

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.25

ROUND ROBIN: TRADEOFFS

Fast Response Time Slow Response Time

High overhead from 
context switching

Low overhead from 
context switching

Short Time Slice Long Time Slice  STCF scheduler
 A: CPU=50ms, I/O=40ms, 10ms intervals

 B: CPU=50ms, I/O=0ms

 Consider A as 10ms subjobs (CPU, then I/O)

 Without considering I/O:

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.26

SCHEDULING WITH I/O

Cpu utilization = 100/140=71%

 When a job initiates an I/O request

 A is blocked, waits for I/O to compute, frees CPU

 STCF scheduler assigns B to CPU

 When I/O completes  raise interrupt

 Unblock A, STCF goes back to executing A: (10ms sub-job)

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.27

SCHEDULING WITH I/O - 2

Cpu utilization = 100/100=100%

MULTI-LEVEL FEEDBACK 
QUEUE (MLFQ) SCHEDULER

January 11, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.28

Objectives:

 Improve turnaround time:
Run shorter jobs first

Minimize response time:
Important for interactive jobs (UI)

Achieve without a priori knowledge of job length

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.29

MULTI-LEVEL FEEDBACK QUEUE

 Multiple job queues

 Adjust job priority based on
observed behavior

 Interactive Jobs
 Frequent I/O  keep priority high

 Interactive jobs require fast
response time (GUI/UI)

 Batch Jobs
 Require long periods of CPU

utilization

 Keep priority low

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.30

MLFQ - 2 Round-Robin
within a Queue



TCSS422: Operating Systems [Spring 2017]  
Institute of Technology, University of Washington - Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.6

 New arriving jobs are placed into highest priority queue

 If a job uses its entire time slice, priority is reduced (↓)

 Jobs appears CPU-bound ( “batch” job), not interactive (GUI/UI)

 If a job relinquishes the CPU for I/O priority stays the same

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.31

MLFQ: DETERMINING JOB PRIORITY

MLFQ approximates SJF

 Three-queue scheduler, time slice=10ms

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.32

MLFQ: LONG RUNNING JOB

Priority

 Aarrival_time =0ms, Arun_time=200ms, 

 Brun_time =20ms, Barrival_time =100ms

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.33

MLFQ: BATCH AND INTERACTIVE JOBS

Priority

Scheduling multiple jobs (ms)

 Continuous interactive job (B) with long running batch job (A)

 Low response time is good for B

 A continues to make progress

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.34

MLFQ: BATCH AND INTERACTIVE - 2

 Continuous interactive job (B) with long running batch job (A)

 Low response time is good for B

 A continues to make progress

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.35

MLFQ: BATCH AND INTERACTIVE - 2

The MLFQ approach keeps interactive job(s) at the highest priority

Starvation

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.36

MLFQ: ISSUES



TCSS422: Operating Systems [Spring 2017]  
Institute of Technology, University of Washington - Tacoma

4/4/2017

Slides by Wes J. Lloyd L3.7

 Gaming the scheduler

 Issue I/O operation at 99% completion of the time slice

 Keeps job priority fixed – never lowered

 Job behavioral change

 CPU/batch process becomes an interactive process

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.37

MLFQ: ISSUES - 2

Priority becomes stuck

 Priority Boost

 Reset all jobs to topmost queue after some time interval S

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.38

RESPONDING TO BEHAVIOR CHANGE

Starvation

 With priority boost

 Prevents starvation

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

L3.39

RESPONDING TO BEHAVIOR CHANGE - 2 QUESTIONS

April 4, 2017 TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma L3.40


