TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

TCSS 422: OPERATING SYSTEMS
K

The Abstraction:
The Process, Process API,
Limited Direct Execution

Wes J. Lloyd
Institute of Technology
University of Washington - Tacoma

TCSS422: Operating Systems [Spring 2017)

WL ENED, 2 Institute of Technology, University of Washington - Tacoma

FEEDBACK - 2

= What point(s) remain least clear...?
= Visualization of memory

= If each program has its own virtual address space, do they
use the same memory?

Each program has its own “virtual” memory address space that is
the entire address space of the physical machine (e.g. 4GB)

But each program’s virtual memory address space map’s to a
different physical address location...
= If so, how does the OS map to this memory?

Through address translation, a feature of the OS with hardware
(on CPU) support
Plcture: 2 processes, stack, heap, code segments

TCS5422: Operating Systems [Spring 2017)

WL ENE, Ey Inttute of Technoloay)Universitylof Washington®Tacomal

| 3 ‘

OBJECTIVES

= Process states
= Process data structures
= Process APl - Ch. 5

= Limited Direct Execution - Ch. 6

TCS5422: Operating Systems [Spring 2017)

March 30, 2017 Institute of Technology, University of Washington - Tacoma

Slides by Wes J. Lloyd

3/30/2017

FEEDBACK FROM 3/28/2017

= What point(s) remain least clear...?
= Pointers in C for methods and data
= Processes and threads: multi-threading
The second easy piece
A plcture: one process, many threads
= Abstraction

Application Software

Graphics API M Networking AP1]I other APIs...

Device Drivers

Operating System Kernel

TCS5422: Operating Systems [Spring 2017)

WAELEN T ALY S 1 T, Pt G e TP

FEEDBACK - 3

= What point(s) remain least clear...?
=Synchronization?

= Why are we using Linux?

= What will the projects be like?

= Al: processes

= A2: kernel module

= A3: multi-threading

= A4: memory address translation

TCS5422: Operating Systems [Spring 2017)

WAELED T AR [See ot Techolo syl niersityofWashinstonmiecome!

CPU VIRTUALIZING

= How should the CPU be shared?

= Time Sharing:
Run one process, pause it, run another

= How do we SWAP processes in and out of the CPU
efficiently?
= Goal is to minimize overhead of the swap

TCS5422: Operating Systems [Spring 2017)

WELEN), AU [nsGRueof TechnolokyUniversitylof WashinstonTecoma!

L2.1

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

PROCESS

= Process comprises of:
= Memory
Instructions (“the code”)
Data (heap)

= Registers
PC: Program counter
Stack pointer

TCS5422: Operating Systems [Spring 2017] | 27 ‘

LRI ENED, 2y T e a0l 2 U nvers o Washins tonsTace el

PROCESS API: CREATE

1. Load program code (and static data) into memory
= Program executable code (binary): loaded from disk
= Static data: also loaded/created in address space

= Eager loading: Load entire program before running
= Lazy loading: Only load what is immediately needed
Modern OSes: Supports paging & swapping

2. Run-time stack creation
= Stack: local variables, function params, return address(es)

B TCS5422: Operating Systems [Spring 2017] | s ‘

Institute of Technology, University of Washington - Tacoma

CPU Memory

code
static data
heap

Loading:
Reads program from
disk into the address

space of process

TCSS422: Operating Systems [Spring 2017

Narchbio2y Institute of Technology, University of Washington - Tacoma L2.11

Slides by Wes J. Lloyd

3/30/2017

PROCESS API

= Modern OSes provide a Process API for process support
= Create
= Create a new process
= Destroy
= Terminate a process (ctrl-c)
= Wait
= Wait for a process to complete/stop
= Miscellaneous Control

= Suspend process (ctrl-z)
= Resume process (fg, bg)

= Status
= Obtain process statistics: (top)

TCS5422: Operating Systems [Spring 2017) | s |

WAELEN T ALY S 1 T, Pt G e TP

PROCESS API: CREATE

3. Create program’s heap memory
= For dynamically allocated data

4. Other initialization
= |/0 Setup
Each process has three open file descriptors:
Standard Input, Standard Output, Standard Error

5. Start program running at the entry point: main ()
= OS transfers CPU control to the new process

TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma L2.10

March 30, 2017

PROCESS STATES

® Running
= Currently executing instructions

= Ready
= Process is ready to run, but has been preempted
= CPU is presently allocated for other tasks

= Blocked
= Process is hot ready to run. It is waiting for another event
to complete:
Process has already been initialized and run for awhile
Is now waiting on 1/0 from disk(s) or other devices

TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma L2.12

March 30, 2017

L2.2

TCSS422: Operating Systems [Spring 2017]

Institute of Technology, University of Washington - Tacoma

PROCESS STATE TRANSITIONS

\ Descheduled

Running | — > Ready |

Scheduled

\ / /
1/0: iniliate\ //O: done

/
Blocked

TCS5422: Operating Systems [Spring 2017]
LRI ENED, 2y T e a0l 2 U nvers o Washins tonsTace el

| 13 ‘

3/30/2017

PROCESS DATA STRUCTURES

= OS provides data structures to track process information
= Process list
Process Data
State of process: Ready, Blocked, Running

= Register context

= PCB (Process Control Block)

= A C-structure that contains information about each
process

TCS5422: Operating Systems [Spring 2017)

WAELEN T ALY S 1 T, Pt G e TP

[EXT)

XV6 KERNEL DATA STRUCTURES

= xv6: pedagogical implementation of Linux
= Simplified structures

p and subsequen resta 1 pr
struct context {

eip; Index pointer register
esp; tack
nt ebx;

ecx;

nt edx;

B pe b b b e b

he different states a process can be i
enum proc_state { UNUSED, EMBRYO, SLEEPING,
RUNNABLE, RUNNING, ZOMBIE };

TCS5422: Operating Systems [Spring 2017]
WL ENE, Ey Inttute of Technoloay)Universitylof Washington®Tacomal

| 15 ‘

XV6 KERNEL DATA STRUCTURES - 2

sz; ize of 5
r *kstack; B c kern

enum proc_state state; o1 5 ste

int pid; Process ID

E proc *parent; Parent proc

< *chan; lon-zero, sleeping on chan
int killed; 1on-zero, ha

st file *ofile[NOFILE];) ,
inode *cwd; irre
context context;
trapframe *tf;

TCS5422: Operating Systems [Spring 2017)

WAELED T AR [See ot Techolo syl niersityofWashinstonmiecome!

.16

LINUX: STRUCTURES

= struct task_struct, equivanelnt to struct proc
= Provides process description
= Large: 10,000+ bytes

1227 - 1587

= Struct thread_info, provides “context”
= thread_info.h is at:

= /usr/src/linux-headers-{kernel version}/include/linux/sched.h

/usr/src/linux-headers-{kernel version}/arch/x86/include/asm/

TCS5422: Operating Systems [Spring 2017]
W ENED, iy Institute o Technoloay)Universitylof Washington®Tacomal

| 217 ‘

LINUX: THREAD_INFO

struct thread info {

struct task_struct *task; /* main task structure */
struct exec_domain *exec_domain; /* execution domain */
__u32 flags; /* low level flags */
—u32 status; /* thread synchronous flags */
—_u32 cpu; /* current CPU */
int preempt_count; /* 0 => preemptable,
<0 => BUG */
mm_segment_t addr_limit;
struct restart block restart block;

void __user
#ifdef CONFIG_X86_32
unsigned long

*sysenter_return;

previous_esp; /* ESP of the previous stack in
case of nested (IRQ) stacks

_us supervisor_stack[0] ;
#endif
int uaccess_err;

Y

TCS5422: Operating Systems [Spring 2017)

WELEN), AU [nsGRueof TechnolokyUniversitylof WashinstonTecoma!

1218

Slides by Wes J. Lloyd

L2.3

TCSS422: Operating Systems [Spring 2017]

Institute of Technology, University of Washington - Tacoma

LINUX STRUCTURES - 2

= List of Linux data structures:
http://www.tldp.org/LDP/tlk/ds/ds.html

= Description of process data structures:

http://www.makelinux.net/books/1kd2/chO3levisecl

2nd edition is online (dated from 2005):
Linux Kernel Development, 2"9 edition
Robert Love

Sams Publishing

TCS5422: Operating Systems [Spring 2017]

LRI ENED, 2y T e a0l 2 U nvers o Washins tonsTace el

| 219 ‘

3/30/2017

OBJECTIVES

= Process APl - Ch. 5

= Limited Direct Execution - Ch. 6

TCS5422: Operating Systems [Spring 2017)

Institute of Technology, University of Washington - Tacoma L2.20

March 30, 2017

fork()

= Creates a new process - think of “a fork in the road”
= ‘Parent” process is the original

executlon polnt
= Book says “pretty odd”

= Copy of
= Address space (memory)
= Register
= Program Counter (PC)
= Fork returns
= child PID to parent
= 0 to child

= Creates “child” process of the program from the current

= Creates a duplicate program instance (these are processes!)

TCS5422: Operating Systems [Spring 2017]

WL ENE, Ey Inttute of Technoloay)Universitylof Washington®Tacomal

FORK EXAMPLE

= pl.c

finclude <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int arge, char *argv([]){
printf("hello world (pid:%d)\n", (int) getpid());
- nt re = fork();
(xc < 0) { ;
fprintf (stderr, "fork failed\n");
exit(1);
} (xc == 0)

printf(“hello, T am child (pidi¥d)\n", (int) getpid());
((

printf("hello, I am parent of %d (pid:%d)\n",
re, (int) getpid());:

TCS5422: Operating Systems [Spring 2017)

WAELED T AR [See ot Techolo syl niersityofWashinstonmiecome!

w2 |

FORK EXAMPLE - 2

= Non deterministic ordering of execution

prompt> ./pl

hello world (pid:29146)

hello, I am parent of 29147 (pid:29146)
hello, I am child (pid:29147)

prompt>

or

prompt> ./pl

hello world (pid:29146)

hello, I am child (pid:29147)

hello, I am parent of 29147 (pid:29146)
prompt>

® CPU scheduler determines which to run first

TCS5422: Operating Systems [Spring 2017)

W ENED, iy Institute o Technoloay)Universitylof Washington®Tacomal

| 223 ‘

Slides by Wes J. Lloyd

‘: < J fork &1\ ‘:

T\, e ™\

TCS5422: Operating Systems [Spring 2017)

WELEN), AU [nsGRueof TechnolokyUniversitylof WashinstonTecoma!

24 |

L2.4

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

wait()

= wait(), waitpid()
= Called by parent process
= Waits for a child process to finish executing

3/30/2017

FORK WITH WAIT

#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<unistd.h>
<sys/wait.h>

= Not a sleep() function
= Provides some ordering to multi-process execution

TCS5422: Operating Systems [Spring 2017]

LRI ENED, 2y T e a0l 2 U nvers o Washins tonsTace el

int main(int arge, char *argv(l){

printf("hello world (pid:%d)\n", (int) getpid());
nt re = fork();

(rc < 0) { i led;

fprintf (stderr, "fork failed\n");

exit(1);

} (rc == 0) {
printf("hello, T am child (pid:%d)\n", (int) getpid());

{
‘ int we = wait (WULL);
printf("hello, I am parent of %d (wc:%d) (pid:%d)\n",
o, we, (int) getpid());

0;

TCS5422: Operating Systems [Spring 2017)

WAELEN T ALY S 1 T, Pt G e TP

1226

FORK WITH WAIT - 2

= Deterministic ordering of execution

prompt> . /p2

hello world (pid:29266)

hello, I am chi (pid:29267)

hello, I am parent of 29267 (wc:29267) (pid:29266)
prompt>

TCS5422: Operating Systems [Spring 2017]

WL ENE, Ey Inttute of Technoloay)Universitylof Washington®Tacomal

| w27 ‘

FORK EXAMPLE

® Linux example

TCS5422: Operating Systems [Spring 2017)

WAELED T AR [See ot Techolo syl niersityofWashinstonmiecome!

1228

exec()

® Supports running an external program

= execl(), execlp(), execle(): const char *arg

List of pointers (terminated by null pointer)
to strings provided as arguments... (arg0, argi, .. argn)

= Execv(), execvp(), execvpe()
Array of pointers to strings as arguments

Strings are null-terminated
First argument is name of file being executed

= 6 types: execl(), execlp(), execle(), execv(), execvp(), execvpe()

TCS5422: Operating Systems [Spring 2017)

W ENED, iy Institute o Technoloay)Universitylof Washington®Tacomal

| 1229 ‘

EXEC() - 2

= Common use case:

= Write a new program which wraps a legacy one

= Provide a new interface to an old system: Web services
= Legacy program thought of as “black box”

= We don’t want to know what is inside... ©

Qutput
nout ———]

Internal behovior ofthe code is unkrown

TCS5422: Operating Systems [Spring 2017)

WELEN), AU [nsGRueof TechnolokyUniversitylof WashinstonTecoma!

1230

Slides by Wes J. Lloyd

L2.5

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

EXEC EXAMPLE

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <sys/wait.h>

int main(int arge, char *argv(]){
printf("hello world (pid:%d)\n", (int) getpid());
int re = fork();
if (xe < 0) | fork failed; exit
fprintf (stderr, "fork failed\n");
exit (1)
} if (rc == 0)

(ild (new
printf("hello, I am child (pid:%d)\n",

‘ char *myargs[3];

myargs[0] = strdup ("we");
myargs(1] = strdup("p3.c");
myargs(2] = NULL;

B TCS5422: Operating Systems [Spring 2017] | ot ‘

Institute of Technology, University of Washington - Tacoma

EXEC WITH FILE REDIRECTION (OUTPUT)

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <fentl.h>
#include <sys/wait.h>

nt
main (int arge, char *argv(l){
int re = fork();
if (xc < 0) xit
fprintf (stderr, "fork failed\n
exit (1) ;
} else (re == 0) { hild standard output to a file

close (STDOUT_FILENO) ;
- open ("./p4.output", O_CREAT|O_WRONLY|O_TRUNC, S_IRWXU);

TCS5422: Operating Systems [Spring 2017)

| WL ENE, Ey Inttute of Technoloay)Universitylof Washington®Tacomal

| 1233 ‘

EXEC W/ FILE REDIRECTION (OUTPUT) - 2

r *myargs(3];

myargs([0] = strdup("wc"); program: "wc" nt)
myargs[1] = strdup("pd.c"); file t t
myargs[2] = NULL;

(

execvp (myargs (0], myargs); runs word count

we = wait (NULL);

prompt> ./p4

prompt> cat pd.output
32 109 846 pd.c
prompt>

TCS5422: Operating Systems [Spring 2017)

March 30, 2017 Institute of Technology, University of Washington - Tacoma

| 35 ‘

Slides by Wes J. Lloyd

3/30/2017

EXEC EXAMPLE - 2

‘ execvp (myargs [0], myargs); ru;

printf("this shouldn’t print out");
} { parent goe i th
int we = wait (NULL);
printf("hello, I am parent of 5d (wc:sd) (pid:d)\n",
re, we, (int) getpid());

prompt> ./p3
hello world (pid:29383)

hello, I am child (pid:29384)

29 107 1030 p3.c

hello, I am parent of 29384 (wc:29384) (pid:29383)
prompt>

TCS5422: Operating Systems [Spring 2017)

WEEDE) i Institute of Technology, University of Washington- Tacoma

[FX?)

FILE MODE BITS

‘ S_IRWXU

read, write, execute/search by owner
S_IRUSR

read permission, owner

S_IWUSR

write permission, owner

S_IXUSR

execute/search permission, owner
S_IRWXG

read, write, execute/search by group
S_IRGRP

read permission, group

S_IWGRP

write permission, group

S_IXGRP

execute/search permission, group
S_IRWXO

read, write, execute/search by others
S_IROTH

read permission, others

S_IWOTH

write permission, others

TCS5422: Operating Systems [Spring 2017)

WAELED T AR [See ot Techolo syl niersityofWashinstonmiecome!

34

LIMITED DIRECT

EXECUTION

TCSS422: Operating Systems [Spring 2017]

March 30, 2017 Institute of Technology, University of Washington - Tacoma

L2.6

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

VIRTUALIZING THE CPU

=" How does the CPU support running so many jobs
simultaneously?

=Time Sharing

" Tradeoffs:
= Performance
Excessive overhead
= Control
Fairness
Security

= Both HW and OS support
is used

March 30, 2017

TCS5422: Operating Systems [Spring 2017) .
Institute of Technology, University of Washington - Tacoma i

DIRECT EXECUTION - 2

= With direct execution:

How does the OS stop a program from running, and switch
to another to support time sharing?

How do programs share disks and perform /0 if they are
given direct control? Do they know about each other?

With direct execution, how can dynamic memory structures
such as linked lists grow over time?

March 30, 2017 TCS$422: Operating Systems [Spring 2017] | 1239

Institute of Technology, University of Washington - Tacoma

CONTEXT SWITCHING OVERHEAD

Context Switching

Total cost of
context switching

Multitasking

H 'R &

vs. Multitasking with context switching

sequential

TCS5422: Operating Systems [Spring 2017) a1
Institute of Technology, University of Washington - Tacoma i

March 30, 2017

Slides by Wes J. Lloyd

3/30/2017

DIRECT EXECUTION

= What if programs could directly control the CPU / system?

0OS Program

1. Create entry for process list

Computer BOOT Sequence:
OS with Direct Executi

9. Free memory of process
10. Remove from process list

TCS5422: Operating Systems [Spring 2017)
Institute of Technology, University of Washington - Tacoma

March 30, 2017

1238

CONTROL TRADEOFF

= Too little control:
= No security
= No time sharing

= Too much control:
=Too much OS overhead
= Poor performance for compute & I/0
= Complex APlIs (system calls), difficult to use

TCS5422: Operating Systems [Spring 2017)

WAELED T AR [See ot Techolo syl niersityofWashinstonmiecome!

L2.40

LIMITED DIRECT EXECUTION

= 0S implements LDE to support time/resource sharing
= Enabled by protected (safe) control transfer

= CPU supported context switch

= Provides data isolation

TCS5422: Operating Systems [Spring 2017)

WELEN), AU [nsGRueof TechnolokyUniversitylof WashinstonTecoma!

[E¥5)

L2.7

TCSS422: Operating Systems [Spring 2017]

Institute of Technology, University of Washington - Tacoma

CPU MODES

= Utilize CPU Privilege Rings (Intel x86)
= rings O (kernel), 1 (VM kernel), 2 (unused), 3 (user)
access €——————— no access
= User mode:

Application is running, but w/o direct I/0 access

= Kernel mode:

0S kernel is running performing restricted operations

TCS5422: Operating Systems [Spring 2017)

LRI ENED, 2y T e a0l 2 U nvers o Washins tonsTace el

| .43

3/30/2017

CPU MODES

= User mode: ring 3 - untrusted
=Some instructions and registers are disabled by the CPU
= Exception registers
= HALT instruction
= MMU instructions
= 0S memory access
=1/0 device access

= Kernel mode: ring O - trusted
= All instructions and registers enabled

TCS5422: Operating Systems [Spring 2017)

WAELEN T ALY S 1 T, Pt G e TP

.44

SYSTEM CALLS

= Enable restricted “OS” operations
= Kernel exposes key functions through an API:
=Device I/0
= Task swapping: context switch
= Memory management/allocation: malloc()
= Creating/destroying processes

TCS5422: Operating Systems [Spring 2017)

March 30, 2017 Institute of Technology, University of Washington - Tacoma

| 1245

TRAPS:

SYSTEM CALLS, EXCEPTIONS, INTERRUPTS
Mainline Code N

Toop() {

Interrupt Service Routine:

= Trap: any transfer to kernel mode

= Three kinds of traps
= Sys call (planned) user > kernel
SYSCALL for 1/0, etc.

= Exception (error) user > kernel
Div by zero, page fault, page protection error

= Interrupt: (event) user > kernel
Non-maskable vs. maskable
Keyboard event, network packet arrival, timer ticks
Memory parity error (ECC), hard drive failure

EXCEPTION TYPES

Synchronous va. Userrequestvs. Withinvs. batween
"""m-““’"'m
rodeooreques |

‘Asynchronous Coerced Nonmaskable Between

Synchronous

User request

Nonmaskable Between

[Tracinginstruction execution

Resume.

Institute of Technology, University of Washington - Tacoma

Gz r— e e Resume
m e o roauest R T Resume
m e — P winin Resume

D———
Synenronous coercea vsor maskae winin Resume
inderflow &
e [— G T T =
Symotvonous Coorced Usar maskatle witin Resume
e — [— winin Resume
[—— G — P wiin Terminate
I—— Aspnavonous Coorced Nonmaskable witin Torminate
Fowertaiizs o = e winin Torminate
TCS5422: Operating Systems [Spring 2017]
| March 30, 2017 petatite Systems[Spring 2017] e

Slides by Wes J. Lloyd

TC55422: Operating Systems [Spring 2017] B
WAELED T AR [See ot Techolo syl niersityofWashinstonmiecome! L246
0S @ boot Hardware
(kernel mode)
- initialize trap table
remenber address of
syscall handler
Hardware Program
(kernel mode) (user mode)
Create entry for process list
Allocate memory for program
Load program into memory
Setup user stack with argy.
OS with Limited Direct Execution
move to kernel mode
jump to trap handler
Handle trap
- Do work of syscall
turn-from-t
fEomne restore regs from kernel stack
move to user mode
jump to PC after trap
‘ return from main
trap (via exit ())
Free memory of process
Remove from process st
TCSS422: Operating Systems [Spring 2017]
CEEDERE Institute of Technology, University of Washington - Tacoma 1248

L2.8

TCSS422: Operating Systems [Spring 2017] 3/30/2017
Institute of Technology, University of Washington - Tacoma

MULTITASKING MULTITASKING - 2
= How/when should the OS regain control of the CPU to = Preemptive multitasking (32 & 64 bit OSes)
switch between processes? = >= Mac 0SX, Windows 95+
= Coonaa

gives OS the ability to

run again on a CPU.

. 5 Current program is halted
lllegal operations Program states are saved
0OS Interrupt handler is run (kernel mode)
= What problems could you for see with this approach?
= What is a good interval for the timer interrupt?

TCS5422: Operating Systems [Spring 2017)
Institute of Technology, University of Washington - Tacoma

TC55422: Operating Systems [Spring 2017]
LRI ENED, 2y Institute of Technology, University of Washington - Tacoma 1249 WAELEN T ALY L2.50

CONTEXT SWITCH CONTEXT SWITCH - 2
= Preemptive multitasking initiates “trap” 1. Save register values of the current process to its kernel
into the OS code to determine: stack

= General purpose registers
= PC: program counter (instruction pointer)
= kernel stack pointer

+ Whether to continue running the current process,
or switch to a different one.

+ If the decision is made to switch, the OS performs a context

switch swapping out the current process for a new one. 2. Restore soon-to-be-executing process from its kernel
stack
3. Switch to the kernel stack for the soon-to-be-executing
process
March 30, 2017 TCSS422: Operating Systems [Spring 2017] | 1251 ‘ March 30, 2017 TCSS422: Operating Systems [Spring 2017] \252

Institute of Technology, University of Washington - Tacoma Institute of Technology, University of Washington - Tacoma

05 @ boot
(kernel mode)

pra— INTERRUPTED INTERRUPTS
O - 7 el

- start timer
interrupt CPU in X ms

Hardware

= What happens if during an interrupt (trap to kernel
mode), another interrupt occurs?

Program

Hardware

= Linux
= < 2.6 kernel: non-preemptive kernel
= >= 2.6 kernel: preemptive kernel

Context Switch

Call switch() routine
‘ save regs(A) to proc-struct(A)
restore regs(8) from proc-struct(8)
switch to k-stack(B)

return-from-trap (into B)

restore regs(B) from k-stack(®)

move to user mode
‘ Process B

jump to B's PC
TCSS422: Operating Systems [Spring 2017] March 30, 2017 TC55422: Operating Systems [Spring 2017
Institute of Technology, University of Washington - Tacoma 1253 g Institute of Technology, University of Washington - Tacoma

March 30, 2017 [eX7)

Slides by Wes J. Lloyd L2.9

TCSS422: Operating Systems [Spring 2017]
Institute of Technology, University of Washington - Tacoma

PREEMPTIVE KERNEL

= Use “locks” as markers of regions of non-
preemptibility (non-maskable interrupt)

=Preemption counter (preempt_count)
= begins at zero
=increments for each lock acquired (not safe to preempt)
= decrements when locks are released

= |nterrupt can be interrupted when preempt_count=0
= It is safe to preempt (maskable interrupt)
= the interrupt is more important

3/30/2017

March 30, 2017

TCS5422: Operating Systems [Spring 2017)
Institute of Technology, University of Washington - Tacoma

255

Slides by Wes J. Lloyd

QUESTIONS

L2.10

